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Abstract—As soon as abstract mathematical computa-
tions were adapted to computation on digital computers,
the problem of efficient representation, manipulation, and
communication of the numerical values in those computa-
tions arose. Strongly related to the problem of numerical
representation is the problem of quantization: in what
manner should a set of continuous real-valued numbers be
distributed over a fixed discrete set of numbers to minimize
the number of bits required and also to maximize the
accuracy of the attendant computations? This perennial
problem of quantization is particularly relevant whenever
memory and/or computational resources are severely re-
stricted, and it has come to the forefront in recent years due
to the remarkable performance of Neural Network models
in computer vision, natural language processing, and re-
lated areas. Moving from floating-point representations to
low-precision fixed integer values represented in four bits
or less holds the potential to reduce the memory footprint
and latency by a factor of 16x; and, in fact, reductions of
4x to 8x are often realized in practice in these applications.
Thus, it is not surprising that quantization has emerged
recently as an important and very active sub-area of
research in the efficient implementation of computations
associated with Neural Networks. In this article, we survey
approaches to the problem of quantizing the numerical
values in deep Neural Network computations, covering the
advantages/disadvantages of current methods. With this
survey and its organization, we hope to have presented a
useful snapshot of the current research in quantization
for Neural Networks and to have given an intelligent
organization to ease the evaluation of future research in
this area.

I. INTRODUCTION

Over the past decade, we have observed significant
improvements in the accuracy of Neural Networks (NNs)
for a wide range of problems, often achieved by highly
over-parameterized models. While the accuracy of these
over-parameterized (and thus very large) NN models has
significantly increased, the sheer size of these models
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means that it is not possible to deploy them for many
resource-constrained applications. This creates a problem
for realizing pervasive deep learning, which requires
real-time inference, with low energy consumption and
high accuracy, in resource-constrained environments. This
pervasive deep learning is expected to have a significant
impact on a wide range of applications such as real-time
intelligent healthcare monitoring, autonomous driving,
audio analytics, and speech recognition.

Achieving efficient, real-time NNs with optimal ac-
curacy requires rethinking the design, training, and
deployment of NN models [71]. There is a large body of
literature that has focused on addressing these issues by
making NN models more efficient (in terms of latency,
memory footprint, and energy consumption, etc.), while
still providing optimal accuracy/generalization trade-offs.
These efforts can be broadly categorized as follows.

a) Designing efficient NN model architectures:
One line of work has focused on optimizing the NN model
architecture in terms of its micro-architecture [101, 111,
127, 167, 168, 212, 253, 280] (e.g., kernel types such as
depth-wise convolution or low-rank factorization) as well
as its macro-architecture [100, 101, 104, 110, 214, 233]
(e.g., module types such as residual, or inception). The
classical techniques here mostly found new architecture
modules using manual search, which is not scalable. As
such, a new line of work is to design Automated machine
learning (AutoML) and Neural Architecture Search (NAS)
methods. These aim to find in an automated way the right
NN architecture, under given constraints of model size,
depth, and/or width [161, 194, 232, 245, 252, 291]. We
refer interested reader to [54] for a recent survey of NAS
methods.

b) Co-designing NN architecture and hardware
together: Another recent line of work has been to adapt
(and co-design) the NN architecture for a particular target
hardware platform. The importance of this is because the
overhead of a NN component (in terms of latency and
energy) is hardware-dependent. For example, hardware
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with a dedicated cache hierarchy can execute bandwidth
bound operations much more efficiently than hardware
without such cache hierarchy. Similar to NN architecture
design, initial approaches at architecture-hardware co-
design were manual, where an expert would adapt/change
the NN architecture [70], followed by using automated
AutoML and/or NAS techniques [22, 23, 100, 252].

c) Pruning: Another approach to reducing the
memory footprint and computational cost of NNs is to
apply pruning. In pruning, neurons with small saliency
(sensitivity) are removed, resulting in a sparse computa-
tional graph. Here, neurons with small saliency are those
whose removal minimally affects the model output/loss
function. Pruning methods can be broadly categorized
into unstructured pruning [49, 86, 139, 143, 191, 257],
and structured pruning [91, 106, 156, 166, 274, 275, 279].
With unstructured pruning, one removes neurons with
with small saliency, wherever they occur. With this
approach, one can perform aggressive pruning, removing
most of the NN parameters, with very little impact on
the generalization performance of the model. However,
this approach leads to sparse matrix operations, which
are known to be hard to accelerate, and which are
typically memory-bound [21, 66]. On the other hand,
with structured pruning, a group of parameters (e.g.,
entire convolutional filters) is removed. This has the
effect of changing the input and output shapes of layers
and weight matrices, thus still permitting dense matrix
operations. However, aggressive structured pruning often
leads to significant accuracy degradation. Training and
inference with high levels of pruning/sparsity, while
maintaining state-of-the-art performance, has remained
an open problem [16]. We refer the interested reader
to [66, 96, 134] for a thorough survey of related work
in pruning/sparsity.

d) Knowledge distillation: Model distillation [3, 95,
150, 177, 195, 207, 269, 270] involves training a large
model and then using it as a teacher to train a more com-
pact model. Instead of using “hard” class labels during
the training of the student model, the key idea of model
distillation is to leverage the “soft” probabilities produced
by the teacher, as these probabilities can contain more
information about the input. Despite the large body of
work on distillation, a major challenge here is to achieve a
high compression ratio with distillation alone. Compared
to quantization and pruning, which can maintain the
performance with ≥ 4× compression (with INT8 and
lower precision), knowledge distillation methods tend to
have non-negligible accuracy degradation with aggressive
compression. However, the combination of knowledge

distillation with prior methods (i.e., quantization and
pruning) has shown great success [195].

e) Quantization: Finally, quantization is an ap-
proach that has shown great and consistent success in
both training and inference of NN models. While the
problems of numerical representation and quantization
are as old as digital computing, Neural Nets offer unique
opportunities for improvement. While this survey on
quantization is mostly focused on inference, we should
emphasize that an important success of quantization has
been in NN training [10, 35, 57, 130, 247]. In particular,
the breakthroughs of half-precision and mixed-precision
training [41, 72, 79, 175] have been the main drivers that
have enabled an order of magnitude higher throughput in
AI accelerators. However, it has proven very difficult to
go below half-precision without significant tuning, and
most of the recent quantization research has focused on
inference. This quantization for inference is the focus of
this article.

f) Quantization and Neuroscience: Loosely related
to (and for some a motivation for) NN quantization
is work in neuroscience that suggests that the human
brain stores information in a discrete/quantized form,
rather than in a continuous form [171, 236, 240]. A
popular rationale for this idea is that information stored
in continuous form will inevitably get corrupted by noise
(which is always present in the physical environment,
including our brains, and which can be induced by
thermal, sensory, external, synaptic noise, etc.) [27, 58].
However, discrete signal representations can be more
robust to such low-level noise. Other reasons, including
the higher generalization power of discrete representa-
tions [128, 138, 242] and their higher efficiency under
limited resources [241], have also been proposed. We
refer the reader to [228] for a thorough review of related
work in neuroscience literature.

The goal of this work is to introduce current methods
and concepts used in quantization and to discuss the
current challenges and opportunities in this line of
research. In doing so, we have tried to discuss most
relevant work. It is not possible to discuss every work in
a field as large as NN quantization in the page limit of a
short survey; and there is no doubt that we have missed
some relevant papers. We apologize in advance both to
the readers and the authors of papers that we may have
neglected.

In terms of the structure of this survey, we will first
provide a brief history of quantization in Section II,
and then we will introduce basic concepts underlying
quantization in Section III. These basic concepts are
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shared with most of the quantization algorithms, and
they are necessary for understanding and deploying
existing methods. Then we discuss more advanced topics
in Section IV. These mostly involve recent state-of-the-art
methods, especially for low/mixed-precision quantization.
Then we discuss the implications of quantization in
hardware accelerators in Section V, with a special focus
on edge processors. Finally, we provide a summary and
conclusions in Section VII.

II. GENERAL HISTORY OF QUANTIZATION

Gray and Neuhoff have written a very nice survey of the
history of quantization up to 1998 [76]. The article is an
excellent one and merits reading in its entirety; however,
for the reader’s convenience we will briefly summarize
some of the key points here. Quantization, as a method
to map from input values in a large (often continuous) set
to output values in a small (often finite) set, has a long
history. Rounding and truncation are typical examples.
Quantization is related to the foundations of the calculus,
and related methods can be seen in the early 1800s
(as well as much earlier), e.g., in early work on least-
squares and related techniques for large-scale (by the
standards of the early 1800s) data analysis [225]. An
early work on quantization dates back to 1867, where
discretization was used to approximate the calculation
of integrals [206]; and, subsequently, in 1897, when
Shappard investigated the impact of rounding errors on
the integration result [220]. More recently, quantization
has been important in digital signal processing, as the
process of representing a signal in digital form ordinarily
involves rounding, as well as in numerical analysis
and the implementation of numerical algorithms, where
computations on real-valued numbers are implemented
with finite-precision arithmetic.

It was not until 1948, around the advent of the digital
computer, when Shannon wrote his seminal paper on the
mathematical theory of communication [215], that the
effect of quantization and its use in coding theory were
formally presented. In particular, Shannon argued in his
lossless coding theory that using the same number of
bits is wasteful, when events of interest have a non-
uniform probability. He argued that a more optimal
approach would be to vary the number of bits based on the
probability of an event, a concept that is now known as
variable-rate quantization. Huffman coding in particular
is motivated by this [109]. In subsequent work in
1959 [216], Shannon introduced distortion-rate functions
(which provide a lower bound on the signal distortion
after coding) as well as the notion of vector quantization

(also briefly discussed in Section IV-F). This concept was
extended and became practical in [53, 55, 67, 208] for real
communication applications. Other important historical
research on quantization in signal processing in that time
period includes [188], which introduced the Pulse Code
Modulation (PCM) concept (a pulsing method proposed
to approximate/represent/encode sampled analog signals),
as well as the classical result of high resolution quanti-
zation [14]. We refer the interested reader to [76] for a
detailed discussion of these issues.

Quantization appears in a slightly different way in
algorithms that use numerical approximation for problems
involving continuous mathematical quantities, an area that
also has a long history, but that also received renewed
interest with the advent of the digital computer. In
numerical analysis, an important notion was (and still is)
that of a well-posed problem—roughly, a problem is well-
posed if: a solution exists; that solution is unique; and
that solution depends continuously on the input data in
some reasonable topology. Such problems are sometimes
called well-conditioned problems. It turned out that, even
when working with a given well-conditioned problem,
certain algorithms that solve that problem “exactly” in
some idealized sense perform very poorly in the presence
of “noise” introduced by the peculiarities of roundoff
and truncation errors. These roundoff errors have to do
with representing real numbers with only finitely-many
bits—a quantization specified, e.g., by the IEEE floating
point standard; and truncation errors arise since only a
finite number of iterations of an iterative algorithm can
actually be performed. The latter are important even in
“exact arithmetic,” since most problems of continuous
mathematics cannot even in principle be solved by a
finite sequence of elementary operations; but the former
have to do with quantization. These issues led to the
notion of the numerical stability of an algorithm. Let us
view a numerical algorithm as a function f attempting
to map the input data x to the “true” solution y; but
due to roundoff and truncation errors, the output of the
algorithm is actually some other y∗. In this case, the
forward error of the algorithm is ∆y = y∗ − y; and the
backward error of the algorithm is the smallest ∆x such
that f(x + ∆x) = y∗. Thus, the forward error tells us
the difference between the exact or true answer and what
was output by the algorithm; and the backward error
tells us what input data the algorithm we ran actually
solved exactly. The forward error and backward error for
an algorithm are related by the condition number of the
problem. We refer the interested reader to [237] for a
detailed discussion of these issues.
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A. Quantization in Neural Nets

No doubt thousands of papers have been written on
these topics, and one might wonder: how is recent work
on NN quantization different from these earlier works?
Certainly, many of the recently proposed “novel algo-
rithms” have strong connections with (and in some cases
are essentially rediscoveries of) past work in the literature.
However, NNs bring unique challenges and opportunities
to the problem of quantization. First, inference and
training of Neural Nets are both computationally intensive.
So, the efficient representation of numerical values is
particularly important. Second, most current Neural Net
models are heavily over-parameterized, so there is ample
opportunity for reducing bit precision without impacting
accuracy. However, one very important difference is
that NNs are very robust to aggressive quantization and
extreme discretization. The new degree of freedom here
has to do with the number of parameters involved, i.e.,
that we are working with over-parameterized models. This
has direct implications for whether we are solving well-
posed problems, whether we are interested in forward
error or backward error, etc. In the NN applications
driving recent developments in quantization, there is not
a single well-posed or well-conditioned problem that
is being solved. Instead, one is interested in some sort
of forward error metric (based on classification quality,
perplexity, etc.), but due to the over-parameterization,
there are many very different models that exactly or
approximately optimize this metric. Thus, it is possible
to have high error/distance between a quantized model
and the original non-quantized model, while still attaining
very good generalization performance. This added degree
of freedom was not present in many of the classical
research, which mostly focused on finding compression
methods that would not change the signal too much,
or with numerical methods in which there was strong
control on the difference between the “exact” versus
the “discretized” computation. This observation that has
been the main driver for researching novel techniques for
NN quantization. Finally,the layered structure of Neural
Net models offers an additional dimension to explore.
Different layers in a Neural Net have different impact on
the loss function, and this motivates a mixed-precision
approach to quantization.

III. BASIC CONCEPTS OF QUANTIZATION

In this section, we first briefly introduce common
notations and the problem setup in Section III-A, and
then we describe the basic quantization concepts and
methods in Section III-B-III-F. Afterwards, we discuss the

𝑟

𝑄

𝑟

𝑄

Figure 1: Comparison between uniform quantization
(left) and non-uniform quantization (right). Real values in
the continuous domain r are mapped into discrete, lower
precision values in the quantized domain Q, which are
marked with the orange bullets. Note that the distances
between the quantized values (quantization levels) are
the same in uniform quantization, whereas they can vary
in non-uniform quantization.

different fine-tuning methods in Section III-G, followed
by stochastic quantization in Section III-H.

A. Problem Setup and Notations

Assume that the NN has L layers with learnable pa-
rameters, denoted as {W1,W2, ...,WL}, with θ denoting
the combination of all such parameters. Without loss of
generality, we focus on the supervised learning problem,
where the nominal goal is to optimize the following
empirical risk minimization function:

L(θ) =
1

N

N∑
i=1

l(xi, yi; θ), (1)

where (x, y) is the input data and the corresponding label,
l(x, y; θ) is the loss function (e.g., Mean Squared Error
or Cross Entropy loss), and N is the total number of data
points. Let us also denote the input hidden activations of
the ith layer as hi, and the corresponding output hidden
activation as ai. We assume that we have the trained
model parameters θ, stored in floating point precision. In
quantization, the goal is to reduce the precision of both
the parameters (θ), as well as the intermediate activation
maps (i.e., hi, ai) to low-precision, with minimal impact
on the generalization power/accuracy of the model. To
do this, we need to define a quantization operator that
maps a floating point value to a quantized one, which is
described next.

B. Uniform Quantization

We need first to define a function that can quantize
NN weights and activations to a finite set of values. This
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Figure 2: Illustration of symmetric quantization and asymmetric quantization. Symmetric quantization with restricted
range maps real values to [-127, 127], and full range maps to [-128, 127] for 8-bit quantization.

function takes real values in floating point, and it maps
them to a lower precision range, as illustrated in Figure 1.
A popular choice for a quantization function is as follows:

Q(r) = Int
(
r/S

)
− Z, (2)

where Q is the quantization operator, r is a real valued
input (activation or weight), S is a real valued scaling
factor, and Z is an integer zero point. Furthermore,
the Int function maps a real value to an integer value
through a rounding operation (e.g., round to nearest and
truncation). In essence, this function is a mapping from
real values r to some integer values. This method of
quantization is also known as uniform quantization, as
the resulting quantized values (aka quantization levels)
are uniformly spaced (Figure 1, left). There are also non-
uniform quantization methods whose quantized values
are not necessarily uniformly spaced (Figure 1, right),
and these methods will be discussed in more detail in
Section III-F. It is possible to recover real values r from
the quantized values Q(r) through an operation that is
often referred to as dequantization:

r̃ = S(Q(r) + Z). (3)

Note that the recovered real values r̃ will not exactly
match r due to the rounding operation.

C. Symmetric and Asymmetric Quantization

One important factor in uniform quantization is the
choice of the scaling factor S in Eq. 2. This scaling factor
essentially divides a given range of real values r into a
number of partitions (as discussed in [113, 133]):

S =
β − α
2b − 1

, (4)

where [α, β] denotes the clipping range, a bounded range
that we are clipping the real values with, and b is
the quantization bit width. Therefore, in order for the

scaling factor to be defined, the clipping range [α, β]
should first be determined. The process of choosing
the clipping range is often referred to as calibration.
A straightforward choice is to use the min/max of
the signal for the clipping range, i.e., α = rmin, and
β = rmax. This approach is an asymmetric quantization
scheme, since the clipping range is not necessarily
symmetric with respect to the origin, i.e., −α 6= β,
as illustrated in Figure 2 (Right). It is also possible
to use a symmetric quantization scheme by choosing a
symmetric clipping range of α = −β. A popular choice
is to choose these based on the min/max values of the
signal: −α = β = max(|rmax|, |rmin|). Asymmetric
quantization often results in a tighter clipping range as
compared to symmetric quantization. This is especially
important when the target weights or activations are
imbalanced, e.g., the activation after ReLU that always
has non-negative values. Using symmetric quantization,
however, simplifies the quantization function in Eq. 2 by
replacing the zero point with Z = 0:

Q(r) = Int
( r
S

)
. (5)

Here, there are two choices for the scaling factor. In “full
range” symmetric quantization S is chosen as 2max(|r|)

2n−1
(with floor rounding mode), to use the full INT8 range
of [-128,127]. However, in “restricted range” S is chosen
as max(|r|)

2n−1−1 , which only uses the range of [-127,127].
As expected, the full range approach is more accurate.
Symmetric quantization is widely adopted in practice
for quantizing weights because zeroing out the zero
point can lead to reduction in computational cost during
inference [255], and also makes the implementation
more straightforward. However, note that for activation
the cross terms occupying due to the offset in the
asymmetric activations are a static data independent term
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Figure 3: Illustration of different quantization granularities. In layerwise quantization, the same clipping range
is applied to all the filters that belong to the same layer. This can result in bad quantization resolution for the
channels that have narrow distributions (e.g., Filter 1 in the figure). One can achieve better quantization resolution
using channelwise quantization that dedicates different clipping ranges to different channels.

and can be absorbed in the bias (or used to initialize the
accumulator) [15].

Using the min/max of the signal for both symmetric
and asymmetric quantization is a popular method. How-
ever, this approach is susceptible to outlier data in the
activations. These could unnecessarily increase the range
and, as a result, reduce the resolution of quantization.
One approach to address this is to use percentile instead
of min/max of the signal [172]. That is to say, instead of
the largest/smallest value, the i-th largest/smallest values
are used as β/α. Another approach is to select α and
β to minimize KL divergence (i.e., information loss)
between the real values and the quantized values [176].
We refer the interested readers to [255] where the different
calibration methods are evaluated on various models.

Summary (Symmetric vs Asymmetric Quantiza-
tion). Symmetric quantization partitions the clipping
using a symmetric range. This has the advantage of easier
implementation, as it leads to Z = 0 in Eq. 2. However,
it is sub-optimal for cases where the range could be
skewed and not symmetric. For such cases, asymmetric
quantization is preferred.

D. Range Calibration Algorithms: Static vs Dynamic
Quantization

So far, we discussed different calibration methods for
determining the clipping range of [α, β]. Another impor-
tant differentiator of quantization methods is when the
clipping range is determined. This range can be computed
statically for weights, as in most cases the parameters
are fixed during inference. However, the activation maps
differ for each input sample (x in Eq. 1). As such, there
are two approaches to quantizing activations: dynamic
quantization, and static quantization.

In dynamic quantization, this range is dynamically
calculated for each activation map during runtime. This
approach requires real-time computation of the signal
statistics (min, max, percentile, etc.) which can have a
very high overhead. However, dynamic quantization often
results in higher accuracy as the signal range is exactly
calculated for each input.

Another quantization approach is static quantization,
in which the clipping range is pre-calculated and static
during inference. This approach does not add any com-
putational overhead, but it typically results in lower
accuracy as compared to dynamic quantization. One
popular method for the pre-calculation is to run a
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series of calibration inputs to compute the typical range
of activations [113, 267]. Multiple different metrics
have been proposed to find the best range, including
minimizing Mean Squared Error (MSE) between original
unquantized weight distribution and the corresponding
quantized values [40, 221, 229, 281]. One could also
consider using other metrics such as entropy [189],
although MSE is the most common method used. Another
approach is to learn/impose this clipping range during
NN training [36, 146, 276, 287]. Notable work here are
LQNets [276], PACT [36], LSQ [56], and LSQ+ [15]
which jointly optimizes the clipping range and the weights
in NN during training.

Summary (Dynamic vs Static Quantization). Dy-
namic quantization dynamically computes the clipping
range of each activation and often achieves the highest
accuracy. However, calculating the range of a signal
dynamically is very expensive, and as such, practitioners
most often use static quantization where the clipping
range is fixed for all inputs.

E. Quantization Granularity

In most computer vision tasks, the activation input to
a layer is convolved with many different convolutional
filters, as illustrated in Figure 3. Each of these convo-
lutional filters can have a different range of values. As
such, one differentiator for quantization methods is the
granularity of how the clipping range [α, β] is calculated
for the weights. We categorized them as follows.

a) Layerwise Quantization: In this approach, the
clipping range is determined by considering all of the
weights in convolutional filters of a layer [133], as shown
in the third column of Figure 3. Here one examines the
statistics of the entire parameters in that layer (e.g., min,
max, percentile, etc.), and then uses the same clipping
range for all the convolutional filters. While this approach
is very simple to implement, it often results in sub-optimal
accuracy, as the range of each convolutional filter can
be vary a lot. For example, a convolutional kernel that
has relatively narrower range of parameters may lose its
quantization resolution due to another kernel in the same
layer with a wider range.

b) Groupwise Quantization: One could group mul-
tiple different channels inside a layer to calculate the clip-
ping range (of either activations or convolution kernels).
This could be helpful for cases where the distribution
of the parameters across a single convolution/activation
varies a lot. For instance, this approach was found
useful in Q-BERT [219] for quantizing Transformer [243]
models that consist of fully-connected attention layers.

However, this approach inevitably comes with the extra
cost of accounting for different scaling factors.

c) Channelwise Quantization: A popular choice
of the clipping range is to use a fixed value for each
convolutional filter, independent of other channels [105,
113, 133, 222, 276, 285], as shown in the last column
of Figure 3. That is to say, each channel is assigned a
dedicated scaling factor. This ensures a better quantization
resolution and often results in higher accuracy.

d) Sub-channelwise Quantization: The previous
approach could be taken to the extreme, where the
clipping range is determined with respect to any groups
of parameters in a convolution or fully-connected layer.
However, this approach could add considerable overhead,
since the different scaling factors need to be taken into
account when processing a single convolution or full-
connected layer. Therefore, groupwise quantization could
establish a good compromise between the quantization
resolution and the computation overhead.

Summary (Quantization Granularity). Channelwise
quantization is currently the standard method used for
quantizing convolutional kernels. It enables the practi-
tioner to adjust the clipping range for each individual ker-
nel with negligible overhead. In contrast, sub-channelwise
quantization may result in significant overhead and is not
currently the standard choice (we also refer interested
reader to [68] for tradeoffs associated with these design
choices).

F. Non-Uniform Quantization

Some work in the literature has also explored non-
uniform quantization [25, 38, 62, 74, 79, 99, 118, 125,
153, 159, 179, 189, 190, 238, 248, 256, 264, 266, 276,
284], where quantization steps as well as quantization
levels are allowed to be non-uniformly spaced. The formal
definition of non-uniform quantization is shown in Eq. 6,
where Xi represents the discrete quantization levels and
∆i the quantization steps (thresholds):

Q(r) = Xi, if r ∈ [∆i,∆i+1). (6)

Specifically, when the value of a real number r falls in
between the quantization step ∆i and ∆i+1, quantizer
Q projects it to the corresponding quantization level Xi.
Note that neither Xi’s nor ∆i’s are uniformly spaced.

Non-uniform quantization may achieve higher accuracy
for a fixed bit-width, because one could better capture the
distributions by focusing more on important value regions
or finding appropriate dynamic ranges. For instance, many
non-uniform quantization methods have been designed for
bell-shaped distributions of the weights and activations
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Figure 4: Comparison between Quantization-Aware Training (QAT, Left) and Post-Training Quantization (PTQ,
Right). In QAT, a pre-trained model is quantized and then finetuned using training data to adjust parameters and
recover accuracy degradation. In PTQ, a pre-trained model is calibrated using calibration data (e.g., a small subset
of training data) to compute the clipping ranges and the scaling factors. Then, the model is quantized based on the
calibration result. Note that the calibration process is often conducted in parallel with the finetuning process for
QAT.

that often involve long tails [12, 25, 61, 115, 147, 179].
A typical rule-based non-uniform quantization is to
use a logarithmic distribution [179, 283], where the
quantization steps and levels increase exponentially
instead of linearly. Another popular branch is binary-
code-based quantization [78, 107, 118, 258, 276] where
a real-number vector r ∈ Rn is quantized into m binary
vectors by representing r ≈∑m

i=1 αibi, with the scaling
factors αi ∈ R and the binary vectors bi ∈ {−1,+1}n.
Since there is no closed-form solution for minimizing
the error between r and

∑m
i=1 αibi, previous research

relies on heuristic solutions. To further improve the
quantizer, more recent work [78, 234, 258] formulates
non-uniform quantization as an optimization problem.
As shown in Eq. 7, the quantization steps/levels in the
quantizer Q are adjusted to minimize the difference
between the original tensor and the quantized counterpart.

min
Q
‖Q(r)− r‖2 (7)

Furthermore, the quantizer itself can also be jointly
trained with the model parameters. These methods are
referred to as learnable quantizers, and the quantization
steps/levels are generally trained with iterative optimiza-
tion [258, 276] or gradient descent [125, 158, 264].

In addition to rule-based and optimization-based non-
uniform quantization, clustering can also be beneficial to
alleviate the information loss due to quantization. Some
works [74, 256] use k-means on different tensors to
determine the quantization steps and levels, while other
work [38] applies a Hessian-weighted k-means clustering
on weights to minimize the performance loss. Further
discussion can be found in Section IV-F.

Summary (Uniform vs Non-uniform Quantization).
Generally, non-uniform quantization enables us to better
capture the signal information, by assigning bits and
discreitizing the range of parameters non-uniformly.
However, non-uniform quantization schemes are typically
difficult to deploy efficiently on general computation
hardware, e.g., GPU and CPU. As such, the uniform
quantization is currently the de-facto method due to its
simplicity and its efficient mapping to hardware.

G. Fine-tuning Methods

It is often necessary to adjust the parameters in the NN
after quantization. This can either be performed by re-
training the model, a process that is called Quantization-
Aware Training (QAT), or done without re-training,
a process that is often referred to as Post-Training
Quantization (PTQ). A schematic comparison between
these two approaches is illustrated in Figure 4, and further
discussed below (we refer interested reader to [183] for
more detailed discussion on this topic).

1) Quantization-Aware Training: Given a trained
model, quantization may introduce a perturbation to the
trained model parameters, and this can push the model
away from the point to which it had converged when it
was trained with floating point precision. It is possible to
address this by re-training the NN model with quantized
parameters so that the model can converge to a point with
better loss. One popular approach is to use Quantization-
Aware Training (QAT), in which the usual forward
and backward pass are performed on the quantized
model in floating point, but the model parameters are
quantized after each gradient update (similar to projected
gradient descent). In particular, it is important to do
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Figure 5: Illustration of Quantization-Aware Training procedure, including the use of Straight Through Estimator
(STE).

this projection after the weight update is performed
in floating point precision. Performing the backward
pass with floating point is important, as accumulating
the gradients in quantized precision can result in zero-
gradient or gradients that have high error, especially in
low-precision [42, 80, 81, 107, 159, 186, 204, 231].

An important subtlety in backpropagation is how the
the non-differentiable quantization operator (Eq. 2) is
treated. Without any approximation, the gradient of this
operator is zero almost everywhere, since the rounding
operation in Eq. 2 is a piece-wise flat operator. A
popular approach to address this is to approximate
the gradient of this operator by the so-called Straight
Through Estimator (STE) [13]. STE essentially ignores
the rounding operation and approximates it with an
identity function, as illustrated in Figure 5.

Despite the coarse approximation of STE, it often
works well in practice, except for ultra low-precision quan-
tization such as binary quantization [8]. The work of [271]
provides a theoretical justification for this phenomena,
and it finds that the coarse gradient approximation of STE
can in expectation correlate with population gradient (for
a proper choice of STE). From a historical perspective,
we should note that the original idea of STE can be
traced back to the seminal work of [209, 210], where an
identity operator was used to approximate gradient from
the binary neurons.

While STE is the mainstream approach [226, 289],
other approaches have also been explored in the lit-
erature [2, 25, 31, 59, 144, 164]. We should first
mention that [13] also proposes a stochastic neuron
approach as an alternative to STE (this is briefly discussed

in Section III-H). Other approaches using combinatorial
optimization [65], target propagation [140], or Gumbel-
softmax [116] have also been proposed. Another different
class of alternative methods tries to use regularization
operators to enforce the weight to be quantized. This
removes the need to use the non-differentiable quanti-
zation operator in Eq. 2. These are often referred to
as Non-STE methods [4, 8, 39, 99, 144, 184, 283].
Recent research in this area includes ProxQuant [8]
which removes the rounding operation in the quantization
formula Eq. 2, and instead uses the so-called W-shape,
non-smooth regularization function to enforce the weights
to quantized values. Other notable research includes
using pulse training to approximate the derivative of
discontinuous points [45], or replacing the quantized
weights with an affine combination of floating point and
quantized parameters [165]. The recent work of [181]
also suggests AdaRound, which is an adaptive rounding
method as an alternative to round-to-nearest method.
Despite interesting works in this area, these methods
often require a lot of tuning and so far STE approach is
the most commonly used method.

In addition to adjusting model parameters, some prior
work found it effective to learn quantization parameters
during QAT as well. PACT [36] learns the clipping
ranges of activations under uniform quantization, while
QIT [125] also learns quantization steps and levels as an
extension to a non-uniform quantization setting. LSQ [56]
introduces a new gradient estimate to learn scaling factors
for non-negative activations (e.g., ReLU) during QAT, and
LSQ+ [15] further extends this idea to general activation
functions such as swish [202] and h-swish [100] that
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produce negative values.
Summary (QAT). QAT has been shown to work

despite the coarse approximation of STE. However, the
main disadvantage of QAT is the computational cost of
re-training the NN model. This re-training may need
to be performed for several hundred epochs to recover
accuracy, especially for low-bit precision quantization. If
a quantized model is going to be deployed for an extended
period, and if efficiency and accuracy are especially
important, then this investment in re-training is likely
to be worth it. However, this is not always the case, as
some models have a relatively short lifetime. Next, we
next discuss an alternative approach that does not have
this overhead.

2) Post-Training Quantization: An alternative to the
expensive QAT method is Post-Training Quantization
(PTQ) which performs the quantization and the adjust-
ments of the weights, without any fine-tuning [11, 24, 40,
60, 61, 68, 69, 89, 108, 142, 148, 174, 182, 223, 281].
As such, the overhead of PTQ is very low and often
negligible. Unlike QAT, which requires a sufficient
amount of training data for retraining, PTQ has an
additional advantage that it can be applied in situations
where data is limited or unlabeled. However, this often
comes at the cost of lower accuracy as compared to QAT,
especially for low-precision quantization.

For this reason, multiple approaches have been pro-
posed to mitigate the accuracy degradation of PTQ. For
example, [11, 63] observe inherent bias in the mean and
variance of the weight values following their quantization
and propose bias correction methods; and [174, 182]
show that equalizing the weight ranges (and implicitly
activation ranges) between different layers or channels
can reduce quantization errors. ACIQ [11] analytically
computes the optimal clipping range and the channel-wise
bitwidth setting for PTQ. Although ACIQ can achieve
low accuracy degradation, the channel-wise activation
quantization used in ACIQ is hard to efficiently deploy on
hardware. In order to address this, the OMSE method [40]
removes channel-wise quantization on activation and
proposes to conduct PTQ by optimizing the L2 distance
between the quantized tensor and the corresponding
floating point tensor. Furthermore, to better alleviate
the adverse impact of outliers on PTQ, an outlier
channel splitting (OCS) method is proposed in [281]
which duplicates and halves the channels containing
outlier values. Another notable work is AdaRound [181]
which shows that the naive round-to-nearest method for
quantization can counter-intuitively results in sub-optimal
solutions, and it proposes an adaptive rounding method

that better reduces the loss. While AdaRound restricts
the changes of the quantized weights to be within ±1
from their full-precision counterparts, AdaQuant [108]
proposes a more general method that allows the quantized
weights to change as needed. PTQ schemes can be taken
to the extreme, where neither training nor testing data
are utilized during quantization (aka zero-shot scenarios),
which is discussed next.

Summary (PTQ). In PTQ, all the weights and acti-
vations quantization parameters are determined without
any re-training of the NN model. As such, PTQ is a very
fast method for quantizing NN models. However, this
often comes at the cost of lower accuracy as compared
to QAT.

3) Zero-shot Quantization: As discussed so far, in
order to achieve minimal accuracy degradation after
quantization, we need access to the entire of a fraction
of training data. First, we need to know the range of
activations so that we can clip the values and determine
the proper scaling factors (which is usually referred to as
calibration in the literature). Second, quantized models
often require fine-tuning to adjust the model parameters
and recover the accuracy degradation. In many cases,
however, access to the original training data is not possible
during the quantization procedure. This is because the
training dataset is either too large to be distributed,
proprietary (e.g., Google’s JFT-300M), or sensitive due to
security or privacy concerns (e.g., medical data). Several
different methods have been proposed to address this
challenge, which we refer to as zero-shot quantization
(ZSQ). Inspired by [182], here we first describe two
different levels of zero-shot quantization:
• Level 1: No data and no finetuning (ZSQ + PTQ).
• Level 2: No data but requires finetuning (ZSQ +

QAT).
Level 1 allows faster and easier quantization without
any finetuning. Finetuning is in general time-consuming
and often requires additional hyperparamenter search.
However, Level 2 usually results in higher accuracy,
as finetuning helps the quantized model to recover
the accuracy degradation, particularly in ultra-low bit
precision settings [85]. The work of [182] uses a Level
1 approach that relies on equalizing the weight ranges
and correcting bias errors to make a given NN model
more amenable to quantization without any data or
finetuning. However, as this method is based on the scale-
equivariance property of (piece-wise) linear activation
functions, it can be sub-optimal for NNs with non-linear
activations, such as BERT [46] with GELU [94] activation
or MobileNetV3 [100] with swish activation [203].

10

Junwang Zhao
Highlight

Junwang Zhao
Highlight



Multiplication (FP32)

FP32 Weight FP32 Activation 

FP32

Accumulation (FP32)

FP32 Activation 

Dequantize

Multiplication (FP32)

INT4 Weight INT4 Activation 

FP32

FP32

Accumulation (FP32)

Requantize

FP32

INT4 Activation 

Multiplication (INT4)

INT4 Weight INT4 Activation 

INT4

Accumulation (INT32)

INT4 Activation 

Requantize

INT32

Figure 6: Comparison between full-precision inference (Left), inference with simulated quantization (Middle), and
inference with integer-only quantization (Right).

A popular branch of research in ZSQ is to generate
synthetic data similar to the real data from which the
target pre-trained model is trained. The synthetic data is
then used for calibrating and/or finetuning the quantized
model. An early work in this area [28] exploits Generative
Adversarial Networks (GANs) [75] for synthetic data
generation. Using the pre-trained model as a discriminator,
it trains the generator so that its outputs can be well
classified by the discriminator. Then, using the synthetic
data samples collected from the generator, the quantized
model can be finetuned with knowledge distillation from
the full-precision counterpart (see Section IV-D for more
details). However, this method fails to capture the internal
statistics (e.g., distributions of the intermediate layer
activations) of the real data, as it is generated only using
the final outputs of the model. Synthetic data which
does not take the internal statistics into account may
not properly represent the real data distribution [85]. To
address this, a number of subsequent efforts use the statis-
tics stored in Batch Normalization (BatchNorm) [112],
i.e., channel-wise mean and variance, to generate more
realistic synthetic data. In particular, [85] generates data
by directly minimizing the KL divergence of the internal
statistics, and it uses the synthetic data to calibrate and
finetune the quantized models. Furthermore, ZeroQ [24]
shows that the synthetic data can be used for sensitivity
measurement as well as calibration, thereby enabling
mixed-precision post-training quantization without any
access to the training/validation data. ZeroQ also extends
ZSQ to the object detection tasks, as it does not rely
on the output labels when generating data. Both [85]
and [24] set the input images as trainable parameters

and directly perform backpropagation on them until their
internal statistics become similar to those of the real data.
To take a step further, recent research [37, 90, 259] finds
it effective to train and exploit generative models that
can better capture the real data distribution and generate
more realistic synthetic data.

Summary (ZSQ). Zero Shot (aka data free) quan-
tization performs the entire quantization without any
access to the training/validation data. This is particularly
important for Machine Learning as a Service (MLaaS)
providers who want to accelerate the deployment of a
customer’s workload, without the need to access their
dataset. Moreover, this is important for cases where
security or privacy concerns may limit access to the
training data.

H. Stochastic Quantization

During inference, the quantization scheme is usually
deterministic. However, this is not the only possibility,
and some works have explored stochastic quantization for
quantization aware training as well as reduced precision
training [13, 79]. The high level intuition has been that the
stochastic quantization may allow a NN to explore more,
as compared to deterministic quantization. One popular
supporting argument has been that small weight updates
may not lead to any weight change, as the rounding
operation may always return the same weights. However,
enabling a stochastic rounding may provide the NN an
opportunity to escape, thereby updating its parameters.

More formally, stochastic quantization maps the float-
ing number up or down with a probability associated
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GPU. (Right) Comparison of the corresponding energy cost and relative area cost for different precision for
45nm technology [97]. As one can see, lower precision provides exponentially better energy efficiency and higher
throughput.

to the magnitude of the weight update. For instance,
in [29, 79], the Int operator in Eq. 2 is defined as

Int(x) =

{
bxc with probability dxe − x,
dxe with probability x− bxc. (8)

However, this definition cannot be used for binary
quantization. Hence, [42] extends this to

Binary(x) =

{
−1 with probability 1− σ(x),

+1 with probability σ(x),
(9)

where Binary is a function to binarize the real value x,
and σ(·) is the sigmoid function.

Recently, another stochastic quantization method is
introduced in QuantNoise [59]. QuantNoise quantizes a
different random subset of weights during each forward
pass and trains the model with unbiased gradients. This
allows lower-bit precision quantization without significant
accuracy drop in many computer vision and natural
language processing models. However, a major challenge
with stochastic quantization methods is the overhead of
creating random numbers for every single weight update,
and as such they are not yet adopted widely in practice.

IV. ADVANCED CONCEPTS: QUANTIZATION BELOW 8
BITS

In this section, we will discuss more advanced topics
in quantization which are mostly used for sub-INT8
quantization. We will first discuss simulated quantiza-
tion and its difference with integer-only quantization
in Section IV-A. Afterward, we will discuss different
methods for mixed-precision quantization in Section IV-B,
followed by hardware-aware quantization in Section IV-C.

Then we will describe how distillation can be used to
boost the quantization accuracy in Section IV-D, and then
we will discuss extremely low bit precision quantization
in Section IV-E. Finally, we will briefly describe the
different methods for vector quantization in Section IV-F.

A. Simulated and Integer-only Quantization

There are two common approaches to deploy a quan-
tized NN model, simulated quantization (aka fake quan-
tization) and integer-only quantization (aka fixed-point
quantization). In simulated quantization, the quantized
model parameters are stored in low-precision, but the
operations (e.g. matrix multiplications and convolutions)
are carried out with floating point arithmetic. Therefore,
the quantized parameters need to be dequantized before
the floating point operations as schematically shown
in Figure 6 (Middle). As such, one cannot fully benefit
from fast and efficient low-precision logic with simulated
quantization. However, in integer-only quantization, all
the operations are performed using low-precision integer
arithmetic [113, 132, 154, 193, 267], as illustrated
in Figure 6 (Right). This permits the entire inference
to be carried out with efficient integer arithmetic, without
any floating point dequantization of any parameters or
activations.

In general, performing the inference in full-precision
with floating point arithmetic may help the final quantiza-
tion accuracy, but this comes at the cost of not being able
to benefit from the low-precision logic. Low-precision
logic has multiple benefits over the full-precision coun-
terpart in terms of latency, power consumption, and
area efficiency. As shown in Figure 7 (left), many
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Figure 8: Illustration of mixed-precision quantization. In mixed-precision quantization the goal is to keep sensitive
and efficient layers in higher precision, and only apply low-precision quantization to insensitive and inefficient
layers. The efficiency metric is hardware dependant, and it could be latency or energy consumption.

hardware processors, including NVIDIA V100 and Titan
RTX, support fast processing of low-precision arithmetic
that can boost the inference throughput and latency.
Moreover, as illustrated in Figure 7 (right) for a 45nm
technology [97], low-precision logic is significantly more
efficient in terms of energy and area. For example,
performing INT8 addition is 30× more energy efficient
and 116× more area efficient as compared to FP32
addition [97].

Notable integer-only quantization works include [154],
which fuses Batch Normalization into the previous
convolution layer, and [113], which proposes an integer-
only computation method for residual networks with
batch normalization. However, both methods are limited
to ReLU activation. The recent work of [132] addresses
this limitation by approximating GELU [94], Softmax,
and Layer Normalization [6] with integer arithmetic
and further extends integer-only quantization to Trans-
former [243] architectures.

Dyadic quantization is another class of integer-only
quantization, where all the scaling is performed with
dyadic numbers, which are rational numbers with integer
values in their numerator and a power of 2 in the
denominator [267]. This results in a computational graph
that only requires integer addition, multiplication, bit

shifting, but no integer division. Importantly, in this
approach, all the additions (e.g. residual connections)
are enforced to have the same dyadic scale, which can
make the addition logic simpler with higher efficiency.

Summary (Simulated vs Integer-only Quantiza-
tion). In general integer-only and dyadic quantization
are more desirable as compared to simulated/fake quanti-
zation. This is because integer-only uses lower precision
logic for the arithmetic, whereas simulated quantization
uses floating point logic to perform the operations.
However, this does not mean that fake quantization is
never useful. In fact, fake quantization methods can
be beneficial for problems that are bandwidth-bound
rather than compute-bound, such as in recommendation
systems [185]. For these tasks, the bottleneck is the
memory footprint and the cost of loading parameters
from memory. Therefore, performing fake quantization
can be acceptable for these cases.

B. Mixed-Precision Quantization

It is easy to see that the hardware performance im-
proves as we use lower precision quantization. However,
uniformly quantizing a model to ultra low-precision can
cause significant accuracy degradation. It is possible to
address this with mixed-precision quantization [51, 82,
102, 162, 187, 199, 211, 239, 246, 249, 263, 282, 286].
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In this approach, each layer is quantized with different
bit precision, as illustrated in Figure 8. One challenge
with this approach is that the search space for choosing
this bit setting is exponential in the number of layers.
Different approaches have been proposed to address this
huge search space.

Selecting this mixed-precision for each layer is essen-
tially a searching problem, and many different methods
have been proposed for it. The recent work of [246]
proposed a reinforcement learning (RL) based method to
determine automatically the quantization policy, and the
authors used a hardware simulator to take the hardware
accelerator’s feedback in the RL agent feedback. The
paper [254] formulated the mixed-precision configuration
searching problem as a Neural Architecture Search (NAS)
problem and used the Differentiable NAS (DNAS) method
to efficiently explore the search space. One disadvantage
of these exploration-based methods [246, 254] is that they
often require large computational resources, and their
performance is typically sensitive to hyperparameters and
even initialization.

Another class of mixed-precision methods uses periodic
function regularization to train mixed-precision models
by automatically distinguishing different layers and
their varying importance with respect to accuracy while
learning their respective bitwidths [184].

Different than these exploration and regularization-
based approaches, HAWQ [51] introduces an automatic
way to find the mixed-precision settings based on second-
order sensitivity of the model. It was theoretically shown
that the trace of the second-order operator (i.e., the
Hessian) can be used to measure the sensitivity of a
layer to quantization [50], similar to results for pruning
in the seminal work of Optimal Brain Damage [139].
In HAWQv2, this method was extended to mixed-
precision activation quantization [50], and was shown to
be more than 100x faster than RL based mixed-precision
methods [246]. Recently, in HAWQv3, an integer-only,
hardware-aware quantization was introduced [267] that
proposed a fast Integer Linear Programming method to
find the optimal bit precision for a given application-
specific constraint (e.g., model size or latency). This work
also addressed the common question about hardware
efficiency of mixed-precision quantization by directly
deploying them on T4 GPUs, showing up to 50% speed
up with mixed-precision (INT4/INT8) quantization as
compared to INT8 quantization.

Summary (Mixed-precision Quantization). Mixed-
precision quantization has proved to be an effective and
hardware-efficient method for low-precision quantization

of different NN models. In this approach, the layers of a
NN are grouped into sensitive/insensitive to quantization,
and higher/lower bits are used for each layer. As such,
one can minimize accuracy degradation and still benefit
from reduced memory footprint and faster speed up with
low precision quantization. Recent work [267] has also
shown that this approach is hardware-efficient as mixed-
precision is only used across operations/layers.

C. Hardware Aware Quantization

One of the goals of quantization is to improve the
inference latency. However, not all hardware provide
the same speed up after a certain layer/operation is
quantized. In fact, the benefits from quantization is
hardware-dependant, with many factors such as on-chip
memory, bandwidth, and cache hierarchy affecting the
quantization speed up.

It is important to consider this fact for achieving
optimal benefits through hardware-aware quantization [87,
91, 246, 250, 254, 256, 265, 267]. In particular, the
work [246] uses a reinforcement learning agent to
determine the hardware-aware mixed-precision setting
for quantization, based on a look-up table of latency
with respect to different layers with different bitwidth.
However, this approach uses simulated hardware latency.
To address this the recent work of [267] directly deploys
quantized operations in hardware, and measures the
actual deployment latency of each layer for different
quantization bit precisions.

D. Distillation-Assisted Quantization

An interesting line of work in quantization is to
incorporate model distillation to boost quantization accu-
racy [126, 177, 195, 267]. Model distillation [3, 95, 150,
177, 195, 207, 268, 270, 289] is a method in which a
large model with higher accuracy is used as a teacher to
help the training of a compact student model. During the
training of the student model, instead of using just the
ground-truth class labels, model distillation proposes to
leverage the soft probabilities produced by the teacher,
which may contain more information of the input. That is
the overall loss function incorporates both the student loss
and the distillation loss, which is typically formulated as
follows:

L = αH(y, σ(zs)) + βH(σ(zt, T ), σ(zs, T )) (10)

In Eq. 10, α and β are weighting coefficients to tune the
amount of loss from the student model and the distillation
loss, y is the ground-truth class label, H is the cross-
entropy loss function, zs/zt are logits generated by the
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student/teacher model, σ is the softmax function, and T
is its temperature defined as follows:

pi =
exp zi

T∑
j exp

zj
T

(11)

Previous methods of knowledge distillation focus on
exploring different knowledge sources. [95, 150, 192] use
logits (the soft probabilities) as the source of knowledge,
while [3, 207, 269] try to leverage the knowledge
from intermediate layers. The choices of teacher models
are also well studied, where [235, 273] use multiple
teacher models to jointly supervise the student model,
while [43, 277] apply self-distillation without an extra
teacher model.

E. Extreme Quantization

Binarization, where the quantized values are con-
strained to a 1-bit representation, thereby drastically
reducing the memory requirement by 32×, is the most
extreme quantization method. Besides the memory ad-
vantages, binary (1-bit) and ternary (2-bit) operations can
often be computed efficiently with bit-wise arithmetic and
can achieve significant acceleration over higher precisions,
such as FP32 and INT8. For instance, the peak binary
arithmetic on NVIDIA V100 GPUs is 8x higher than
INT8. However, a naive binarization method would lead
to significant accuracy degradation. As such, there is a
large body of work that has proposed different solutions
to address this [18, 25, 47, 52, 77, 78, 83, 92, 93, 120,
122, 124, 129, 131, 135, 141, 149, 155, 160, 196, 198,
205, 217, 249, 251, 260, 262, 288, 290].

An important work here is BinaryConnect [42] which
constrains the weights to either +1 or -1. In this approach,
the weights are kept as real values and are only binarized
during the forward and backward passes to simulate the
binarization effect. During the forward pass, the real-
value weights are converted into +1 or -1 based on the
sign function. Then the network can be trained using
the standard training method with STE to propagate the
gradients through the non-differentiable sign function. Bi-
narized NN [107] (BNN) extends this idea by binarizing
the activations as well as the weights. Jointly binarizing
weights and activations has the additional benefit of
improved latency, since the costly floating-point matrix
multiplications can be replaced with lightweight XNOR
operations followed by bit-counting. Another interesting
work is Binary Weight Network (BWN) and XNOR-
Net proposed in [45], which achieve higher accuracy by
incorporating a scaling factor to the weights and using
+α or -α instead of +1 or -1. Here, α is the scaling factor

chosen to minimize the distance between the real-valued
weights and the resulting binarized weights. In other
words, a real-valued weight matrix W can be formulated
as W ≈ αB, where B is a binary weight matrix that
satisfies the following optimization problem:

α,B = argmin‖W − αB‖2. (12)

Furthermore, inspired by the observation that many
learned weights are close to zero, there have been
attempts to ternarize network by constraining the
weights/activations with ternary values, e.g., +1, 0 and
-1, thereby explicitly permitting the quantized values to
be zero [145, 159]. Ternarization also drastically reduces
the inference latency by eliminating the costly matrix
multiplications as binarization does. Later, Ternary-Binary
Network (TBN) [244] shows that combining binary
network weights and ternary activations can achieve an
optimal tradeoff between the accuracy and computational
efficiency.

Since the naive binarization and ternarization methods
generally result in severe accuracy degradation, especially
for complex tasks such as ImageNet classification, a
number of solutions have been proposed to reduce the
accuracy degradation in extreme quantization. The work
of [197] broadly categorizes these solutions into three
branches. Here, we briefly discuss each branch, and we
refer the interested readers to [197] for more details.

a) Quantization Error Minimization: The first
branch of solutions aims to minimize the quantization
error, i.e., the gap between the real values and the
quantized values [19, 34, 62, 103, 151, 158, 164, 169,
178, 218, 248]. Instead of using a single binary matrix
to represent real-value weights/activations, HORQ [151]
and ABC-Net [158] use a linear combination of multiple
binary matrices, i.e., W ≈ α1B1 + · · · + αMBM , to
reduce the quantization error. Inspired by the fact that
binarizing the activations reduces their representational
capability for the succeeding convolution block, [178]
and [34] show that binarization of wider networks (i.e.,
networks with larger number of filters) can achieve a
good trade-off between the accuracy and the model size.

b) Improved Loss function: Another branch of
works focuses on the choice of loss function [48, 98,
99, 251, 284]. Important works here are loss-aware
binarization and ternarization [98, 99] that directly min-
imize the loss with respect to the binarized/ternatized
weights. This is different from other approaches that
only approximate the weights and do not consider the
final loss. Knowledge distillation from full-precision
teacher models has also been shown as a promising
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method to recover the accuracy degradation after bina-
rization/ternarization [33, 177, 195, 260].

c) Improved Training Method: Another interesting
branch of work aims for better training methods for
binary/ternary models [5, 20, 44, 73, 160, 164, 285, 288].
A number of efforts point out the limitation of STE
in backpropagating gradients through the sign function:
STE only propagate the gradients for the weights and/or
activations that are in the range of [-1, 1]. To address this,
BNN+ [44] introduces a continuous approximation for
the derivative of the sign function, while [198, 261, 272]
replace the sign function with smooth, differentiable
functions that gradually sharpens and approaches the sign
function. Bi-Real Net [164] introduces identity shortcuts
connecting activations to activations in consecutive blocks,
through which 32-bit activations can be propagated. While
most research focuses on reducing the inference time
latency, DoReFa-Net [285] quantizes the gradients in
addition to the weights and activations, in order to
accelerate the training as well.

Extreme quantization has been successful in drastically
reducing the inference/training latency as well as the
model size for many CNN models on computer vision
tasks. Recently, there have been attempts to extend this
idea to Natural Language Processing (NLP) tasks [7, 119,
121, 278]. Considering the prohibitive model size and
inference latency of state-of-the-art NLP models (e.g.,
BERT [46], RoBERTa [163], and the GPT family [17,
200, 201]) that are pre-trained on a large amount of
unlabeled data, extreme quantization is emerging as a
powerful tool for bringing NLP inference tasks to the
edge.

Summary (Extreme Quantization). Extreme low-
bit precision quantization is a very promising line of
research. However, existing methods often incur high
accuracy degradation as compared to baseline, unless very
extensive tuning and hyperparameter search is performed.
But this accuracy degradation may be acceptable for less
critical applications.

F. Vector Quantization

As discussed in Section II, quantization has not been
invented in machine learning, but has been widely studied
in the past century in information theory, and particularly
in digital signal processing field as a compression
tool. However, the main difference between quantization
methods for machine learning is that fundamentally we
are not interested to compress the signal with minimum
change/error as compared to the original signal. Instead,
the goal is to find a reduced-precision representation

that results in as small loss as possible. As such, it is
completely acceptable if the quantized weights/activations
are far away from the non-quantized ones.

Having said that, there are a lot of interesting ideas
in the classical quantization methods in DSP that have
been applied to NN quantization, and in particular vector
quantization [9]. In particular, the work of [1, 30, 74,
84, 117, 170, 180, 189, 256] clusters the weights into
different groups and use the centroid of each group as
quantized values during inference. As shown in Eq. 13,
i is the index of weights in a tensor, c1, ..., ck are
the k centroids found by the clustering, and cj is the
corresponding centroid to wi. After clustering, weight wi

will have a cluster index j related to cj in the codebook
(look-up table).

min
c1,...,ck

∑
i

‖wi − cj‖2 (13)

It has been found that using a k-means clustering is
sufficient to reduce the model size up to 8× without
significant accuracy degradation [74]. In addition to that,
jointly applying k-means based vector quantization with
pruning and Huffman coding can further reduce the model
size [84].

Product quantization [74, 227, 256] is an extension of
vector quantization, where the weight matrix is divided
into submatrices and vector quantization is applied to each
submatrix. Besides basic product quantization method,
more fine-grained usage of clustering can further improve
the accuracy. For example, in [74] the residuals after
k-means product quantization are further recursively
quantized. And in [189], the authors apply more clusters
for more important quantization ranges to better preserve
the information.

V. QUANTIZATION AND HARDWARE PROCESSORS

We have said that quantization not only reduces the
model size, but it also enables faster speed and requires
less power, in particular for hardware that has low-
precision logic. As such, quantization has been particu-
larly crucial for edge deployment in IoT and mobile
applications. Edge devices often have tight resource
constraints including compute, memory, and importantly
power budget. These are often too costly to meet for many
deep NN models. In addition, many edge processors do
not have any support floating point operations, especially
in micro-controllers.

Here, we briefly discuss different hardware platforms
in the context of quantization. ARM Cortex-M is a group
of 32-bit RISC ARM processor cores that are designed
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Figure 9: Throughput comparison of different commercial edge processors for NN inference at the edge.

for low-cost and power-efficient embedded devices. For
instance, the STM32 family are the microcontrollers
based on the ARM Cortex-M cores that are also used
for NN inference at the edge. Because some of the
ARM Cortex-M cores do not include dedicated floating-
point units, the models should first be quantized before
deployment. CMSIS-NN [136] is a library from ARM
that helps quantizing and deploying NN models onto the
ARM Cortex-M cores. Specifically, the library leverages
fixed-point quantization [113, 154, 267] with power-of-
two scaling factors so that quantization and dequantization
processes can be carried out efficiently with bit shifting
operations. GAP-8 [64], a RISC-V SoC (System on Chip)
for edge inference with a dedicated CNN accelerator, is
another example of an edge processor that only supports
integer arithmetic. While programmable general-purpose
processors are widely adopted due to their flexibility,
Google Edge TPU, a purpose-built ASIC chip, is another
emerging solution for running inference at the edge.
Unlike Cloud TPUs that run in Google data centers with
a large amount of computing resources, the Edge TPU is
designed for small and low-power devices, and thereby
it only supports 8-bit arithmetic. NN models must be
quantized using either quantization-aware training or post-
training quantization of TensorFlow.

Figure 9 plots the throughput of different commercial
edge processors that are widely used for NN inference

at the edge. In the past few years, there has been a
significant improvement in the computing power of the
edge processors, and this allows deployment and inference
of costly NN models that were previously available only
on servers. Quantization, combined with efficient low-
precision logic and dedicated deep learning accelerators,
has been one important driving force for the evolution
of such edge processors.

While quantization is an indispensable technique for
a lot of edge processors, it can also bring a remarkable
improvement for non-edge processors, e.g., to meet Ser-
vice Level Agreement (SLA) requirements such as 99th
percentile latency. A good example is provided by the
recent NVIDIA Turing GPUs, and in particular T4 GPUs,
which include the Turing Tensor Cores. Tensor Cores
are specialized execution units designed for efficient low-
precision matrix multiplications.

VI. FUTURE DIRECTIONS FOR RESEARCH IN

QUANTIZATION

Here, we briefly discuss several high level challenges
and opportunities for future research in quantization. This
is broken down into quantization software, hardware and
NN architecture co-design, coupled compression methods,
and quantized training.

Quantization Software: With current methods, it is
straightforward to quantize and deploy different NN
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models to INT8, without losing accuracy. There are
several software packages that can be used to deploy
INT8 quantized models (e.g., Nvidia’s TensorRT, TVM,
etc.), each with good documentation. Furthermore, the
implementations are also quite optimal and one can
easily observe speed up with quantization. However, the
software for lower bit-precision quantization is not widely
available, and sometimes it is non-existent. For instance,
Nvidia’s TensorRT does not currently support sub-INT8
quantization. Moreover, support for INT4 quantization
was only recently added to TVM [267]. Recent work has
shown that low precision and mixed-precision quantiza-
tion with INT4/INT8 works in practice [51, 82, 102, 108,
187, 199, 211, 239, 246, 246, 249, 263, 267, 286]. Thus,
developing efficient software APIs for lower precision
quantization will have an important impact.

Hardware and NN Architecture Co-Design: As dis-
cussed above, an important difference between classical
work in low-precision quantization and the recent work in
machine learning is the fact that NN parameters may have
very different quantized values but may still generalize
similarly well. For example, with quantization-aware
training, we might converge to a different solution, far
away from the original solution with single precision
parameters, but still get good accuracy. One can take
advantage of this degree of freedom and also adapt the
NN architecture as it is being quantized. For instance,
the recent work of [34] shows that changing the width of
the NN architecture could reduce/remove generalization
gap after quantization. One line of future work is to
adapt jointly other architecture parameters, such as depth
or individual kernels, as the model is being quantized.
Another line of future work is to extend this co-design
to hardware architecture. This may be particularly useful
for FPGA deployment, as one can explore many different
possible hardware configurations (such as different micro-
architectures of multiply-accumulate elements), and then
couple this with the NN architecture and quantization
co-design.

Coupled Compression Methods: As discussed above,
quantization is only one of the methods for efficient
deployment of NNs. Other methods include efficient
NN architecture design, co-design of hardware and
NN architecture, pruning, and knowledge distillation.
Quantization can be coupled with these other approaches.
However, there is currently very little work exploring
what are the optimal combinations of these methods. For
instance, pruning and quantization can be applied together
to a model to reduce its overhead [87, 152], and it is
important to understand the best combination of struc-

tured/unstructured pruning and quantization. Similarly,
another future direction is to study the coupling between
these methods and other approaches described above.

Quantized Training: Perhaps the most important use
of quantization has been to accelerate NN training with
half-precision [41, 72, 79, 175]. This has enabled the use
of much faster and more power-efficient reduced-precision
logic for training. However, it has been very difficult
to push this further down to INT8 precision training.
While several interesting works exist in this area [10, 26,
123, 137, 173], the proposed methods often require a lot
of hyperparameter tuning, or they only work for a few
NN models on relatively easy learning tasks. The basic
problem is that, with INT8 precision, the training can
become unstable and diverge. Addressing this challenge
can have a high impact on several applications, especially
for training at the edge.

VII. SUMMARY AND CONCLUSIONS

As soon as abstract mathematical computations were
adapted to computation on digital computers, the problem
of efficient representation, manipulation, and communi-
cation of the numerical values in those computations
arose. Strongly related to the problem of numerical
representation is the problem of quantization: in what
manner should a set of continuous real-valued numbers
be distributed over a fixed discrete set of numbers
to minimize the number of bits required and also to
maximize the accuracy of the attendant computations?
While these problems are as old as computer science,
these problems are especially relevant to the design
of efficient NN models. There are several reasons for
this. First, NNs are computationally intensive. So, the
efficient representation of numerical values is particularly
important. Second, most current NN models are heavily
over-parameterized. So, there is ample opportunity for
reducing the bit precision without impacting accuracy.
Third, the layered structure of NN models offers an
additional dimension to explore. Thus, different layers in
the NN have different impact on the loss function, and this
motivates interesting approaches such mixed-precision
quantization.

Moving from floating-point representations to low-
precision fixed integer values represented in eight/four
bits or less holds the potential to reduce the memory
footprint and latency. [157] shows that INT8 inference of
popular computer vision models, including ResNet50 [88],
VGG-19 [224], and inceptionV3 [230] using TVM [32]
quantization library, can achieve 3.89×, 3.32×, and
5.02× speedup on NVIDIA GTX 1080, respectively.
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[213] further shows that INT4 inference of ResNet50
could bring an additional 50-60% speedup on NVIDIA T4
and RTX, compared to its INT8 counterpart, emphasizing
the importance of using lower-bit precision to maxi-
mize efficiency. Recently, [267] leverages mix-precision
quantization to achieve 23% speedup for ResNet50, as
compared to INT8 inference without accuracy degrada-
tion, and [132] extends INT8-only inference to BERT
model to enable up to 4.0× faster inference than FP32.
While the aforementioned works focus on acceleration
on GPUs, [114] also obtained 2.35× and 1.40× latency
speedup on Intel Cascade Lake CPU and Raspberry Pi4
(which are both non-GPU architectures), respectively,
through INT8 quantization of various computer vision
models. As a result, as our bibliography attests, the
problem of quantization in NN models has been a highly
active research area.

In this work, we have tried to bring some conceptual
structure to these very diverse efforts. We began with
a discussion of topics common to many applications of
quantization, such as uniform, non-uniform, symmetric,
asymmetric, static, and dynamic quantization. We then
considered quantization issues that are more unique to
the quantization of NNs. These include layerwise, group-
wise, channelwise, and sub-channelwise quantization. We
further considered the inter-relationship between training
and quantization, and we discussed the advantages and
disadvantages of quantization-aware training as compared
to post-training quantization. Further nuancing the discus-
sion of the relationship between quantization and training
is the issue of the availability of data. The extreme case
of this is one in which the data used in training are,
due to a variety of sensible reasons such as privacy, no
longer available. This motivates the problem of zero-shot
quantization.

As we are particularly concerned about efficient NNs
targeted for edge-deployment, we considered problems
that are unique to this environment. These include
quantization techniques that result in parameters rep-
resented by fewer than 8 bits, perhaps as low as binary
values. We also considered the problem of integer-only
quantization, which enables the deployment of NNs on
low-end microprocessors which often lack floating-point
units.

With this survey and its organization, we hope to have
presented a useful snapshot of the current research in
quantization for Neural Networks and to have given an
intelligent organization to ease the evaluation of future
research in this area.
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