
DiskANN: Fast Accurate Billion-point Nearest
Neighbor Search on a Single Node

Suhas Jayaram Subramanya∗
Carnegie Mellon University

suhas@cmu.edu

Devvrit∗
University of Texas at Austin
devvrit.03@gmail.com

Rohan Kadekodi∗
University of Texas at Austin

rak@cs.texas.edu

Ravishankar Krishaswamy
Microsoft Research India
rakri@microsoft.com

Harsha Vardhan Simhadri
Microsoft Research India

harshasi@microsoft.com

Abstract

Current state-of-the-art approximate nearest neighbor search (ANNS) algorithms
generate indices that must be stored in main memory for fast high-recall search.
This makes them expensive and limits the size of the dataset. We present a
new graph-based indexing and search system called DiskANN that can index,
store, and search a billion point database on a single workstation with just 64GB
RAM and an inexpensive solid-state drive (SSD). Contrary to current wisdom,
we demonstrate that the SSD-based indices built by DiskANN can meet all three
desiderata for large-scale ANNS: high-recall, low query latency and high density
(points indexed per node). On the billion point SIFT1B bigann dataset, DiskANN
serves > 5000 queries a second with < 3ms mean latency and 95%+ 1-recall@1
on a 16 core machine, where state-of-the-art billion-point ANNS algorithms with
similar memory footprint like FAISS [18] and IVFOADC+G+P [8] plateau at
around 50% 1-recall@1. Alternately, in the high recall regime, DiskANN can
index and serve 5− 10x more points per node compared to state-of-the-art graph-
based methods such as HNSW [21] and NSG [13]. Finally, as part of our overall
DiskANN system, we introduce Vamana, a new graph-based ANNS index that is
more versatile than the existing graph indices even for in-memory indices.

1 Introduction
In the nearest neighbor search problem, we are given a dataset P of points in some space. The goal is
to design a data structure of small size, such that, for any query q in the same metric space, and target
k, we can retrieve the k nearest neighbors of q from the dataset P quickly. This is a fundamental
problem in algorithms research, and also a commonly used sub-routine in a diverse set of areas
such as computer vision, document retrieval and recommendation systems, to name a few. In these
applications, the actual entities — images, documents, user profiles — are embedded into a hundred
or thousand dimensional space such that a desired notion of the entities’ similarity is encoded as
distance between their embeddings.

Unfortunately, it is often impossible to retrieve the exact nearest neighbors without essentially
resorting to a linear scan of the data (see, e.g., [15, 23]) due to a phenomenon known as the curse of
dimensionality [10]. As a result, one resorts to finding the approximate nearest neighbors (ANN)
where the goal is to retrieve k neighbors which are close to being optimal. More formally, consider a
query q, and suppose the algorithm outputs a set X of k candidate near neighbors, and suppose G is
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the ground-truth set of the k closest neighbors to q from among the points of the base dataset. Then,
we define the k-recall@k of this setX to be |X∩G|k . The goal of an ANN algorithm then is to maximize
recall while retrieving the results as quickly as possible, which results in the recall-vs-latency tradeoff.

There are numerous algorithms for this problem with diverse index construction methodologies
and a range of tradeoffs w.r.t indexing time, recall, and query time. For example, while k-d trees
generate compact indices that are fast to search in low dimensions, they are typically very slow when
dimension d exceeds about 20. On the other hand, Locality Sensitive Hashing based methods [2, 4]
provide near-optimal guarantees on the tradeoff between index size and search time in the worst case,
but they fail to exploit the distribution of the points and are outperformed by more recent graph-based
methods on real-world datasets. Recent work on data-dependent LSH schemes (e.g. [3]) is yet to be
proven at scale. As of this writing, the best algorithms in terms of search time vs recall on real-world
datasets are often graph-based algorithms such as HNSW [21] and NSG [13] where the indexing
algorithm constructs a navigable graph over the base points, and the search procedure is a best-first
traversal that starts at a chosen (or random) point, and walks along the edges of the graph, while
getting closer to the query at each step until it converges to a local minimum. A recent work of Li et
al. [20] has an excellent survey and comparison of ANN algorithms.

Many applications require fast and accurate search on billions of points in Euclidean metrics. Today,
there are essentially two high-level approaches to indexing large datasets.

The first approach is based on Inverted Index + Data Compression and includes methods such as
FAISS [18] and IVFOADC+G+P [8]. These methods cluster the dataset into M partitions, and
compare the query to only the points in a few, say, m << M partitions closest to the query.
Moreover, since the full-precision vectors cannot fit in main memory, the points are compressed
using a quantization scheme such as Product Quantization [17]. While these schemes have a small
memory footprint – less than 64 GB for storing an index on billion points in 128 dimensions – and
can retrieve results in < 5 ms using GPUs or other hardware accelerators, their 1-recall@1 is rather
low (around 0.5) since the data compression is lossy. These methods report higher recall values for a
weaker notion of 1-recall@100 – the likelihood that the true nearest neighbor is present in a list of
100 output candidates. However, this measure may not be acceptable in many applications.

The second approach is to divide the dataset into disjoint shards, and build an in-memory index for
each shard. However, since these indices store both the index and the uncompressed data points,
they have a larger memory footprint than the first approach. For example, an NSG index for 100M
floating-point vectors in 128 dimensions would have a memory footprint of around 75GB2. Therefore,
serving an index over a billion points would need several machines to host the indices. Such a scheme
is reportedly [13] in use in Taobao, Alibaba’s e-commerce platform, where they divide their dataset
with 2 billion 128-dimensional points into 32 shards, and host the index for each shard on a different
machine. Queries are routed to all shards, and the results from all shards are aggregated. Using this
approach, they report 100-recall@100 values of 0.98 with a latency of ∼ 5ms. Note that extending
this to web scale data with hundreds of billions of points would require thousands of machines.

The scalability of both these classes of algorithms is limited by the fact that they construct indices
meant to be served from main memory. Moving these indices to disks, even SSDs, would result in a
catastrophic rise of search latency and a corresponding drop in throughput. The current wisdom on
search requiring main memory is reflected in the blog post by FAISS [11]: “Faiss supports searching
only from RAM, as disk databases are orders of magnitude slower. Yes, even with SSDs.”

Indeed, the search throughput of an SSD-resident index is limited by the number of random disk
accesses/query and latency is limited by the the number of round-trips (each round-trip can consist of
multiple reads) to the disk. An inexpensive retail-grade SSD requires a few hundred microseconds
to serve a random read and can service about ∼ 300K random reads per second. On the other hand,
search applications (e.g. web search) with multi-stage pipelines require mean latencies of a few
milliseconds for nearest neighbor search. Therefore, the main challenges in designing a performant
SSD-resident index lie in reducing (a) the number of random SSD accesses to a few dozen, and (b)
the number of round trip requests to disk to under ten, preferably five. Naively mapping indices
generated by traditional in-memory ANNS algorithms to SSDs would generate several hundreds of
disk reads per query, which would result in unacceptable latencies.

2The average degree of an NSG index can vary depending on the inherent structure of the dataset, here we
assume a degree of 50, which is reasonable for datasets with little inherent structure.
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1.1 Our technical contribution
We present DiskANN, an SSD-resident ANNS system based on our new graph-based indexing
algorithm called Vamana, that debunks current wisdom and establishes that even commodity SSDs
can effectively support large-scale ANNS. Some interesting aspects of our work are:
• DiskANN can index and serve a billion point dataset in 100s of dimensions on a workstation

with 64GB RAM, providing 95%+ 1-recall@1 with latencies of under 5 milliseconds.
• A new algorithm called Vamana which can generate graph indices with smaller diameter than

NSG and HNSW, allowing DiskANN to minimize the number of sequential disk reads.
• The graphs generated by Vamana can be also be used in-memory, where their search performance

matches or exceeds state-of-the-art in-memory algorithms such as HNSW and NSG.
• Smaller Vamana indices for overlapping partitions of a large dataset can be easily merged into

one index that provides nearly the same search performance as a single-shot index constructed for
the entire dataset. This allows indexing of datasets that are otherwise too large to fit in memory.

• We show that Vamana can be combined with off-the-shelf vector compression schemes such as
product quantization to build the DiskANN system. The graph index along with the full-precision
vectors of the dataset are stored on the disk, while compressed vectors are cached in memory.

1.2 Notation
For the remainder of the paper, we let P denote the dataset with |P | = n. We consider directed
graphs with vertices corresponding to points in P , and edges between them. With slight notation
overload, we refer to such graphs as G = (P,E) by letting P also denote the vertex set. Given a
point p ∈ P in a directed graph, we let Nout(p) to denote the set of out-edges incident on p. Finally,
we let xp denote the vector data corresponding to p, and let d(p, q) = ||xp − xq|| denote the metric
distance between two points p and q. All experiments presented in this paper used Euclidean metric.

1.3 Paper Outline
Section 2 presents Vamana our new graph index construction algorithm and Section 3 explains
the overall system design of DiskANN. Section 4 presents an empirical comparison Vamana
with HNSW and NSG for in-memory indices, and also demonstrates the search characteristics of
DiskANN for billion point datasets on a commodity machine.

2 The Vamana Graph Construction Algorithm
We begin with a brief overview of graph-based ANNS algorithms before presenting the details of
Vamana, a specification which is given in Algorithm 3.

2.1 Relative Neighborhood Graphs and the GreedySearch algorithm
Most graph-based ANNS algorithms work in the following manner: during index construction, they
build a graph G = (P,E) based on the geometric properties of the dataset P . At search time, for a
query vector xq , search employs a natural greedy or best-first traversal, such as in Algorithm 1, on G.
Starting at some designated point s ∈ P , they traverse the graph to get progressively closer to xq .

There has been much work on understanding how to construct sparse graphs for which the
GreedySearch(s, xq, k, L) converges quickly to the (approximate) nearest neighbors for any query.
A sufficient condition for this to happen, at least when the queries are close to the dataset points,
is the so-called sparse neighborhood graph (SNG), which was introduced in [5]3. In an SNG, the
out-neighbors of each point p are determined as follows: initialize a set S = P \ {p}. As long as
S 6= ∅, add a directed edge from p to p∗, where p∗ is the closest point to p from S, and remove from
S all points p′ such that d(p, p′) > d(p∗, p′). It is then easy to see that GreedySearch(s, xp, 1, 1)
starting at any s ∈ P would converge to p for all base points p ∈ P .

While this construction is ideal in principle, it is infeasible to construct such graphs for even
moderately sized datasets, as the running time is Õ(n2). Building on this intuition, there have
been a series of works that design more practical algorithms that generate good approximations of
SNGs [21, 13]. However, since they all essentially try to approximate the SNG property, there is very
little flexibility in controlling the diameter and the density of the graphs output by these algorithms.

3This notion itself was inspired by a related property known as the Relative Neighborhood Graph (RNG)
property, first defined in the 1960s [16].
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Algorithm 1: GreedySearch(s, xq, k, L)

Data: Graph G with start node s, query xq , result
size k, search list size L ≥ k

Result: Result set L containing k-approx NNs, and
a set V containing all the visited nodes

begin
initialize sets L ← {s} and V ← ∅
while L \ V 6= ∅ do

let p∗ ← argminp∈L\V ||xp − xq||
update L ← L ∪Nout(p

∗) and
V ← V ∪ {p∗}

if |L| > L then
update L to retain closest L
points to xq

return [closest k points from L; V]

Algorithm 2: RobustPrune(p,V, α,R)
Data: Graph G, point p ∈ P , candidate set V ,

distance threshold α ≥ 1, degree bound R
Result: G is modified by setting at most R new

out-neighbors for p
begin
V ← (V ∪Nout(p)) \ {p}
Nout(p)← ∅
while V 6= ∅ do

p∗ ← argminp′∈V d(p, p
′)

Nout(p)← Nout(p) ∪ {p∗}
if |Nout(p)| = R then

break

for p′ ∈ V do
if α · d(p∗, p′) ≤ d(p, p′) then

remove p′ from V

2.2 The Robust Pruning Procedure
As mentioned earlier, graphs which satisfy the SNG property are all good candidates for the
GreedySearch search procedure. However, it is possible that the diameter of the graphs can be quite
large. For example, if the points are linearly arranged on the real line in one dimension, the O(n)
diamater line graph, where each point connects to its two neighbors (one at the end), is the one that
satisfies the SNG property. Searching such graphs stored in disks would incur many sequential reads
to the disk at to fetch the neighbors of the vertices visited on the search path in Algorithm 1.

To overcome this, we would like to ensure that the distance to the query decreases by a multiplicative
factor of α > 1 at every node along the search path, instead of merely decreasing as in the SNG
property. Consider the directed graph where the out-neighbors of every point p are determined by the
RobustPrune(p,V, α,R) procedure in Algorithm 2. Note that if the out-neighbors of every p ∈ P
are determined by RobustPrune(p, P \ {p}, α, n− 1), then GreedySearch(s, p, 1, 1), starting at
any s, would converge to p ∈ P in logarithmically many steps, if α > 1. However, this would result
in a running time of Õ(n2) for index construction. Hence, building on the ideas of [21, 13], Vamana
invokes RobustPrune(p,V, α,R) for a carefully selected V with far fewer than n − 1 nodes, to
improve index construction time.

2.3 The Vamana Indexing Algorithm
Vamana constructs a directed graph G in an iterative manner. The graph G is initialized so that each
vertex has R randomly chosen out-neighbors. Note that while the graph is well connected when
R > log n, random connections do not ensure convergence of the GreedySearch algorithm to good
results. Next, we let s denote the medoid of the dataset P , which will be the starting node for the
search algorithm. The algorithm then iterates through all the points in p ∈ P in a random order, and
in each step, updates the graph to make it more suitable for GreedySearch(s, xp, 1, L) to converge to
p. Indeed, in the iteration corresponding to point p, Vamana first runs GreedySearch(s, xp, 1, L) on
the current graph G, and sets Vp to the set of all points visited by GreedySearch(s, xp, 1, L). Then,
the algorithm updates G by running RobustPrune(p,Vp, α,R) to determine p’s new out-neighbors.
Then, Vamana updates the graph G by adding backward edges (p′, p) for all p′ ∈ Nout(p). This
ensures that there are connections between the vertices visited on the search path and p, thereby
ensuring that the updated graph will be better suited for GreedySearch(s, xp, 1, L) to converge to p.

However, adding backward edges of the form (p′, p) might lead to a degree violation of p′, and
so whenever any vertex p′ has an out-degree which exceeds the degree threshold of R, the graph
is modified by running RobustPrune(p′, Nout(p

′), α,R) where Nout(p
′) is the set of existing out-

neighbors of p′. As the algorithm proceeds, the graph becomes consistently better and faster for
GreedySearch. Our overall algorithm makes two passes over the dataset, the first pass with α = 1,
and the second with a user-defined α ≥ 1. We observed that a second pass results in better graphs,
and that running both passes with the user-defined α makes the indexing algorithm slower as the first
pass computes a graph with higher average degree which takes longer.
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Algorithm 3: Vamana Indexing algorithm
Data: Database P with n points where i-th point has coords xi, parameters α, L, R
Result: Directed graph G over P with out-degree <=R
begin

initialize G to a random R-regular directed graph
let s denote the medoid of dataset P
let σ denote a random permutation of 1..n
for 1 ≤ i ≤ n do

let [L;V]← GreedySearch(s, xσ(i), 1, L)
run RobustPrune(σ(i),V, α,R) to update out-neighbors of σ(i)
for all points j in Nout(σ(i)) do

if |Nout(j) ∪ {σ(i)}| > R then
run RobustPrune(j,Nout(j) ∪ {σ(i)}, α,R) to update out-neighbors of j

else
update Nout(j)← Nout(j) ∪ σ(i)

Figure 1: Progression of the graph generated by the Vamana indexing algorithm described in
Algorithm 3 on a database with 200 points in 2 dimensions. Notice that the algorithm goes through
the first pass with α = 1, followed by the second pass where it introduces long range edges.

2.4 Comparison of Vamana with HNSW [21] and NSG [13]

At a high level, Vamana is rather similar to HNSW and NSG, two very popular ANNS algorithms. All
three algorithms iterate over the dataset P , and use the results of the GreedySearch(s, xp, 1, L) and
RobustPrune(p,V, α,R) to determine p’s neighbors. However, there are some important differences
between these algorithms. Most crucially, both HNSW and NSG have no tunable parameter α and
implicitly use α = 1. This is the main factor which lets Vamana achieve a better trade-off between
graph degree and diameter. Next, while HNSW sets the candidate set V for the pruning procedure
to be the final result-set of L candidates output by GreedySearch(s, p, 1, L), Vamana and NSG
let V be the entire set of vertices visited by GreedySearch(s, p, 1, L). Intuitively, this feature helps
Vamana and NSG add long-range edges, while HNSW, by virtue of adding only local edges to
nearby points, has an additional step of constructing a hierarchy of graphs over a nested sequence of
samples of the dataset. The next difference pertains to the initial graph: while NSG sets the starting
graph to be an approximate K-nearest neighbor graph over the dataset, which is a time and memory
intensive step, HNSW and Vamana have simpler initializations, with the former beginning with an
empty graph and Vamana beginning with a random graph. We have observed that starting with a
random graph results in better quality graphs than beginning with the empty graph. Finally, Vamana
makes two passes over the dataset, whereas both HNSW and NSG make only one pass, motivated by
our observation that the second pass improves the graph quality.
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