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ABSTRACT 
As Approximate Nearest Neighbor Search (ANNS)-based dense 
retrieval becomes ubiquitous for search and recommendation sce-
narios, efciently answering fltered ANNS queries has become a 
critical requirement. Filtered ANNS queries ask for the nearest 
neighbors of a query’s embedding from the points in the index that 
match the query’s labels such as date, price range, language. There 
has been little prior work on algorithms that use label metadata as-
sociated with vector data to build efcient indices for fltered ANNS 
queries. Consequently, current indices have high search latency or 
low recall which is not practical in interactive web-scenarios. We 
present two algorithms with native support for faster and more 
accurate fltered ANNS queries: one with streaming support, and 
another based on batch construction. Central to our algorithms 
is the construction of a graph-structured index which forms con-
nections not only based on the geometry of the vector data, but 
also the associated label set. On real-world data with natural labels, 
both algorithms are an order of magnitude or more efcient for 
fltered queries than the current state of the art algorithms. The gen-
erated indices also be queried from an SSD and support thousands 
of queries per second at over 90% recall@10. 
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1 INTRODUCTION 
In the nearest neighbor search problem, we are given a dataset � 
with � points in some metric space, which we assume to be R� 

with the Euclidean distance in this paper. Given a query �� ∈ R� 

and � ∈ N, we would like to return the � nearest neighbors of 
�� from � . To exactly fnd the � nearest neighbors, we cannot do 
better than a linear scan of the dataset [35] due to the curse of 
dimensionality [20]. Therefore, in practice, algorithms are designed 
for approximate nearest neighbor search (ANNS), i.e., to efciently 

|� ∩L| retrieve a set L of � candidates to maximize ������@� = ,
� 

where � is the ground truth set of �� ’s � nearest neighbors in � . 

1.1 Filtered ANNS 
In this setting, for every data point (a.k.a. vector) � ∈ � , we have 
an associated set of labels �� ⊆ F , where F is a fnite universe of 
labels. A query to the index now comprises of the vector �� , the 
target number of nearest neighbors � , and a label flter � ∈ F . The 
ANNS index is required to fnd the closest neighbors of �� from 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA �� = {� ∈ � : � ∈ �� }, i.e., points in the index that have the label 
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 

� associated with them. Once again, the index should maximize ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00 
https://doi.org/10.1145/3543507.3583552 recall@k, but relative to ground-truth computed against the set �� , 
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instead of � . We also defne the specifcity of � to be |�� |/|� |: the 
fraction of indexed data points which have the label � associated 
with them. While a natural generalization is to consider ANNS 
queries with complex predicates, in this paper we focus on the case 
with single flter associated with the query. 

Many important real-world scenarios can be expressed in this 
simple framework. For example, web search engines ofer fltering 
results by keyword, publishing date, or domain/sub-domain of a 
website. Image search engines allow fltering by color, resolution, 
etc. E-commerce search allows fltering by categories such as brand, 
price range and product size. Enterprise search applications might 
want to limit documents displayed based on user’s privileges. An-
other scenario where fltering is not exposed to the user but is 
implicit is that of advertisement display. Here, advertisers instruct 
the search engine to display only those ads that are relevant to 
the user’s region. Given the ubiquity of fltering requirements for 
ANNS, a recent wave of start-ups such as Milvus [2], Pinecone [19], 
Vearch [5], Vespa [6] and Weaviate [7] ofer ANNS-as-a-service 
with various degrees of support for fltering. Moreover, some indus-
trial systems such as AliBaba’s AnalyticDB-V [43] and the academic 
community [42, 45] have considered variants of this problem. 

1.2 Drawback of Existing Methods 
A common thread across most current methods for Filtered ANNS is 
that they only modify the search step, and not the index build step, 
which we argue is sub-optimal. We overview previous methods 
here and their drawbacks. 

One straightforward method for answering hybrid queries is the 
post-processing approach: build a standard ANNS index, query as 
usual, and post-process the results by selecting only those results 
returned by the index that match the query flter. While this method 
is easy to implement, it performs poorly in practice. Indeed, for a 
label flter � with low specifcity, we may have to retrieve a very 
large number of candidates before coming across a single result 
matching the flter. We have observed this to be the case on real-
world datasets (see Figure 1, Figure 2, and Figure 3). 

Conversely, one might consider a trivial pre-processing method 
that builds a separate index for each possible flterable label � ∈ F 
so that a query can be routed to the index associated with the 
query’s flter. However, such an approach would quickly become 
prohibitively expensive in scenarios with either a large number of 
flters, or where each point could have many associated flters. 

Weaviate and Milvus both use a more efcient pre-processing step 
before passing a query through a graph index. Weaviate frst passes 
the query’s labels through an inverted index in order to generate 
an approved list of points [8]. Milvus maintains a distribution of 
attributes over points, and uses a hash-table to map the commonly 
used attributes from a query to the “approved list” of points [41]. At 
search time, only the approved list of points are considered. While 
both these data structures are created at indexing time, they do not 
change the main vector similarity search index: their approaches 
just afect how the search procedure traverses the main index. 

There are some algorithms where the post-processing approach 
can be applied “on the fy,” which we will refer to as inline-processing. 
For example, FAISS-IVF [29] partitions the data into clusters, and 
the ANN data structure is an inverted index consisting of all the 
points belonging to each cluster. By including flter metadata with 

each entry in the inverted index, an inline-processing search can 
skip points in the clusters that do not match the flters of the query. 
Pinecone’s hybrid search feature utilises this approach [19]. This 
technique can also be applied to an LSH [10] index. 

However, graph-based ANNS indices such as HNSW [32] and 
Vamana [39] are an order of magnitude more efcient than IVF/LSH 
indices in terms of the number of points in the index that a query 
is compared to for a target recall, and this gap only increases with 
data size. As a result, interactive web services like search, adver-
tising, and enterprise document recommendation requiring high 
performance deploy graph-based ANNS indices for achieving high 
throughput and recall with query latency of a few milliseconds re-
quired for these services. Current approaches to supporting fltered 
queries do not leverage these enormous query efciencies provided 
by graph based indices and focus instead on optimizations of more 
inefcient indexing techniques. 

1.3 Our Results and Techniques 
Our main contributions are two simple-yet-efective graph-based al-
gorithms for fltered ANNS – FilteredVamana and StitchedVamana 
– that build upon the Vamana graph [39]. Graph-based indices like 
Vamana work by constructing navigable graphs, which are efective 
at guiding a locally "greedy" search towards the query’s nearest 
neighbor candidates. To the best of our knowledge, existing al-
gorithms with the exception of NHQ only consider the positions 
(vector co-ordinates) of the points in the data set and not the fl-
ter metadata. Both the algorithms presented here go further 
by making use of not only the geometric relation between 
points but also the labels that each point has in constructing 
the navigational structure of the graph. 

The FilteredVamana algorithm starts with an empty graph and 
incrementally adds points to the index, along with edges, as follow. 
For the �th point �� with associated labels �� , we fnd a suitable set 
of diverse candidate neighbors and add bi-directional edges. Then, 
whenever any vertex degree exceeds a given threshold �, we run 
a RobustPrune procedure to prune redundant edges by looking at 
the geometry and the flter information. 

The StitchedVamana algorithm takes a bulk-indexing approach. 
It builds a separate Vamana index over each point set �� of all 
points associated with each label flter � , and overlays them into 
a graph whose edges are the union of the edges in flter-specifc 
graphs. This results in an index that could be as large as building a 
separate index for each flter. To reduce the index size, we run the 
RobustPrune algorithm for every node whose degree exceeds �. 

Intuitively, one might expect StitchedVamana to fare better than 
FilteredVamana, since each node accumulates a large number of 
useful candidates (when taking the union) before the pruning step, 
while FilteredVamana prunes on-the-fy whenever any degree ex-
ceeds �. Our experimental results indeed confrm this. However, 
FilteredVamana index builds faster, and is more readily amenable 
to incremental updates. We evaluate the merits of these algorithms 
compared to each other and to the rest of literature in section 5. 

We now summarize our contributions. 
(1) Our algorithms generate indices which can support thou-

sands of flters (|F | ∼ 1000) with each point in � associated 
tens or hundreds of these flters. Notably, these indices have 
near identical resource consumption (e.g. index size) to prior 
graph-based indices for unfltered ANNS. 
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(2) We compare our algorithms with many existing public base-
lines, including IVF, HNSW, NHQ and Milvus, and show 
that they outperform baselines by an order-of-magnitude or 
more. Our algorithms can be tuned to provide recall as close 
to 100% as possible even for flters with specifcity as low as 
10−4 to 10−6, while other algorithms saturate at lower recall. 

(3) We show signifcant improvement on key metrics in a real-
world sponsored advertisement scenario involving flters. 
The algorithms improve recall signifcantly within a strict 
serving latency budget, resulting in revenue gains ranging 
from 30 − 80% depending on the specifcity of the query. 

(4) The indices can also be stored in inexpensive SSDs as in 
the DiskANN system [39], and enable fltered search at low 
latency and 90+% recall and thousands of queries per second. 

2 RELATED WORK 
There has been a signifcant amount of research devoted to ANNS 
algorithms [9, 11, 12, 14–18, 23–25, 27–30, 32–34, 39, 40, 46]. See 
also the recent benchmarks [13, 37] for a comparison of the state-of-
the-art ANN algorithms. Most existing research addresses the stan-
dard ANNS problem from the perspective of improving recall [32], 
scale and cost-efciency [15, 39], distributed indexing [40], enabling 
real-time updates to the index [38], and designing algorithms with 
theoretical guarantees. With the increasingly central role of ANNS 
in semantic search/dense-retrieval, many application-critical re-
quirements for ANNS are found lacking in research literature, one 
of which is that of fltering or fltered queries (used interchangeably). 

There have been two recent works on fltered-ANNS. Analytic 
DB-V[44], Alibaba’s real-world system integrates fltered ANNS 
queries on a SQL engine. It supports and optimizes for complex 
flters using a query-plan based on the specifcity of the flter: 

• high specifcity: post-processing index 
• moderate specifcity: inline-processing IVF-PQ [22] index 
• low specifcity: inline-processing brute-force index 

In this work, we limit to simpler flters – exact match with one flter. 
To support such searches at interactive latency and high recall, 
we develop new graph-based indices that can be updated. We can 
easily extend this to the disjunction (OR) of several flters by simply 
fnding the answers corresponding to each individual flter, and 
aggregating and sorting these results by distance from the query. 
We leave the case of conjunctions (AND) of several flters and other 
more complicated expressions as a challenging avenue for future 
work. Note that when the possible set of predicates are known and 
not too large (thousands), we can label each vector with predicates 
it satisfes and build the graph to support fltering by those labels. 

Another recent algorithm that supports fltered queries is the 
NHQ algorithm[42]. This is relevant to our work in that it is graph-
based and actually modifes the indexing step: they encode the 
flter labels as vectors and append them to the real vector and 
index with ANNS algorithms such as NSW or kNN-graph [21]. 
However, this paper considers the setting where each data point 
has efectively only one flter label associated – i.e. the sets �� are 
completely disjoint, a scenario that can be handled by separate 
standard ANNS indices for each flter. Further, this technique could 
be inefective in scaling to multiple flters/labels per point without 
signifcantly afecting recall. If a point in the index has three flter 
labels, and the query only has one, the distance in the other two label 

Algorithm 1: FilteredGreedySearch(� , �� , � , �, �� ) 
Data: Graph � with initial nodes � , query vector �� , search list 

size L, and query flter(s) �� . 
Result: Result set L containing � approximate nearest neighbors, 

and a set V containing all visited nodes. 
begin 

1 Initialize sets L ← ∅ and V ← ∅. 
for � ∈ � do 

if �� ∩ �� ≠ ∅ then 
L ← L ∪ {� } 

while L \ V ≠ ∅ do 
2 Let �∗ ← arg min� ∈L\V ∥�� − �� ∥ 
3 V ← V ∪ {�∗ }

′ ′ ′ 4 Let �out (�∗ ) ← {� ∈ �out (�∗ ) : �� ′ ∩ �� ≠ ∅, � ∉ V} 
′ 5 L ← L ∪ �out (� ∗ )

if | L | > � then 
6 Update L with the closest � nodes to �� . 

return [� NNs from L; V] 

Algorithm 2: FindMedoid(� , �) 
Data: Dataset � with associated flters for all the points, threshold � . 
Result: Map � mapping flters to start nodes. 
begin 

1 Initialize � be an empty map, and � to an zero map; //� is 
intended as a counter 

foreach � ∈ F, the set of all flters do 
2 Let �� denote the ids of all points matching flter � 
3 Let �� ← � randomly sampled data point ids from �� 
4 �∗ ← arg min� ∈�� 

� [� ] 
5 update � [ � ] ← �∗ and � [�∗ ] ← � [�∗ ] + 1 

return � 

coordinates will adversely afect such candidates as compared to 
data points which have only the same query label. We demonstrate 
that our approaches outperform NHQ in the appendix, which in 
turn signifcantly outperforms Analytic DB-V [42]. 

3 THE FilteredVamana ALGORITHM 
Graph-based ANNS indices are constructed so that greedy search 
quickly converges to the nearest neighbors of a query vector �� . 
We frst describe a natural adaptation of greedy search for fltered 
queries called FilteredGreedySearch (algorithm 1) and an index 
construction procedure (algorithm 4) that allows search to converge 
to the right answer with relatively few distance comparisons. 

3.1 FilteredGreedySearch 
Given a query �� and a set of labels �� , we are required to output 
the � approximate nearest neighbors of �� , where each point in the 
output shares at least one label with �� . The search procedure also 
takes in a set � of start nodes. For a query with label set �� , the set 
� is typically {st(� ) : � ∈ �� }, where st(� ) is the designated start 
node for label � ∈ � computed during the index construction. In 
this paper, we benchmark queries where �� is a singleton set, but 
the algorithm can also be used for queries with |�� | > 1. 
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Algorithm 3: FilteredRobustPrune(� , V , � , �) 
Data: Graph � , point � ∈ � , candidate set V , distance threshold 

� ≥ 1, max outdegree bound �. 
Result: � is modifed by setting at most � out-neighbors for � . 
begin 

1 

2 

3 

4 

5 

6 

7 

V ← V ∪ �out (� ) \ {� }
�out (� ) ← ∅ 
while V ≠ ∅ do 

�∗ ← arg min� ′ ∈V� (�, � ′ )
�out (� ) ← �out (� ) ∪ {�∗ }
if |�out (� ) | = � then 

break 
′for � ∈ V do 
if �� ′ ∩ �� ⊄ ��∗ then 

continue 
′if � · � (�∗, � ) ≤ � (�, � 
′Remove � from V . 

′ ) then 

The algorithm maintains a priority queue L of size at most � 
(where � ≤ �). At every iteration, it looks for the nearest unvisited 
neighbor �∗ of �� in L. It then adds �∗ to a set of visited nodes 
V . This is a useful invariant that we will refer to later on in this 
paper. We then add only those out-neighbors of �∗ that have at least 
one label in �� to the list L. Finally, if |L| > �, we truncate L to 
contain the � closest points to �� . The search terminates when all 
nodes in L have been visited. The output consists of the � nearest 
neighbors of �� from L, as well as the set of visited nodes V which 
is useful for index construction (but not in user queries). 

3.2 Index Construction 

Start Point Selection. We require start nodes for each flter to 
satisfy two criteria: (a) the start point � ≡ st(� ) for a query with a 
single flter � should be associated with that flter, i.e., � ∈ �� , and 
(b) no point in � should be the start point for too many flter labels. 
The load of routing queries with diferent flters should be shared 
across many points so that we can build a graph of small bounded 
maximum degree which caters to all flter labels. Indeed, if a single 
point served as the start point of many labels, there may be very few 
neighboring vertices with a certain label from the starting point, 
leading to poor search. We achieve this using a simple randomized 
load balancing algorithm described in algorithm 2. 

Incremental Graph Construction. The FilteredVamana graph 
construction is an incremental algorithm. We frst identify the start 
node st(·) for each flter label, and initialize � to an empty graph. 
Then, for each data point � ∈ � , with associated flters/labels � ∈ �� , 
we run FilteredGreedySearch(��� , �� , �, �, �� ), with starting points 
��� = {st(� ) : � ∈ �� }. This returns a set V�� of vertices visited in 
the search exploration. All visited nodes have some label � ∈ �� . 

Next, we prune the candidate set V�� with a call to the flter-
aware pruning procedure in algorithm 3 with parameters (�, V, �, �). 
This ensures the graph node corresponding to � has at most � 
out-neighbors, while also eliminating redundant edges to nearby 
vectors. The pruning procedure relies on the following principle: 

Algorithm 4: FilteredVamana Indexing Algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Data: Database � with � points where �-th point has coords �� , 
parameters �, �, �. 

Result: Directed graph � over � with out-degree ≤ �. 
begin 

Initialize � to an empty graph 
Let � denote the medoid of � 
Let st(� ) denote the start node for flter label � for every � ∈ � 
Let � be a random permutation of [�]
Let �� be the label-set for every � ∈ � 
foreach � ∈ [�] do 

Let ���� (� ) 
= {st(� ) : � ∈ ��� (� ) }

Let [∅; V��� (� )
] ← FilteredGreedySearch(���� (� ) 

, 

�� (� ) , 0, �, ��� (� ) ) 

V ← V ∪ V��� (� )
Run FilteredRobustPrune(� (� ) , V��� (� ) 

, �, �) 

to update out-neighbors of � (� ) . 
foreach � ∈ �out (� (� ) ) do 

Update �out ( � ) ← �out ( � ) ∪ {� (� ) } 
if |�out ( � ) | > � then 

Run FilteredRobustPrune(�, �out ( � ), �, �) 
to update out-neighbors of � . 

Algorithm 5: StitchedVamana Indexing Algorithm 
Data: Database � with � points where �-th point has coords �� , 

Database � of labels, parameters �, �small, �small, �stitched. 
Result: Directed graph � over � with out-degree ≤ �stitched. 
begin 

1 

2 

3 

4 

5 

Initialize � = (� , � ) to an empty graph 
Let �� ⊆ � be the label-set for every � ∈ � 
Let �� ⊆ � be the set of points with label � ∈ � . 
foreach � ∈ � do 

Let �� ← Vamana(�� , �, �small, �small ) 
foreach � ∈ � do 

FilteredRobustPrune (�, �out (�), �, �stitched ) 

For any triplet of vertices �, �, � , and constant � ≥ 1, the directed 
edge (�, �) can be pruned out of the graph if 

(1) the edge (�, �) is present, 
(2) the vector �� is substantially closer to �� than �� is to �� , i.e., 

∥�� − �� ∥ ≤ (1/�)∥�� − �� ∥, and 
(3) �� contains all common flter labels of �� and �� , i.e., �� ∩ 

�� ⊆ �� . 

Finally, we add backward edges from � to � for all � ∈ �out (�), 
and again, if the degree of any such � exceeds �, we run the 
FilteredRobustPrune procedure on �. 

4 THE StitchedVamana ALGORITHM 
We now present a diferent algorithm for building an index called 
StitchedVamana (algorithm 5), which can only be used when the 
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Dataset Dim # Pts. # Queries Source Data Filters Filters 
per Pt. 

Unique 
Filters 100pc. 75pc. 50pc. 25pc. 1pc. 

Turing 100 2,599,968 996 Text Natural 1.09 3070 0.127 1.56�10−4 4.15�10−5 1.54�10−5 7.7�10−6 

Prep 64 1,000,000 10000 Text Natural 8.84 47 0.425 0.136 0.130 0.127 0.09 
DANN 64 3,305,317 32926 Text Natural 3.91 47 0.735 0.361 0.183 0.167 0.150 
SIFT 128 1,000,000 10000 Image Random 1 12 0.083 0.083 0.083 0.083 0.082 
GIST 960 1,000,000 1000 Image Random 1 12 0.083 0.083 0.083 0.083 0.082 
msong 420 992,272 200 Audio Random 1 12 0.083 0.082 0.082 0.082 0.082 
audio 192 53,387 200 Audio Random 1 12 0.085 0.084 0.083 0.082 0.081 
paper 200 2,029,997 10000 Text Random 1 12 0.083 0.083 0.083 0.083 0.082 

Table 1: Datasets used in the evaluation and their statistics. Top 3 rows are real-world datasets; the rest are semi-synthetic. 

point set is known ahead of time. For each � ∈ � , we build a 
graph index � � over points �� with label � using the Vamana 
algorithm [39] with parameters �small and �small. These parameters 
are smaller than the ones in previous algorithm for faster index 
construction. Then, since vertices can potentially belong to multiple 
indices � � (since a point � ∈ � can belong to multiple �� ), we 
“stich” the graphs � � ’s together in to the graph � , whose edges 
are the the union of edge sets of each � � . � could have a large 
degree. We reduce its maximum out degree to �stitched using the 
FilteredRobustPrune procedure. The resulting graph is compatible 
with the FilteredGreedySearch procedure. 

5 EVALUATION 
We now compare the query performance and accuracy of these 
algorithms with several baselines representing inline and post-
processing techniques using three real-world datasets from pro-
duction scenarios and semi-synthetic datasets used in prior work. 
All experiments were run on an Azure E64dsv4 virtual machine 
with Intel(R) Xeon(R) Platinum 8272CL CPUs @ 2.60GHz with 64 
vCPUs and 500GB of RAM. All query throughput measurements 
are reported for runs with 48 threads. 

5.1 Datasets 
Table 1 lists the datasets used for evaluation and provides statistics 
including the index size, the number of unique flters, the average 
number of flters associated with each point, and the specifcity 
|�� |/|� | of the 100, 75, 50, 25 and 1 percentile flters as sorted in 
decreasing order of frequency. We measure the QPS (queries per 
second) and recall of diferent algorithms for flters with these 
specifcities. 

Real-world datasets. The Turing dataset consists of encodings of text 
from an enterprise corpus for query relevance, with the flters being 
sites associated with the text within the enterprise. The Prep and 
DANN datasets represent sponsored advertisements from a large ad 
corpus relevant across 47 regions (countries). Each ad can be served 
in one or more geographical regions based on advertiser preference. 
The vectors are derived from the twin-tower encoders [26, 31] 
applied to advertisements. We use the DANN and Prep datasets 
as the primary benchmarking datasets. The Turing dataset has a 
large range in terms of specifcity of flters, which is helpful for 
analyzing the drawbacks of some popular approaches. 

Semi-Synthetic Datasets. We also benchmark our algorithms on 
fve datasets that were used to test the recent NHQ algorithm in 
[42]. These include one real-world dataset released in [42], and four 
datasets that are publicly available, with labels generated randomly 
via the method from [2]. These datasets are not as realistic because: 

• For the latter four datasets, the flter for each point is fab-
ricated or selected at random. In real-world datasets there 
could be correlation between the distribution of points and 
the set of labels that an ANNS algorithm could exploit. 

• Each point in the index efectively has only one label. While 
it might appear at frst glance that each data point and query 
in the NHQ datasets has 3 labels, we get a single label from 
the cartesian product of entries from three categories each 
with 3,2 and 2 distinct values. This gives a partitioning of 
the dataset into 12 disjoint sets, and it is therefore trivial to 
support fltered ANNS by creating separate indices over the 
partitions, and searching the relevant partition based on the 
query. 

5.2 Algorithms and Parameters 
We benchmark the algorithms described in this paper, as well as 
some of algorithmic approaches surveyed in the paper. We include 
a brief description of the parameters used and the source of the 
code below: 

(1) StitchedVamana [36]: The index corresponding to each flter 
is built with parameters �small = 32 and �small = 100. The f-
nal pruning procedure is done with degree bound �stitched = 
64. The pruning threshold parameter is set to � = 1.2. To gen-
erate the Recall/QPS curves, we use FilteredGreedySearch 
where �, the search parameter controling the tradeof be-
tween accuray and speed, varies from 10 to 330 in increments 
of 20. These parameters generated the Pareto-optimal re-
call/QPS curve over a parameter sweep with �small, �stitched ∈ 
{32, 64, 96} and �small between 50 and 100. 

(2) FilteredVamana [36]: The index is built with � = 90 and 
a degree bound of � = 96. This was the Pareto-optimal 
choice for recall/QPS curve from a parameter sweep over 
� ∈ {32, 64, 96} and � between 50 and 100. To generate the 
search Recall/QPS curves, we use FilteredGreedySearch and 
vary � from 10 to 650 in increments of 20. 

(3) IVF Inline-Processing [1]: Since the Prep, Dann and Tur-
ing datasets had roughly 1-3 million points, and the recom-
mended number of clusters is 

√ 
� ≈ 2000, we ran experiments 
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Figure 1: Turing dataset: QPS (x-axis) vs recall@10 for various algorithms with flters of 100, 75, 50, 25 and 1 percentile specifcity. 
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Figure 2: Prep dataset: QPS (x-axis) vs recall@10 for various algorithms with flters of 100, 75, 50, 25 and 1 percentile specifcity. 
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Figure 3: DANN dataset: QPS (x-axis) vs recall@10 for various algorithms with flters of 100, 75, 50, 25 and 1 percentile specifcity. 

with number of clusters in {1024, 2048, 4096, 8192}, and 4096 
clusters had the best QPS/recall curve. The number of probes 
for searching was varied between 20 to 280. 

(4) IVF post-processing with FAISS IVF [29]: 4096 clusters, with 
no. of probes varying from 10 to 350 in increments of 20. 

(5) NHQ [4]: We use the build parameters recommended in [42]. 
To generate the Recall/QPS curves, we vary � between 10 to 
310 in intervals of 20. We have been unable to reproduce the 
results presented in [42]. See subsection A.1 for details. 

(6) HNSW post-processing with FAISS HNSW [29]: built with 
the parameter efConstruction set 150 and � set to 100, so 
that the build times were similar to (1) and (2). Search was 
done with � from 10 to 350 in steps of 20. 

(7) Milvus [3]: Parameters are described in subsection A.2 

5.3 Comparison With Existing Approaches 
We plot the tradeof between recall and query throughput as mea-
sured in Queries per second (QPS) for the algorithms above. Index 

build times are reported in Table 2. Due to extremely low QPS, all 
Milvus and NHQ plots are left to the appendix, since it is difcult to 
plot them alongside other algorithms. In addition, post-processing 
approaches perform poorly across all evaluations in this scope, so 
comparison with them is omitted unless there is something of note. 

5.3.1 Filtered Qeries on Turing. Figure 1 shows the downside 
of the post-processing and the inline-processing approaches for 
fltered query on flters with extremely low specifcity. These ap-
proaches have to search a large number of the space in order to 
fnd valid results. On the other hand, both FilteredVamana and 
StitchedVamana achieve 90%+ recall as specifcity ranges from 
10−1 to 10−6, while the other approaches fail to achieve any mean-
ingful accuracy, and have almost a 1000x lower QPS for the low 
specifcity labels. 

5.3.2 Filtered Qeries on PREP. For 90% recall, Figure 2 shows 
that FilteredVamana performs 2.5x better than the next best prior 
technique – IVF inline processing – and StitchedVamana performs 
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Alg./Data Dann Prep Turing Audio SIFT 
FilteredVamana 159.8 66.6 103.4 1.3 44. 
StitchedVamana 469.9 222.6 295.9 1.6 24.4 
NHQ NA NA NA 1.1 24.4 
Milvus HNSW 153.6 49.3 NA 5.5 72.0 
Faiss HNSW 158.6 44.5 188.0 1.1 71.1 

Table 2: Build times in seconds for Filtered Vamana, Stitched 
Vamana, NHQ, Milvus HNSW and Faiss HNSW. 

6x better. Both the algorithms in this paper are substantially better 
than all prior techniques over a range of recall. 

5.3.3 Filtered Qeries on DANN. For 90% recall, Figure 3 shows 
that FilteredVamana performs around 3x better than IVF inline 
processing, and StitchedVamana performs around 7.5x better. 

Overall, the results establish that both algorithms presented in 
this paper improve upon the recall to QPS ratio by an order of 
magnitude or more over a wide range of parameters and datasets. 

5.4 Comparing FilteredVamana and 
StitchedVamana 

5.4.1 Dataset Comparisons. StitchedVamana overlays per-label 
sub-graphs then prunes the overlaid graph, while FilteredVamana 
builds a single index where neighbors of a given vertex are de-
cided based on both geometric structure as well as common labels. 
While both perform well on real-world datasets (Figure 3, Figure 2) 
StitchedVamana consistently ofers better QPS for recall@90 by 
a factor of 2. The total indexing time for FilteredVamana is faster 
than StitchedVamana, across both datasets, as shown in Table 2. 

5.4.2 Examining Performance on Uncorrelated Labels. Some ex-
isting ANNS solutions such as Milvus perform a pre-processing 
step wherein they rely on the distribution of the labels amongst 
the points for faster fltered search[41]. Such approaches will nat-
urally experience some degradation or loss in efciency if new 
queries do not follow this distribution. We show that while both 
FilteredVamana and StitchedVamana are robust to this possibility, 
FilteredVamana is slightly better. 

We conducted a simple experiment to demonstrate this. Consider 
a dataset � = {�1, . . . , �� } and the associated label sets {��1 , . . . , ��� }. 
Let D1 be the discrete distribution of the number of labels per point, 
and let D2 be the discrete distribution corresponding to the pro-
portion of each label in the dataset. We then construct a new label 

′ ′set {��1 
, . . . , � } in the following manner: for each point � ∈ � ,��

sample the number of labels � must have from the distribution 
�1. Then sample labels without replacement from D2 until we ob-

′tain |�� | labels. Label sets constructed in such a manner will have 
less correlation with the actual points and clusters in the dataset, 
and the labels themselves are assigned to each point somewhat 
independently. 

The results in Figure 4 show that for the Prep dataset, FilteredVamana 
shows more robustness to the shufing of the labels. The recall/QPS 
curve barely changes in comparison to StitchedVamana, which has 
lower QPS after the shufe. However, for the DANN dataset, there 
is minimal change for both approaches. 
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Figure 4: Shufled Experiment for Dann and Prep dataset: 
QPS vs recall@10 for FilteredVamana and StitchedVamana with 
flters of 100 and 1 percentile specifcity, but with labels shuf-
fed across datasets. 

5.4.3 Performance on Unfiltered Qeries. In addition to being fairly 
robust to the distribution of the labels, these algorithms also work 
relatively well for unfltered search despite being designed for fl-
tered search. Figure 5 compares both the algorithms we propose for 
Filtered search with Vamana, which is explicitly designed for unfl-
tered search. For both the Prep and DANN datasets, StitchedVamana 
supports 95% recall@10 at around 0.9 times the query throughput 
(QPS) of Vamana, while FilteredVamana is able to achieve the same 
recall at around 0.8x the QPS of Vamana. 

5.4.4 Streaming Indices. While on QPS and recall, StitchedVamana 
outperforms FilteredVamana in most situations, FilteredVamana 
has an advantage that is likely to make it more useful in practice: 
dynamic index growth via point insertions. It is easier to ensure the 
principle of flter subgraph navigability for FilteredVamana: the set 
intersection requirement is inherently localized to the neighbors of 
a point, and it is easy to account for along with the geometric re-
quirements in the dynamic setting. However, for StitchedVamana, 
we risk breaking the structure of the subgraphs, from which much 
of the performance advantage of StitchedVamana is gained over 
FilteredVamana. We leave a more detailed evaluation of the dy-
namic setting deletions as a possible avenue for future work. 

5.5 SSD based indices 
It is often necessary to index and query datasets much larger than 
the DRAM. The DiskANN [36, 39] system makes it is possible to 
do so cost-efectively by using a hybrid DRAM-SSD indices that 
require little DRAN. It internally uses the Vamana graph placed on 
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Number of 
Diferent Regions 

Pct. incr. 
in clicks 

Pct. incr. 
in revenue 

47 34.61% (0.03) 48.95% (0.009) 
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Figure 5: QPS vs recall@10 for Unfltered Search on 
FilteredVamana and StitchedVamana built on original labels. 

2,500 3,000 3,500 4,000 4,500
70

75

80

85

90

95

QPS

Re
ca
ll@

10

1pc
100pc
75pc
50pc
25pc

0 50 100 150 200
40

60

80

100

Average number of of SSD IOs per query

Re
ca
ll

1pc
100pc
75pc
50pc
25pc

Figure 6: Performance of Filtered-DiskANN on a larger 28 
million point DANN dataset on flters of various specifcity. 

SSDs and a compressed representation of points in the DRAM to an-
swer queries accurately with latency. It is straight-forward to place 
the graph algorithms described in this paper in the DiskANN frame-
work. In fact, several large scale deployments efectively use such a 
strategy which we term Filtered − DiskANN. Figure 6 demonstrates 
its performance on larger scale 28 million point Dann dataset. Fil-
tered search was with run 24 threads on a machine with Intel 
E5-2673v3 CPUs and a local SSD with beamwidth 4 and search 
parameter � varying between 40 and 100 in increments of 10. 

6 ONLINE A/B TEST IN SPONSORED SEARCH 
To measure the efcacy of FilteredVamana in an industrial setting, 
we conducted online A/B tests on live trafc of a sponsored search 
engine. Search engines generate most of their revenue via spon-
sored advertisements (ad). Each ad can be allowed to serve in one 
or more geographical regions (countries) based on advertiser’s pref-
erence. Selecting relevant ads for a query is an important problem. 
Here relevance has multiple connotations, including intent-match 
between query and ads, targeting-match (e.g., match in location of 
user and allowed targeted regions for ads). 

The production system uses ANNS index to select ads from 
a large ad corpus. We create one ANNS index with ads from 47 
regions. Creating separate indices for each region is inefcient 
and expensive as a large fraction of ads are targeted in more than 
one region. A twin-tower encoder based on [26, 31] creates the 
dense embeddings for ads optimizing for intent-match. The baseline 
system uses post-processing to flter on target regions which helps 
towards targeting-match. As described earlier, post-processing has 
sub-optimal recall when strict latency budgets are to be met. 

Table 3: FilteredVamana performance improvement over cur-
rent production system for ANNS retrieval 

Region’s share 
in Index 

Pct. incr. 
in clicks 

Pct. incr. 
in revenue 

3-9% (10) 25.54% 28.61% 
1-2% (10) 54.07% 46.67% 
<1% (27) 70.67% 79.77% 

Table 4: Performance improvement on three subgroups of re-
gions based on their along with subgroup-wise performance 
improvement. Number in brackets indicate subgroup size. 

We deployed FilteredVamana based indexes containing 47 flter 
labels (target regions) using the same encoder. Table 3 shows the 
relative improvement in clicks and revenue with respect to baseline 
production system. Numbers in brackets indicate the P-Value. P-
Value below 5e-2 is considered signifcant in the production system. 
The data was collected over a period of two weeks and aggregated 
across all the target regions. The signifcant increase in clicks and 
revenue demonstrates the efectiveness of FilteredVamana. 

Since the baseline system uses post-fltration, there is bias to-
wards retrieving ads targeted in regions that have large index rep-
resentation. This leads to heavy fltration downstream for queries 
targeting a region with smaller representation. FilteredVamana by 
design should work well for these smaller represented regions. To 
test this hypothesis, we further grouped target regions into 3 sub-
groups based on their index representation. Table 4 confrms that 
smaller regions see larger gains with FilteredVamana they now get 
a fair representation and all retrieval complies by targeting-match. 

7 CONCLUSIONS AND FUTURE WORK 
We have demonstrated that it is possible to build extremely ef-
cient graph-based ANNS indices to support hybrid ANNS queries. 
The performance and accuracy improvements over baselines are 
signifcant and consistent across many real-world data sets and a 
range of values of flter specifcity. This has a large positive impact 
on production systems. Support for flter sets larger than several 
thousands and support for more complex SQL-like flter expres-
sions with the efciency of graph indices remain challenging open 
problems. While ideas presented here may be relevant to the fullt 
dynamic setting with deletes (as in [38]), detailed evaluation re-
mains future work. 
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A APPENDIX 

A.1 Comparison with NHQ KGraph 
In [42], the authors propose two graph algorithms for fltered 
ANNS: NHQ-NPG_NSW and NHQ-NPG_KGraph. In all their exper-
iments, the KGraph algorithm had a much better Recall/QPS profle 
than the NSW algorithm. We thus benchmark FilteredVamana and 
StitchedVamana against KGraph on 5 of the datasets used in [42]. 
We also note that while [45] apparently ofers an improvement 
over [42], we have not found publicly available code to evaluate 
their results. 

Both FilteredVamana and StitchedVamana were run with the 
same build parameters as described in subsection 5.2, while KGraph 
was built with the default parameters as suggested in the NHQ 
codebase [4]. The search parameter � for KGraph is varied from 
50 to 130 in intervals of 10, and from 10 to 50 in intervals of 5 for 
FilteredVamana and StitchedVamana. 

As seen in Figure 7, the QPS of the Vamana algorithms is an 
order of magnitude higher for 100 recall. 

Further, we conduct a simple build normalized experiment. On 
the NHQ datasets, we modifed the parameters of FilteredVamana 
to ensure similar build time as NHQ-KGraph. We observed that 
FilteredVamana has much higher QPS, as seen in Figure 8. 

A.2 Comparison with Milvus Algorithms 
Here, we present the results of our experiments using some of 
the Milvus algorithms [3] with fltered search on several datasets, 

including the real world datasets Prep and Dann, as well as the NHQ 
datasets Audio, SIFT1M, Paper and Msong. We compare 4 Milvus 
algorithms with the build and search parameters listed below. Refer 
to the Milvus documentation [2] for further information about the 
Milvus parameters. 

(1) Milvus HNSW: The index was built with degree bound � = 
64 (the maximum permissable value) and efConstruction = 
250, while the search parameter ef was varied from 10 to 50 
in intervals of 5. 

(2) Milvus IVF FLAT: The index was built with number of clus-
ters nlist = 2000, while the search parameter nprobe was 
varied from 10 to 450 in roughly intervals of 50. 

(3) Milvus IVF SQ8: The index was built with number of clusters 
nlist = 2000, number of factors of product quantization 
� = 16 or 20 (depending on the dataset dimension) and 
the number of bits in which each low dimensional vector is 
stored nbits = 8), while the search parameter nprobe was 
varied from 10 to 450 in roughly intervals of 50. 

(4) Milvus IVF PQ: The index was built with number of clusters 
nlist = 2000, while the search parameter nprobe was varied 
from 10 to 450 in roughly intervals of 50. 

The results of our Milvus experiments are seen in Figure 10, 
Figure 9 and Figure 11. Even with 48 threads, we were unable to 
get very high QPS for the Milvus algorithms. Since the QPS was 
less than 300 across datasets for the Milvus algorithms (orders of 
magnitude lower than the Vamana algorithms), we have omitted 
the Vamana curves here to avoid scaling issues with the fgures. 
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Figure 7: KGraph on NHQ datasets: QPS (x-axis) vs recall@10 for NHQ KGraph, FilteredVamana and StitchedVamana. 
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Figure 8: KGraph and Filtered Vamana: QPS (x-axis) vs recall@10 on NHQ datasets (Build Normalized). 
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Figure 9: Milvus algorithms on Prep dataset: QPS (x-axis) vs recall@10 with flters of 100, 75, 50, 25 and 1 percentile specifcity. 
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Figure 10: Milvus algorithms on DANN dataset: QPS (x-axis) vs recall@10 with flters of 100, 75, 50, 25 and 1 percentile specifcity. 
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Figure 11: QPS (x-axis) vs recall@10 for Milvus algorithms with 4 NHQ datasets. 
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