
Filtered − DiskANN: Graph Algorithms for Approximate Nearest
Neighbor Search with Filters

Siddharth Gollapudi Neel Karia∗†

Microsoft Research Columbia University
India USA

sgollapu@berkeley.edu neel2karia@gmail.com

Nikit Begwani Swapnil Raz
Microsoft Microsoft
India India

nikit.begwani@microsoft.com swraz@microsoft.com

Neelam Mahapatro Premukumar
Microsoft Srinivasan
India Microsoft

nmahapatro@microsoft.com USA
prsriniv@microsoft.com

ABSTRACT
As Approximate Nearest Neighbor Search (ANNS)-based dense
retrieval becomes ubiquitous for search and recommendation sce-
narios, efciently answering fltered ANNS queries has become a
critical requirement. Filtered ANNS queries ask for the nearest
neighbors of a query’s embedding from the points in the index that
match the query’s labels such as date, price range, language. There
has been little prior work on algorithms that use label metadata as-
sociated with vector data to build efcient indices for fltered ANNS
queries. Consequently, current indices have high search latency or
low recall which is not practical in interactive web-scenarios. We
present two algorithms with native support for faster and more
accurate fltered ANNS queries: one with streaming support, and
another based on batch construction. Central to our algorithms
is the construction of a graph-structured index which forms con-
nections not only based on the geometry of the vector data, but
also the associated label set. On real-world data with natural labels,
both algorithms are an order of magnitude or more efcient for
fltered queries than the current state of the art algorithms. The gen-
erated indices also be queried from an SSD and support thousands
of queries per second at over 90% recall@10.

∗Equal Contribution
†Work done while at Microsoft Research India

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.

Varun Sivashankar∗ Ravishankar
Microsoft Research Krishnaswamy

India Microsoft Research
varunsiva@ucla.edu India

rakri@microsoft.com

Yiyong Lin Yin Zhang
Microsoft Microsoft

USA USA
yiyolin@microsoft.com yinzhang@microsoft.com

Amit Singh Harsha Vardhan
Microsoft Simhadri
India Microsoft Research

siamit@microsoft.com USA
harshasi@microsoft.com

KEYWORDS
Approximate nearest neighbor search, Filtered Search, Graph algo-
rithms, Dense retrieval, Vector Search

ACM Reference Format:
Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krish-
naswamy, Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam
Mahapatro, Premukumar Srinivasan, Amit Singh, and Harsha Vardhan
Simhadri. 2023. Filtered − DiskANN: Graph Algorithms for Approximate
Nearest Neighbor Search with Filters. In Proceedings of the ACM Web Con-
ference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New
York, NY, USA, page 11 pages. https://doi.org/10.1145/3543507.3583552

1 INTRODUCTION
In the nearest neighbor search problem, we are given a dataset �
with � points in some metric space, which we assume to be R�

with the Euclidean distance in this paper. Given a query �� ∈ R�

and � ∈ N, we would like to return the � nearest neighbors of
�� from � . To exactly fnd the � nearest neighbors, we cannot do
better than a linear scan of the dataset [35] due to the curse of
dimensionality [20]. Therefore, in practice, algorithms are designed
for approximate nearest neighbor search (ANNS), i.e., to efciently

|� ∩L| retrieve a set L of � candidates to maximize ������@� = ,
�

where � is the ground truth set of �� ’s � nearest neighbors in � .

1.1 Filtered ANNS
In this setting, for every data point (a.k.a. vector) � ∈ � , we have
an associated set of labels �� ⊆ F , where F is a fnite universe of
labels. A query to the index now comprises of the vector �� , the
target number of nearest neighbors � , and a label flter � ∈ F . The
ANNS index is required to fnd the closest neighbors of �� from

WWW ’23, April 30–May 04, 2023, Austin, TX, USA �� = {� ∈ � : � ∈ �� }, i.e., points in the index that have the label
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

� associated with them. Once again, the index should maximize ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583552 recall@k, but relative to ground-truth computed against the set �� ,

3406

https://doi.org/10.1145/3543507.3583552
https://doi.org/10.1145/3543507.3583552
mailto:harshasi@microsoft.com
mailto:siamit@microsoft.com
mailto:yinzhang@microsoft.com
mailto:yiyolin@microsoft.com
mailto:rakri@microsoft.com
mailto:varunsiva@ucla.edu
mailto:permissions@acm.org
mailto:prsriniv@microsoft.com
mailto:nmahapatro@microsoft.com
mailto:swraz@microsoft.com
mailto:nikit.begwani@microsoft.com
mailto:neel2karia@gmail.com
mailto:sgollapu@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583552&domain=pdf&date_stamp=2023-04-30
Junwang Zhao
Highlight

Junwang Zhao
Highlight

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

instead of � . We also defne the specifcity of � to be |�� |/|� |: the
fraction of indexed data points which have the label � associated
with them. While a natural generalization is to consider ANNS
queries with complex predicates, in this paper we focus on the case
with single flter associated with the query.

Many important real-world scenarios can be expressed in this
simple framework. For example, web search engines ofer fltering
results by keyword, publishing date, or domain/sub-domain of a
website. Image search engines allow fltering by color, resolution,
etc. E-commerce search allows fltering by categories such as brand,
price range and product size. Enterprise search applications might
want to limit documents displayed based on user’s privileges. An-
other scenario where fltering is not exposed to the user but is
implicit is that of advertisement display. Here, advertisers instruct
the search engine to display only those ads that are relevant to
the user’s region. Given the ubiquity of fltering requirements for
ANNS, a recent wave of start-ups such as Milvus [2], Pinecone [19],
Vearch [5], Vespa [6] and Weaviate [7] ofer ANNS-as-a-service
with various degrees of support for fltering. Moreover, some indus-
trial systems such as AliBaba’s AnalyticDB-V [43] and the academic
community [42, 45] have considered variants of this problem.

1.2 Drawback of Existing Methods
A common thread across most current methods for Filtered ANNS is
that they only modify the search step, and not the index build step,
which we argue is sub-optimal. We overview previous methods
here and their drawbacks.

One straightforward method for answering hybrid queries is the
post-processing approach: build a standard ANNS index, query as
usual, and post-process the results by selecting only those results
returned by the index that match the query flter. While this method
is easy to implement, it performs poorly in practice. Indeed, for a
label flter � with low specifcity, we may have to retrieve a very
large number of candidates before coming across a single result
matching the flter. We have observed this to be the case on real-
world datasets (see Figure 1, Figure 2, and Figure 3).

Conversely, one might consider a trivial pre-processing method
that builds a separate index for each possible flterable label � ∈ F
so that a query can be routed to the index associated with the
query’s flter. However, such an approach would quickly become
prohibitively expensive in scenarios with either a large number of
flters, or where each point could have many associated flters.

Weaviate and Milvus both use a more efcient pre-processing step
before passing a query through a graph index. Weaviate frst passes
the query’s labels through an inverted index in order to generate
an approved list of points [8]. Milvus maintains a distribution of
attributes over points, and uses a hash-table to map the commonly
used attributes from a query to the “approved list” of points [41]. At
search time, only the approved list of points are considered. While
both these data structures are created at indexing time, they do not
change the main vector similarity search index: their approaches
just afect how the search procedure traverses the main index.

There are some algorithms where the post-processing approach
can be applied “on the fy,” which we will refer to as inline-processing.
For example, FAISS-IVF [29] partitions the data into clusters, and
the ANN data structure is an inverted index consisting of all the
points belonging to each cluster. By including flter metadata with

each entry in the inverted index, an inline-processing search can
skip points in the clusters that do not match the flters of the query.
Pinecone’s hybrid search feature utilises this approach [19]. This
technique can also be applied to an LSH [10] index.

However, graph-based ANNS indices such as HNSW [32] and
Vamana [39] are an order of magnitude more efcient than IVF/LSH
indices in terms of the number of points in the index that a query
is compared to for a target recall, and this gap only increases with
data size. As a result, interactive web services like search, adver-
tising, and enterprise document recommendation requiring high
performance deploy graph-based ANNS indices for achieving high
throughput and recall with query latency of a few milliseconds re-
quired for these services. Current approaches to supporting fltered
queries do not leverage these enormous query efciencies provided
by graph based indices and focus instead on optimizations of more
inefcient indexing techniques.

1.3 Our Results and Techniques
Our main contributions are two simple-yet-efective graph-based al-
gorithms for fltered ANNS – FilteredVamana and StitchedVamana
– that build upon the Vamana graph [39]. Graph-based indices like
Vamana work by constructing navigable graphs, which are efective
at guiding a locally "greedy" search towards the query’s nearest
neighbor candidates. To the best of our knowledge, existing al-
gorithms with the exception of NHQ only consider the positions
(vector co-ordinates) of the points in the data set and not the fl-
ter metadata. Both the algorithms presented here go further
by making use of not only the geometric relation between
points but also the labels that each point has in constructing
the navigational structure of the graph.

The FilteredVamana algorithm starts with an empty graph and
incrementally adds points to the index, along with edges, as follow.
For the �th point �� with associated labels �� , we fnd a suitable set
of diverse candidate neighbors and add bi-directional edges. Then,
whenever any vertex degree exceeds a given threshold �, we run
a RobustPrune procedure to prune redundant edges by looking at
the geometry and the flter information.

The StitchedVamana algorithm takes a bulk-indexing approach.
It builds a separate Vamana index over each point set �� of all
points associated with each label flter � , and overlays them into
a graph whose edges are the union of the edges in flter-specifc
graphs. This results in an index that could be as large as building a
separate index for each flter. To reduce the index size, we run the
RobustPrune algorithm for every node whose degree exceeds �.

Intuitively, one might expect StitchedVamana to fare better than
FilteredVamana, since each node accumulates a large number of
useful candidates (when taking the union) before the pruning step,
while FilteredVamana prunes on-the-fy whenever any degree ex-
ceeds �. Our experimental results indeed confrm this. However,
FilteredVamana index builds faster, and is more readily amenable
to incremental updates. We evaluate the merits of these algorithms
compared to each other and to the rest of literature in section 5.

We now summarize our contributions.
(1) Our algorithms generate indices which can support thou-

sands of flters (|F | ∼ 1000) with each point in � associated
tens or hundreds of these flters. Notably, these indices have
near identical resource consumption (e.g. index size) to prior
graph-based indices for unfltered ANNS.

3407

Junwang Zhao
Highlight

Junwang Zhao
Underline

Junwang Zhao
Highlight

Junwang Zhao
Underline

Junwang Zhao
Underline

Junwang Zhao
Underline

Junwang Zhao
Highlight

Junwang Zhao
Underline

Filtered − DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(2) We compare our algorithms with many existing public base-
lines, including IVF, HNSW, NHQ and Milvus, and show
that they outperform baselines by an order-of-magnitude or
more. Our algorithms can be tuned to provide recall as close
to 100% as possible even for flters with specifcity as low as
10−4 to 10−6, while other algorithms saturate at lower recall.

(3) We show signifcant improvement on key metrics in a real-
world sponsored advertisement scenario involving flters.
The algorithms improve recall signifcantly within a strict
serving latency budget, resulting in revenue gains ranging
from 30 − 80% depending on the specifcity of the query.

(4) The indices can also be stored in inexpensive SSDs as in
the DiskANN system [39], and enable fltered search at low
latency and 90+% recall and thousands of queries per second.

2 RELATED WORK
There has been a signifcant amount of research devoted to ANNS
algorithms [9, 11, 12, 14–18, 23–25, 27–30, 32–34, 39, 40, 46]. See
also the recent benchmarks [13, 37] for a comparison of the state-of-
the-art ANN algorithms. Most existing research addresses the stan-
dard ANNS problem from the perspective of improving recall [32],
scale and cost-efciency [15, 39], distributed indexing [40], enabling
real-time updates to the index [38], and designing algorithms with
theoretical guarantees. With the increasingly central role of ANNS
in semantic search/dense-retrieval, many application-critical re-
quirements for ANNS are found lacking in research literature, one
of which is that of fltering or fltered queries (used interchangeably).

There have been two recent works on fltered-ANNS. Analytic
DB-V[44], Alibaba’s real-world system integrates fltered ANNS
queries on a SQL engine. It supports and optimizes for complex
flters using a query-plan based on the specifcity of the flter:

• high specifcity: post-processing index
• moderate specifcity: inline-processing IVF-PQ [22] index
• low specifcity: inline-processing brute-force index

In this work, we limit to simpler flters – exact match with one flter.
To support such searches at interactive latency and high recall,
we develop new graph-based indices that can be updated. We can
easily extend this to the disjunction (OR) of several flters by simply
fnding the answers corresponding to each individual flter, and
aggregating and sorting these results by distance from the query.
We leave the case of conjunctions (AND) of several flters and other
more complicated expressions as a challenging avenue for future
work. Note that when the possible set of predicates are known and
not too large (thousands), we can label each vector with predicates
it satisfes and build the graph to support fltering by those labels.

Another recent algorithm that supports fltered queries is the
NHQ algorithm[42]. This is relevant to our work in that it is graph-
based and actually modifes the indexing step: they encode the
flter labels as vectors and append them to the real vector and
index with ANNS algorithms such as NSW or kNN-graph [21].
However, this paper considers the setting where each data point
has efectively only one flter label associated – i.e. the sets �� are
completely disjoint, a scenario that can be handled by separate
standard ANNS indices for each flter. Further, this technique could
be inefective in scaling to multiple flters/labels per point without
signifcantly afecting recall. If a point in the index has three flter
labels, and the query only has one, the distance in the other two label

Algorithm 1: FilteredGreedySearch(� , �� , � , �, ��)
Data: Graph � with initial nodes � , query vector �� , search list

size L, and query flter(s) �� .
Result: Result set L containing � approximate nearest neighbors,

and a set V containing all visited nodes.
begin

1 Initialize sets L ← ∅ and V ← ∅.
for � ∈ � do

if �� ∩ �� ≠ ∅ then
L ← L ∪ {� }

while L \ V ≠ ∅ do
2 Let �∗ ← arg min� ∈L\V ∥�� − �� ∥
3 V ← V ∪ {�∗ }

′ ′ ′ 4 Let �out (�∗) ← {� ∈ �out (�∗) : �� ′ ∩ �� ≠ ∅, � ∉ V}
′ 5 L ← L ∪ �out (� ∗)

if | L | > � then
6 Update L with the closest � nodes to �� .

return [� NNs from L; V]

Algorithm 2: FindMedoid(� , �)
Data: Dataset � with associated flters for all the points, threshold � .
Result: Map � mapping flters to start nodes.
begin

1 Initialize � be an empty map, and � to an zero map; //� is
intended as a counter

foreach � ∈ F, the set of all flters do
2 Let �� denote the ids of all points matching flter �
3 Let �� ← � randomly sampled data point ids from ��
4 �∗ ← arg min� ∈��

� [�]
5 update � [�] ← �∗ and � [�∗] ← � [�∗] + 1

return �

coordinates will adversely afect such candidates as compared to
data points which have only the same query label. We demonstrate
that our approaches outperform NHQ in the appendix, which in
turn signifcantly outperforms Analytic DB-V [42].

3 THE FilteredVamana ALGORITHM
Graph-based ANNS indices are constructed so that greedy search
quickly converges to the nearest neighbors of a query vector �� .
We frst describe a natural adaptation of greedy search for fltered
queries called FilteredGreedySearch (algorithm 1) and an index
construction procedure (algorithm 4) that allows search to converge
to the right answer with relatively few distance comparisons.

3.1 FilteredGreedySearch
Given a query �� and a set of labels �� , we are required to output
the � approximate nearest neighbors of �� , where each point in the
output shares at least one label with �� . The search procedure also
takes in a set � of start nodes. For a query with label set �� , the set
� is typically {st(�) : � ∈ �� }, where st(�) is the designated start
node for label � ∈ � computed during the index construction. In
this paper, we benchmark queries where �� is a singleton set, but
the algorithm can also be used for queries with |�� | > 1.

3408

Junwang Zhao
Highlight

Junwang Zhao
Underline

Junwang Zhao
Underline

Junwang Zhao
Underline

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Algorithm 3: FilteredRobustPrune(� , V , � , �)
Data: Graph � , point � ∈ � , candidate set V , distance threshold

� ≥ 1, max outdegree bound �.
Result: � is modifed by setting at most � out-neighbors for � .
begin

1

2

3

4

5

6

7

V ← V ∪ �out (�) \ {� }
�out (�) ← ∅
while V ≠ ∅ do

�∗ ← arg min� ′ ∈V� (�, � ′)
�out (�) ← �out (�) ∪ {�∗ }
if |�out (�) | = � then

break
′for � ∈ V do
if �� ′ ∩ �� ⊄ ��∗ then

continue
′if � · � (�∗, �) ≤ � (�, �
′Remove � from V .

′) then

The algorithm maintains a priority queue L of size at most �
(where � ≤ �). At every iteration, it looks for the nearest unvisited
neighbor �∗ of �� in L. It then adds �∗ to a set of visited nodes
V . This is a useful invariant that we will refer to later on in this
paper. We then add only those out-neighbors of �∗ that have at least
one label in �� to the list L. Finally, if |L| > �, we truncate L to
contain the � closest points to �� . The search terminates when all
nodes in L have been visited. The output consists of the � nearest
neighbors of �� from L, as well as the set of visited nodes V which
is useful for index construction (but not in user queries).

3.2 Index Construction

Start Point Selection. We require start nodes for each flter to
satisfy two criteria: (a) the start point � ≡ st(�) for a query with a
single flter � should be associated with that flter, i.e., � ∈ �� , and
(b) no point in � should be the start point for too many flter labels.
The load of routing queries with diferent flters should be shared
across many points so that we can build a graph of small bounded
maximum degree which caters to all flter labels. Indeed, if a single
point served as the start point of many labels, there may be very few
neighboring vertices with a certain label from the starting point,
leading to poor search. We achieve this using a simple randomized
load balancing algorithm described in algorithm 2.

Incremental Graph Construction. The FilteredVamana graph
construction is an incremental algorithm. We frst identify the start
node st(·) for each flter label, and initialize � to an empty graph.
Then, for each data point � ∈ � , with associated flters/labels � ∈ �� ,
we run FilteredGreedySearch(��� , �� , �, �, ��), with starting points
��� = {st(�) : � ∈ �� }. This returns a set V�� of vertices visited in
the search exploration. All visited nodes have some label � ∈ �� .

Next, we prune the candidate set V�� with a call to the flter-
aware pruning procedure in algorithm 3 with parameters (�, V, �, �).
This ensures the graph node corresponding to � has at most �
out-neighbors, while also eliminating redundant edges to nearby
vectors. The pruning procedure relies on the following principle:

Algorithm 4: FilteredVamana Indexing Algorithm

1

2

3

4

5

6

7

8

9

10

11

Data: Database � with � points where �-th point has coords �� ,
parameters �, �, �.

Result: Directed graph � over � with out-degree ≤ �.
begin

Initialize � to an empty graph
Let � denote the medoid of �
Let st(�) denote the start node for flter label � for every � ∈ �
Let � be a random permutation of [�]
Let �� be the label-set for every � ∈ �
foreach � ∈ [�] do

Let ���� (�)
= {st(�) : � ∈ ��� (�) }

Let [∅; V��� (�)
] ← FilteredGreedySearch(���� (�)

,

�� (�) , 0, �, ��� (�))

V ← V ∪ V��� (�)
Run FilteredRobustPrune(� (�) , V��� (�)

, �, �)

to update out-neighbors of � (�) .
foreach � ∈ �out (� (�)) do

Update �out (�) ← �out (�) ∪ {� (�) }
if |�out (�) | > � then

Run FilteredRobustPrune(�, �out (�), �, �)
to update out-neighbors of � .

Algorithm 5: StitchedVamana Indexing Algorithm
Data: Database � with � points where �-th point has coords �� ,

Database � of labels, parameters �, �small, �small, �stitched.
Result: Directed graph � over � with out-degree ≤ �stitched.
begin

1

2

3

4

5

Initialize � = (� , �) to an empty graph
Let �� ⊆ � be the label-set for every � ∈ �
Let �� ⊆ � be the set of points with label � ∈ � .
foreach � ∈ � do

Let �� ← Vamana(�� , �, �small, �small)
foreach � ∈ � do

FilteredRobustPrune (�, �out (�), �, �stitched)

For any triplet of vertices �, �, � , and constant � ≥ 1, the directed
edge (�, �) can be pruned out of the graph if

(1) the edge (�, �) is present,
(2) the vector �� is substantially closer to �� than �� is to �� , i.e.,

∥�� − �� ∥ ≤ (1/�)∥�� − �� ∥, and
(3) �� contains all common flter labels of �� and �� , i.e., �� ∩

�� ⊆ �� .

Finally, we add backward edges from � to � for all � ∈ �out (�),
and again, if the degree of any such � exceeds �, we run the
FilteredRobustPrune procedure on �.

4 THE StitchedVamana ALGORITHM
We now present a diferent algorithm for building an index called
StitchedVamana (algorithm 5), which can only be used when the

3409

Filtered − DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Dataset Dim # Pts. # Queries Source Data Filters Filters
per Pt.

Unique
Filters 100pc. 75pc. 50pc. 25pc. 1pc.

Turing 100 2,599,968 996 Text Natural 1.09 3070 0.127 1.56�10−4 4.15�10−5 1.54�10−5 7.7�10−6

Prep 64 1,000,000 10000 Text Natural 8.84 47 0.425 0.136 0.130 0.127 0.09
DANN 64 3,305,317 32926 Text Natural 3.91 47 0.735 0.361 0.183 0.167 0.150
SIFT 128 1,000,000 10000 Image Random 1 12 0.083 0.083 0.083 0.083 0.082
GIST 960 1,000,000 1000 Image Random 1 12 0.083 0.083 0.083 0.083 0.082
msong 420 992,272 200 Audio Random 1 12 0.083 0.082 0.082 0.082 0.082
audio 192 53,387 200 Audio Random 1 12 0.085 0.084 0.083 0.082 0.081
paper 200 2,029,997 10000 Text Random 1 12 0.083 0.083 0.083 0.083 0.082

Table 1: Datasets used in the evaluation and their statistics. Top 3 rows are real-world datasets; the rest are semi-synthetic.

point set is known ahead of time. For each � ∈ � , we build a
graph index � � over points �� with label � using the Vamana
algorithm [39] with parameters �small and �small. These parameters
are smaller than the ones in previous algorithm for faster index
construction. Then, since vertices can potentially belong to multiple
indices � � (since a point � ∈ � can belong to multiple ��), we
“stich” the graphs � � ’s together in to the graph � , whose edges
are the the union of edge sets of each � � . � could have a large
degree. We reduce its maximum out degree to �stitched using the
FilteredRobustPrune procedure. The resulting graph is compatible
with the FilteredGreedySearch procedure.

5 EVALUATION
We now compare the query performance and accuracy of these
algorithms with several baselines representing inline and post-
processing techniques using three real-world datasets from pro-
duction scenarios and semi-synthetic datasets used in prior work.
All experiments were run on an Azure E64dsv4 virtual machine
with Intel(R) Xeon(R) Platinum 8272CL CPUs @ 2.60GHz with 64
vCPUs and 500GB of RAM. All query throughput measurements
are reported for runs with 48 threads.

5.1 Datasets
Table 1 lists the datasets used for evaluation and provides statistics
including the index size, the number of unique flters, the average
number of flters associated with each point, and the specifcity
|�� |/|� | of the 100, 75, 50, 25 and 1 percentile flters as sorted in
decreasing order of frequency. We measure the QPS (queries per
second) and recall of diferent algorithms for flters with these
specifcities.

Real-world datasets. The Turing dataset consists of encodings of text
from an enterprise corpus for query relevance, with the flters being
sites associated with the text within the enterprise. The Prep and
DANN datasets represent sponsored advertisements from a large ad
corpus relevant across 47 regions (countries). Each ad can be served
in one or more geographical regions based on advertiser preference.
The vectors are derived from the twin-tower encoders [26, 31]
applied to advertisements. We use the DANN and Prep datasets
as the primary benchmarking datasets. The Turing dataset has a
large range in terms of specifcity of flters, which is helpful for
analyzing the drawbacks of some popular approaches.

Semi-Synthetic Datasets. We also benchmark our algorithms on
fve datasets that were used to test the recent NHQ algorithm in
[42]. These include one real-world dataset released in [42], and four
datasets that are publicly available, with labels generated randomly
via the method from [2]. These datasets are not as realistic because:

• For the latter four datasets, the flter for each point is fab-
ricated or selected at random. In real-world datasets there
could be correlation between the distribution of points and
the set of labels that an ANNS algorithm could exploit.

• Each point in the index efectively has only one label. While
it might appear at frst glance that each data point and query
in the NHQ datasets has 3 labels, we get a single label from
the cartesian product of entries from three categories each
with 3,2 and 2 distinct values. This gives a partitioning of
the dataset into 12 disjoint sets, and it is therefore trivial to
support fltered ANNS by creating separate indices over the
partitions, and searching the relevant partition based on the
query.

5.2 Algorithms and Parameters
We benchmark the algorithms described in this paper, as well as
some of algorithmic approaches surveyed in the paper. We include
a brief description of the parameters used and the source of the
code below:

(1) StitchedVamana [36]: The index corresponding to each flter
is built with parameters �small = 32 and �small = 100. The f-
nal pruning procedure is done with degree bound �stitched =
64. The pruning threshold parameter is set to � = 1.2. To gen-
erate the Recall/QPS curves, we use FilteredGreedySearch
where �, the search parameter controling the tradeof be-
tween accuray and speed, varies from 10 to 330 in increments
of 20. These parameters generated the Pareto-optimal re-
call/QPS curve over a parameter sweep with �small, �stitched ∈
{32, 64, 96} and �small between 50 and 100.

(2) FilteredVamana [36]: The index is built with � = 90 and
a degree bound of � = 96. This was the Pareto-optimal
choice for recall/QPS curve from a parameter sweep over
� ∈ {32, 64, 96} and � between 50 and 100. To generate the
search Recall/QPS curves, we use FilteredGreedySearch and
vary � from 10 to 650 in increments of 20.

(3) IVF Inline-Processing [1]: Since the Prep, Dann and Tur-
ing datasets had roughly 1-3 million points, and the recom-
mended number of clusters is

√
� ≈ 2000, we ran experiments

3410

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

103 104 105

20

40

60

80

100

Re
ca
ll@

10

100pc specificity

FilteredVamana StitchedVamana IVF Inline Processing IVF Post Processing HNSW Post Processing Vamana Post Processing

103 104 105
0
20
40
60
80
100

75pc specificity

103 104 105
0
20
40
60
80
100

50pc specificity

103 104 105
0
20
40
60
80
100

25pc specificity

103 104 105
0
20
40
60
80
100

1pc specificity

Figure 1: Turing dataset: QPS (x-axis) vs recall@10 for various algorithms with flters of 100, 75, 50, 25 and 1 percentile specifcity.

104 105
40

60

80

100

Re
ca
ll@

10

100pc specificity

FilteredVamana StitchedVamana IVF Inline Processing IVF Post Processing HNSW Post Processing Vamana Post Processing
104 105

20

40

60

80

100
75pc specificity

104 105

20

40

60

80

100
50pc specificity

104 105

20

40

60

80

100
25pc specificity

104 105

20

40

60

80

100
1pc specificity

Figure 2: Prep dataset: QPS (x-axis) vs recall@10 for various algorithms with flters of 100, 75, 50, 25 and 1 percentile specifcity.

103 104 105
40

60

80

100

Re
ca
ll

100pc specificity

FilteredVamana StitchedVamana IVF Inline Processing IVF Post Processing HNSW Post Processing Vamana Post Processing

103 104 105

20

40

60

80

100
75pc specificity

103 104 105

20

40

60

80

100
50pc specificity

103 104 105

20

40

60

80

100
25pc specificity

103 104 105

20

40

60

80

100
1pc specificity

Figure 3: DANN dataset: QPS (x-axis) vs recall@10 for various algorithms with flters of 100, 75, 50, 25 and 1 percentile specifcity.

with number of clusters in {1024, 2048, 4096, 8192}, and 4096
clusters had the best QPS/recall curve. The number of probes
for searching was varied between 20 to 280.

(4) IVF post-processing with FAISS IVF [29]: 4096 clusters, with
no. of probes varying from 10 to 350 in increments of 20.

(5) NHQ [4]: We use the build parameters recommended in [42].
To generate the Recall/QPS curves, we vary � between 10 to
310 in intervals of 20. We have been unable to reproduce the
results presented in [42]. See subsection A.1 for details.

(6) HNSW post-processing with FAISS HNSW [29]: built with
the parameter efConstruction set 150 and � set to 100, so
that the build times were similar to (1) and (2). Search was
done with � from 10 to 350 in steps of 20.

(7) Milvus [3]: Parameters are described in subsection A.2

5.3 Comparison With Existing Approaches
We plot the tradeof between recall and query throughput as mea-
sured in Queries per second (QPS) for the algorithms above. Index

build times are reported in Table 2. Due to extremely low QPS, all
Milvus and NHQ plots are left to the appendix, since it is difcult to
plot them alongside other algorithms. In addition, post-processing
approaches perform poorly across all evaluations in this scope, so
comparison with them is omitted unless there is something of note.

5.3.1 Filtered Qeries on Turing. Figure 1 shows the downside
of the post-processing and the inline-processing approaches for
fltered query on flters with extremely low specifcity. These ap-
proaches have to search a large number of the space in order to
fnd valid results. On the other hand, both FilteredVamana and
StitchedVamana achieve 90%+ recall as specifcity ranges from
10−1 to 10−6, while the other approaches fail to achieve any mean-
ingful accuracy, and have almost a 1000x lower QPS for the low
specifcity labels.

5.3.2 Filtered Qeries on PREP. For 90% recall, Figure 2 shows
that FilteredVamana performs 2.5x better than the next best prior
technique – IVF inline processing – and StitchedVamana performs

3411

Filtered − DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Alg./Data Dann Prep Turing Audio SIFT
FilteredVamana 159.8 66.6 103.4 1.3 44.
StitchedVamana 469.9 222.6 295.9 1.6 24.4
NHQ NA NA NA 1.1 24.4
Milvus HNSW 153.6 49.3 NA 5.5 72.0
Faiss HNSW 158.6 44.5 188.0 1.1 71.1

Table 2: Build times in seconds for Filtered Vamana, Stitched
Vamana, NHQ, Milvus HNSW and Faiss HNSW.

6x better. Both the algorithms in this paper are substantially better
than all prior techniques over a range of recall.

5.3.3 Filtered Qeries on DANN. For 90% recall, Figure 3 shows
that FilteredVamana performs around 3x better than IVF inline
processing, and StitchedVamana performs around 7.5x better.

Overall, the results establish that both algorithms presented in
this paper improve upon the recall to QPS ratio by an order of
magnitude or more over a wide range of parameters and datasets.

5.4 Comparing FilteredVamana and
StitchedVamana

5.4.1 Dataset Comparisons. StitchedVamana overlays per-label
sub-graphs then prunes the overlaid graph, while FilteredVamana
builds a single index where neighbors of a given vertex are de-
cided based on both geometric structure as well as common labels.
While both perform well on real-world datasets (Figure 3, Figure 2)
StitchedVamana consistently ofers better QPS for recall@90 by
a factor of 2. The total indexing time for FilteredVamana is faster
than StitchedVamana, across both datasets, as shown in Table 2.

5.4.2 Examining Performance on Uncorrelated Labels. Some ex-
isting ANNS solutions such as Milvus perform a pre-processing
step wherein they rely on the distribution of the labels amongst
the points for faster fltered search[41]. Such approaches will nat-
urally experience some degradation or loss in efciency if new
queries do not follow this distribution. We show that while both
FilteredVamana and StitchedVamana are robust to this possibility,
FilteredVamana is slightly better.

We conducted a simple experiment to demonstrate this. Consider
a dataset � = {�1, . . . , �� } and the associated label sets {��1 , . . . , ��� }.
Let D1 be the discrete distribution of the number of labels per point,
and let D2 be the discrete distribution corresponding to the pro-
portion of each label in the dataset. We then construct a new label

′ ′set {��1
, . . . , � } in the following manner: for each point � ∈ � ,��

sample the number of labels � must have from the distribution
�1. Then sample labels without replacement from D2 until we ob-

′tain |�� | labels. Label sets constructed in such a manner will have
less correlation with the actual points and clusters in the dataset,
and the labels themselves are assigned to each point somewhat
independently.

The results in Figure 4 show that for the Prep dataset, FilteredVamana
shows more robustness to the shufing of the labels. The recall/QPS
curve barely changes in comparison to StitchedVamana, which has
lower QPS after the shufe. However, for the DANN dataset, there
is minimal change for both approaches.

103 104 105

40

60

80

100

QPS

Re
ca
ll@

10

100pc specificity: prep dataset

FilteredVamana: Original StitchedVamana: Original
FilteredVamana: Shuffled Labels StitchedVamana: Shuffled Labels

104 105

40

60

80

100

QPS

1pc specificity: prep dataset

103 104 105

40

60

80

100

QPS

Re
ca
ll@

10

100pc specificity: dann dataset

FilteredVamana: Original StitchedVamana: Original
FilteredVamana: Shuffled Labels StitchedVamana: Shuffled Labels

104 105

40

60

80

100

QPS

1pc specificity: dann dataset

Figure 4: Shufled Experiment for Dann and Prep dataset:
QPS vs recall@10 for FilteredVamana and StitchedVamana with
flters of 100 and 1 percentile specifcity, but with labels shuf-
fed across datasets.

5.4.3 Performance on Unfiltered Qeries. In addition to being fairly
robust to the distribution of the labels, these algorithms also work
relatively well for unfltered search despite being designed for fl-
tered search. Figure 5 compares both the algorithms we propose for
Filtered search with Vamana, which is explicitly designed for unfl-
tered search. For both the Prep and DANN datasets, StitchedVamana
supports 95% recall@10 at around 0.9 times the query throughput
(QPS) of Vamana, while FilteredVamana is able to achieve the same
recall at around 0.8x the QPS of Vamana.

5.4.4 Streaming Indices. While on QPS and recall, StitchedVamana
outperforms FilteredVamana in most situations, FilteredVamana
has an advantage that is likely to make it more useful in practice:
dynamic index growth via point insertions. It is easier to ensure the
principle of flter subgraph navigability for FilteredVamana: the set
intersection requirement is inherently localized to the neighbors of
a point, and it is easy to account for along with the geometric re-
quirements in the dynamic setting. However, for StitchedVamana,
we risk breaking the structure of the subgraphs, from which much
of the performance advantage of StitchedVamana is gained over
FilteredVamana. We leave a more detailed evaluation of the dy-
namic setting deletions as a possible avenue for future work.

5.5 SSD based indices
It is often necessary to index and query datasets much larger than
the DRAM. The DiskANN [36, 39] system makes it is possible to
do so cost-efectively by using a hybrid DRAM-SSD indices that
require little DRAN. It internally uses the Vamana graph placed on

3412

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Number of
Diferent Regions

Pct. incr.
in clicks

Pct. incr.
in revenue

47 34.61% (0.03) 48.95% (0.009)

104.4 104.6 104.8 105 105.2 105.4

85

90

95

100

QPS

Re
ca
ll

Dataset: dann

FilteredVamana
StitchedVamana
Unfiltered Vamana

104.4 104.6 104.8 105 105.2 105.4

70

80

90

100

QPS
Re

ca
ll

Dataset: Prep

FilteredVamana
StitchedVamana
Unfiltered Vamana

Figure 5: QPS vs recall@10 for Unfltered Search on
FilteredVamana and StitchedVamana built on original labels.

2,500 3,000 3,500 4,000 4,500
70

75

80

85

90

95

QPS

Re
ca
ll@

10

1pc
100pc
75pc
50pc
25pc

0 50 100 150 200
40

60

80

100

Average number of of SSD IOs per query

Re
ca
ll

1pc
100pc
75pc
50pc
25pc

Figure 6: Performance of Filtered-DiskANN on a larger 28
million point DANN dataset on flters of various specifcity.

SSDs and a compressed representation of points in the DRAM to an-
swer queries accurately with latency. It is straight-forward to place
the graph algorithms described in this paper in the DiskANN frame-
work. In fact, several large scale deployments efectively use such a
strategy which we term Filtered − DiskANN. Figure 6 demonstrates
its performance on larger scale 28 million point Dann dataset. Fil-
tered search was with run 24 threads on a machine with Intel
E5-2673v3 CPUs and a local SSD with beamwidth 4 and search
parameter � varying between 40 and 100 in increments of 10.

6 ONLINE A/B TEST IN SPONSORED SEARCH
To measure the efcacy of FilteredVamana in an industrial setting,
we conducted online A/B tests on live trafc of a sponsored search
engine. Search engines generate most of their revenue via spon-
sored advertisements (ad). Each ad can be allowed to serve in one
or more geographical regions (countries) based on advertiser’s pref-
erence. Selecting relevant ads for a query is an important problem.
Here relevance has multiple connotations, including intent-match
between query and ads, targeting-match (e.g., match in location of
user and allowed targeted regions for ads).

The production system uses ANNS index to select ads from
a large ad corpus. We create one ANNS index with ads from 47
regions. Creating separate indices for each region is inefcient
and expensive as a large fraction of ads are targeted in more than
one region. A twin-tower encoder based on [26, 31] creates the
dense embeddings for ads optimizing for intent-match. The baseline
system uses post-processing to flter on target regions which helps
towards targeting-match. As described earlier, post-processing has
sub-optimal recall when strict latency budgets are to be met.

Table 3: FilteredVamana performance improvement over cur-
rent production system for ANNS retrieval

Region’s share
in Index

Pct. incr.
in clicks

Pct. incr.
in revenue

3-9% (10) 25.54% 28.61%
1-2% (10) 54.07% 46.67%
<1% (27) 70.67% 79.77%

Table 4: Performance improvement on three subgroups of re-
gions based on their along with subgroup-wise performance
improvement. Number in brackets indicate subgroup size.

We deployed FilteredVamana based indexes containing 47 flter
labels (target regions) using the same encoder. Table 3 shows the
relative improvement in clicks and revenue with respect to baseline
production system. Numbers in brackets indicate the P-Value. P-
Value below 5e-2 is considered signifcant in the production system.
The data was collected over a period of two weeks and aggregated
across all the target regions. The signifcant increase in clicks and
revenue demonstrates the efectiveness of FilteredVamana.

Since the baseline system uses post-fltration, there is bias to-
wards retrieving ads targeted in regions that have large index rep-
resentation. This leads to heavy fltration downstream for queries
targeting a region with smaller representation. FilteredVamana by
design should work well for these smaller represented regions. To
test this hypothesis, we further grouped target regions into 3 sub-
groups based on their index representation. Table 4 confrms that
smaller regions see larger gains with FilteredVamana they now get
a fair representation and all retrieval complies by targeting-match.

7 CONCLUSIONS AND FUTURE WORK
We have demonstrated that it is possible to build extremely ef-
cient graph-based ANNS indices to support hybrid ANNS queries.
The performance and accuracy improvements over baselines are
signifcant and consistent across many real-world data sets and a
range of values of flter specifcity. This has a large positive impact
on production systems. Support for flter sets larger than several
thousands and support for more complex SQL-like flter expres-
sions with the efciency of graph indices remain challenging open
problems. While ideas presented here may be relevant to the fullt
dynamic setting with deletes (as in [38]), detailed evaluation re-
mains future work.

ACKNOWLEDGMENTS
We thank Gopal Srinivasa for help with deploying the code. We
thank the Microsoft DLVS and Turing teams, specifcally Fei Teng,
Youngji Kim, Rachel Rong, Shi Zhang, Renan Santana, Mingqing Li,
for helpful discussions and access to the Turing dataset.

3413

Filtered − DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] 2022. GRANN ANNS Library. https://github.com/rakri/grann/commit/

bce52e83896bb5af27942e9f20f117fa27db6ad4.
[2] 2022. Milvus-docs: Conduct a Hybrid Search. https://github.com/milvus-

io/milvus-docs/blob/v2.1.x/site/en/userGuide/search/hybridsearch.md
[3] 2022. Milvus Repository (Commit: 8ac30397dd7eef84251bf1e9bdb988a8f3946b75).

https://github.com/milvus-io/milvus
[4] 2022. NHQ. https://github.com/AshenOn3/NHQ
[5] 2022. Vearch Doc Operation: Search. https://vearch.readthedocs.io/en/latest/

use_op/op_doc.html?highlight=flter#search
[6] 2022. Vespa use cases: Semi-structured navigation. https://docs.vespa.ai/en/

attributes.html
[7] 2022. Weaviate Documentation: Filters. https://weaviate.io/developers/weaviate/

current/graphql-references/flters.html
[8] 2022. Weaviate: Filtered Vector Search. https://weaviate.io/developers/weaviate/

current/architecture/prefltering.html
[9] Alexandr Andoni and Piotr Indyk. 2008. Near-optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. Commun. ACM 51, 1 (Jan.
2008), 117–122. https://doi.org/10.1145/1327452.1327494

[10] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In Proceedings
of the 28th International Conference on Neural Information Processing Systems -
Volume 1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1225–
1233. http://dl.acm.org/citation.cfm?id=2969239.2969376

[11] Alexandr Andoni and Ilya Razenshteyn. 2015. Optimal Data-Dependent Hashing
for Approximate Near Neighbors. In Proceedings of the Forty-seventh Annual ACM
Symposium on Theory of Computing (Portland, Oregon, USA) (STOC ’15). ACM,
New York, NY, USA, 793–801. https://doi.org/10.1145/2746539.2746553

[12] Sunil Arya and David M. Mount. 1993. Approximate Nearest Neighbor Queries
in Fixed Dimensions. In Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms (Austin, Texas, USA) (SODA ’93). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 271–280. http://dl.acm.org/
citation.cfm?id=313559.313768

[13] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020). http://www.sciencedirect.com/science/article/
pii/S0306437918303685

[14] A. Babenko and V. Lempitsky. 2012. The inverted multi-index. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition. 3069–3076.

[15] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the
Inverted Indices for Billion-Scale Approximate Nearest Neighbors. CoRR
abs/1802.02422 (2018). arXiv:1802.02422 http://arxiv.org/abs/1802.02422

[16] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517. https:
//doi.org/10.1145/361002.361007

[17] Erik Bernhardsson. 2018. Annoy: Approximate Nearest Neighbors in C++/Python.
https://pypi.org/project/annoy/ Python package version 1.13.0.

[18] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover Trees for
Nearest Neighbor. In Proceedings of the 23rd International Conference on Machine
Learning (Pittsburgh, Pennsylvania, USA) (ICML ’06). Association for Computing
Machinery, New York, NY, USA, 97–104. https://doi.org/10.1145/1143844.1143857

[19] James Briggs. 2022. The Missing WHERE Clause in Vector Search.
https://www.microsoft.com/en-us/research/blog/turing-bletchley-a-universal-
image-language-representation-model-by-microsoft/

[20] Kenneth L Clarkson. 1994. An algorithm for approximate closest-point queries. In
Proceedings of the tenth annual symposium on Computational geometry. 160–164.

[21] Wei Dong, Charikar Moses, and Kai Li. 2011. Efcient k-nearest neighbor graph
construction for generic similarity measures. In Proceedings of the 20th interna-
tional conference on World wide web. 577–586.

[22] Matthijs Douze, Jef Johnson, and Hervé Jegou. 2017. Faiss: A library for efcient
similarity search. [Online; accessed 29-March-2017].

[23] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series
Approximate Similarity Search. Proc. VLDB Endow. 13, 3 (2019), 403–420. https:
//doi.org/10.14778/3368289.3368303

[24] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graphs. PVLDB
12, 5 (2019), 461 – 474. https://doi.org/10.14778/3303753.3303754

[25] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product
Quantization. IEEE Trans. Pattern Anal. Mach. Intell. 36, 4 (2014), 744–755. https:
//doi.org/10.1109/TPAMI.2013.240

[26] Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing Zhang, and Xueqi Cheng.
2022. Semantic models for the frst-stage retrieval: A comprehensive review.
ACM Transactions on Information Systems (TOIS) 40, 4 (2022), 1–42.

[27] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing (Dallas, Texas, USA) (STOC ’98). ACM,

New York, NY, USA, 604–613. https://doi.org/10.1145/276698.276876
[28] Qing-Yuan Jiang and Wu-Jun Li. 2015. Scalable Graph Hashing with Feature

Transformation. In Proceedings of the 24th International Conference on Artifcial
Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 2248–2254.

[29] Jef Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[30] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2011. Hashing with graphs.
In ICML.

[31] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. Twinbert: Distilling knowledge to
twin-structured compressed bert models for large-scale retrieval. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
2645–2652.

[32] Yury A. Malkov and D. A. Yashunin. 2016. Efcient and robust approximate
nearest neighbor search using Hierarchical Navigable Small World graphs. CoRR
abs/1603.09320 (2016). arXiv:1603.09320 http://arxiv.org/abs/1603.09320

[33] M. Muja and D. G. Lowe. 2014. Scalable Nearest Neighbor Algorithms for High
Dimensional Data. IEEE Transactions on Pattern Analysis and Machine Intelligence
36, 11 (2014), 2227–2240.

[34] Yongjoo Park, Michael Cafarella, and Barzan Mozafari. 2015. Neighbor-Sensitive
Hashing. Proc. VLDB Endow. 9, 3 (Nov. 2015), 144–155. https://doi.org/10.14778/
2850583.2850589

[35] Aviad Rubinstein. 2018. Hardness of Approximate Nearest Neighbor Search.
CoRR abs/1803.00904 (2018). arXiv:1803.00904 http://arxiv.org/abs/1803.00904

[36] Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Gopal Srinivasa, Suhas Ja-
yaram Subramanya, Andrija Antonijevic, Dax Pryce, David Kaczynski, Shane
Williams, Siddarth Gollapudi, Varun Sivashankar, Neel Karia, Aditi Singh, Shikhar
Jaiswal, Neelam Mahapatro, Philip Adams, and Bryan Tower. 2023. DiskANN:
Scalable, Efcient and Feature-rich Approximate Nearest Neighbor Search.
https://github.com/Microsoft/DiskANN

[37] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze,
Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Kr-
ishnaswamy, Gopal Srinivasa, Suhas Jayaram Subramanya, and Jingdong Wang.
2022. Results of the NeurIPS’21 Challenge on Billion-Scale Approximate Nearest
Neighbor Search. https://doi.org/10.48550/ARXIV.2205.03763

[38] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Har-
sha Vardhan Simhadri. 2021. FreshDiskANN: A Fast and Accurate Graph-
Based ANN Index for Streaming Similarity Search. CoRR abs/2105.09613 (2021).
arXiv:2105.09613 https://arxiv.org/abs/2105.09613

[39] Suhas Jayaram Subramanya, Fnu Devvrit, Rohan Kadekodi, Ravishankar Krish-
nawamy, and Harsha Vardhan Simhadri. 2019. DiskANN: Fast Accurate Billion-
point Nearest Neighbor Search on a Single Node. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (Eds.). 13748–13758. http://papers.nips.cc/paper/9527-rand-
nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node

[40] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak,
Piotr Indyk, Samuel Madden, and Pradeep Dubey. 2013. Streaming Similarity
Search over One Billion Tweets Using Parallel Locality-Sensitive Hashing. Proc.
VLDB Endow. 6, 14 (Sept. 2013), 1930–1941. https://doi.org/10.14778/2556549.
2556574

[41] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[42] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2022. Navigable Proximity Graph-Driven Native Hybrid Queries
with Structured and Unstructured Constraints. arXiv preprint arXiv:2203.13601
(2022).

[43] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. Analyticdb-v: A hybrid analytical engine towards query
fusion for structured and unstructured data. Proceedings of the VLDB Endowment
13, 12 (2020), 3152–3165.

[44] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and
Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards Query
Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12 (2020),
3152–3165. https://doi.org/10.14778/3415478.3415541

[45] Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. 2022. HQANN:
Efcient and Robust Similarity Search for Hybrid Queries with Structured and
Unstructured Constraints. arXiv preprint arXiv:2207.07940 (2022).

[46] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu, and
Christian S. Jensen. 2020. PM-LSH: A Fast and Accurate LSH Framework for
High-Dimensional Approximate NN Search. Proc. VLDB Endow. 13, 5 (Jan. 2020),
643–655. https://doi.org/10.14778/3377369.3377374

3414

https://github.com/rakri/grann/commit/bce52e83896bb5af27942e9f20f117fa27db6ad4
https://github.com/rakri/grann/commit/bce52e83896bb5af27942e9f20f117fa27db6ad4
https://github.com/milvus-io/milvus-docs/blob/v2.1.x/site/en/userGuide/search/hybridsearch.md
https://github.com/milvus-io/milvus-docs/blob/v2.1.x/site/en/userGuide/search/hybridsearch.md
https://github.com/milvus-io/milvus
https://github.com/AshenOn3/NHQ
https://vearch.readthedocs.io/en/latest/use_op/op_doc.html?highlight=filter#search
https://vearch.readthedocs.io/en/latest/use_op/op_doc.html?highlight=filter#search
https://docs.vespa.ai/en/attributes.html
https://docs.vespa.ai/en/attributes.html
https://weaviate.io/developers/weaviate/current/graphql-references/filters.html
https://weaviate.io/developers/weaviate/current/graphql-references/filters.html
https://weaviate.io/developers/weaviate/current/architecture/prefiltering.html
https://weaviate.io/developers/weaviate/current/architecture/prefiltering.html
https://doi.org/10.1145/1327452.1327494
http://dl.acm.org/citation.cfm?id=2969239.2969376
https://doi.org/10.1145/2746539.2746553
http://dl.acm.org/citation.cfm?id=313559.313768
http://dl.acm.org/citation.cfm?id=313559.313768
http://www.sciencedirect.com/science/article/pii/S0306437918303685
http://www.sciencedirect.com/science/article/pii/S0306437918303685
https://arxiv.org/abs/1802.02422
http://arxiv.org/abs/1802.02422
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://pypi.org/project/annoy/
https://doi.org/10.1145/1143844.1143857
https://www.microsoft.com/en-us/research/blog/turing-bletchley-a-universal-image-language-representation-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-bletchley-a-universal-image-language-representation-model-by-microsoft/
https://doi.org/10.14778/3368289.3368303
https://doi.org/10.14778/3368289.3368303
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.1109/TPAMI.2013.240
https://doi.org/10.1109/TPAMI.2013.240
https://doi.org/10.1145/276698.276876
https://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
https://doi.org/10.14778/2850583.2850589
https://doi.org/10.14778/2850583.2850589
https://arxiv.org/abs/1803.00904
http://arxiv.org/abs/1803.00904
https://github.com/Microsoft/DiskANN
https://doi.org/10.48550/ARXIV.2205.03763
https://arxiv.org/abs/2105.09613
https://arxiv.org/abs/2105.09613
http://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node
http://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node
https://doi.org/10.14778/2556549.2556574
https://doi.org/10.14778/2556549.2556574
https://doi.org/10.14778/3415478.3415541
https://doi.org/10.14778/3377369.3377374

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

A APPENDIX

A.1 Comparison with NHQ KGraph
In [42], the authors propose two graph algorithms for fltered
ANNS: NHQ-NPG_NSW and NHQ-NPG_KGraph. In all their exper-
iments, the KGraph algorithm had a much better Recall/QPS profle
than the NSW algorithm. We thus benchmark FilteredVamana and
StitchedVamana against KGraph on 5 of the datasets used in [42].
We also note that while [45] apparently ofers an improvement
over [42], we have not found publicly available code to evaluate
their results.

Both FilteredVamana and StitchedVamana were run with the
same build parameters as described in subsection 5.2, while KGraph
was built with the default parameters as suggested in the NHQ
codebase [4]. The search parameter � for KGraph is varied from
50 to 130 in intervals of 10, and from 10 to 50 in intervals of 5 for
FilteredVamana and StitchedVamana.

As seen in Figure 7, the QPS of the Vamana algorithms is an
order of magnitude higher for 100 recall.

Further, we conduct a simple build normalized experiment. On
the NHQ datasets, we modifed the parameters of FilteredVamana
to ensure similar build time as NHQ-KGraph. We observed that
FilteredVamana has much higher QPS, as seen in Figure 8.

A.2 Comparison with Milvus Algorithms
Here, we present the results of our experiments using some of
the Milvus algorithms [3] with fltered search on several datasets,

including the real world datasets Prep and Dann, as well as the NHQ
datasets Audio, SIFT1M, Paper and Msong. We compare 4 Milvus
algorithms with the build and search parameters listed below. Refer
to the Milvus documentation [2] for further information about the
Milvus parameters.

(1) Milvus HNSW: The index was built with degree bound � =
64 (the maximum permissable value) and efConstruction =
250, while the search parameter ef was varied from 10 to 50
in intervals of 5.

(2) Milvus IVF FLAT: The index was built with number of clus-
ters nlist = 2000, while the search parameter nprobe was
varied from 10 to 450 in roughly intervals of 50.

(3) Milvus IVF SQ8: The index was built with number of clusters
nlist = 2000, number of factors of product quantization
� = 16 or 20 (depending on the dataset dimension) and
the number of bits in which each low dimensional vector is
stored nbits = 8), while the search parameter nprobe was
varied from 10 to 450 in roughly intervals of 50.

(4) Milvus IVF PQ: The index was built with number of clusters
nlist = 2000, while the search parameter nprobe was varied
from 10 to 450 in roughly intervals of 50.

The results of our Milvus experiments are seen in Figure 10,
Figure 9 and Figure 11. Even with 48 threads, we were unable to
get very high QPS for the Milvus algorithms. Since the QPS was
less than 300 across datasets for the Milvus algorithms (orders of
magnitude lower than the Vamana algorithms), we have omitted
the Vamana curves here to avoid scaling issues with the fgures.

3415

Filtered − DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

103 104 105
60

70

80

90

100

Re
ca
ll@

10

Audio

FilteredVamana StitchedVamana NHQ KGraph
103 104 105

60

70

80

90

100
SIFT1M

103 104 105
60

70

80

90

100

Paper

103 104 105
20

40

60

80

100
Msong

103 104 105
60

70

80

90

100
GIST

Figure 7: KGraph on NHQ datasets: QPS (x-axis) vs recall@10 for NHQ KGraph, FilteredVamana and StitchedVamana.

103 104 105 106
60

70

80

90

100

Re
ca
ll@

10

Audio

FilteredVamana NHQ KGraph
103 104 105 106

60

70

80

90

100
SIFT1M

103 104 105 106
60

70

80

90

100

Paper

103 104 105 106
20

40

60

80

100
Msong

103 104 105 106
60

70

80

90

100
GIST

Figure 8: KGraph and Filtered Vamana: QPS (x-axis) vs recall@10 on NHQ datasets (Build Normalized).

100 110 120 130 140

40

60

80

100

Re
ca
ll@

10

100pc specificity

HNSW IVF FLAT IVF SQ8 IVF PQ

100 110 120 130 140

40

60

80

100
75pc specificity

100 110 120 130 140

40

60

80

100
50pc specificity

100 110 120 130 140

40

60

80

100
25pc specificity

100 110 120 130 140

40

60

80

100
1pc specificity

Figure 9: Milvus algorithms on Prep dataset: QPS (x-axis) vs recall@10 with flters of 100, 75, 50, 25 and 1 percentile specifcity.

160 170 180 190 200 210 220
60

70

80

90

100

Re
ca
ll@

10

100pc specificity

HNSW IVF FLAT IVF SQ8 IVF PQ

160 170 180 190 200 210 220
60

70

80

90

100

75pc specificity

160 170 180 190 200 210 220
60

70

80

90

100

50pc specificity

160 170 180 190 200 210 220
60

70

80

90

100

25pc specificity

160 170 180 190 200 210 220
60

70

80

90

100

1pc specificity

Figure 10: Milvus algorithms on DANN dataset: QPS (x-axis) vs recall@10 with flters of 100, 75, 50, 25 and 1 percentile specifcity.

40 41 42 43 44 45

40

60

80

100

Re
ca
ll@

10

Audio

HNSW IVF FLAT IVF SQ8 IVF PQ

120 125 130 135 140 145 150

40

60

80

100
SIFT1M

220 230 240 250 260 270

40

60

80

100
Paper

80 81 82 83 84 85 86 87

40

60

80

100
Msong

Figure 11: QPS (x-axis) vs recall@10 for Milvus algorithms with 4 NHQ datasets.

3416

	Abstract
	1 Introduction
	1.1 Filtered ANNS
	1.2 Drawback of Existing Methods
	1.3 Our Results and Techniques

	2 Related Work
	3 The FilteredVamana Algorithm
	3.1 FilteredGreedySearch
	3.2 Index Construction

	4 The StitchedVamana Algorithm
	5 Evaluation
	5.1 Datasets
	5.2 Algorithms and Parameters
	5.3 Comparison With Existing Approaches
	5.4 Comparing FilteredVamana and StitchedVamana
	5.5 SSD based indices

	6 Online A/B Test in Sponsored Search
	7 Conclusions and Future Work
	Acknowledgments
	References
	A Appendix
	A.1 Comparison with NHQ KGraph
	A.2 Comparison with Milvus Algorithms

