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Abstract
Approximate nearest neighbor search (ANNS) is a funda-

mental building block in information retrieval with graph-
based indices being the current state-of-the-art [7] andwidely
used in the industry. Recent advances [51] in graph-based in-

dices have made it possible to index and search billion-point

datasets with high recall and millisecond-level latency on a

single commodity machine with an SSD.

However, existing graph algorithms for ANNS support

only static indices that cannot reflect real-time changes to

the corpus required by many key real-world scenarios (e.g.

index of sentences in documents, email or a news index).

To overcome this drawback, the current industry practice

for manifesting updates into such indices is to periodically
re-build these indices, which can be prohibitively expensive.

In this paper, we present the first graph-based ANNS in-

dex that reflects corpus updates into the index in real-time

without compromising on search performance. Using update
rules for this index, we design FreshDiskANN, a system that

can index over a billion points on a workstation with an SSD

and limited memory, and support thousands of concurrent

real-time inserts, deletes and searches per second each, while

retaining > 95% 5-recall@5. This represents a 5-10x reduc-

tion in the cost of maintaining freshness in indices when

compared to existing methods.

1 Introduction
In the Nearest Neighbor Search problem, we are given a

dataset 𝑃 of points along with a pairwise distance function.

The goal is to design a data structure that, given a target 𝑘

and a query point 𝑞, efficiently retrieves the 𝑘 closest neigh-

bors for 𝑞 in the dataset 𝑃 according to the given distance

function. This fundamental problem is well studied in the

research community [6, 9, 11, 16, 32, 35, 38, 43, 59] and is

a critical component for diverse applications in computer

vision [57], data mining [19], information retrieval [44], clas-

sification [26], and recommendation systems [21], to name

a few. As advances in deep learning have made embedding-

based approaches the state-of-the-art in these applications,

there has been renewed interest in the problem at scale. Sev-

eral open-source inverted-index based search engines now

support NNS [49, 50, 55], and new search engines based on
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NNS are being developed [45, 56]. In newer applications of

this problem, the dataset to be indexed and the queries are the

output of a deep learning model – objects such as sentences

or images are mapped so that semantically similar objects

are mapped to closer points [10, 23]. These points reside in

a space of dimension 𝑑 (typically 100-1000), and the distance

function is the Euclidean distance (ℓ2) or cosine similarity

(which is identical to ℓ2 when the data is normalized).

Since it is impossible to retrieve the exact nearest neigh-

bors without a cost linear in the size of the dataset in the

general case (see [32, 59]) due to a phenomenon known as

the curse of dimensionality [20], one aims to find the approx-
imate nearest neighbors (ANN) where the goal is to retrieve

𝑘 neighbors that are close to being optimal. The quality of

an ANN algorithm is judged by the trade-off it provides be-

tween accuracy and the hardware resources such as compute,

memory and I/O consumed for the search.

Even though this abstraction of ANN search is widely

studied, it does not capture many important real-world sce-

narios where user interactions with a system creates and

destroys data, and results in updates to 𝑃 (especially in the

literature on graph-based ANNS indices [58]). For example,

consider an enterprise-search scenario where the system in-

dexes sentences in documents generated by users across an

enterprise. Changes to sentences in a document would cor-

respond to a set of new points inserted and previous points

deleted. Another scenario is an email server where arrival

and deletion of emails correspond to insertion and deletion

of points into an ANNS index. ANNS systems for such ap-

plications would need to host indices containing trillions of

points with real-time updates that can reflect changes to the

corpus in user searches, ideally in real-time.

Motivated by such scenarios, we are interested in solv-

ing the fresh-ANNS problem, where the goal is to support

ANNS on a continually changing set of points. Formally, we

define the fresh-ANNS problem thus: given a time varying

dataset 𝑃 (with state 𝑃𝑡 at time 𝑡 ), the goal is to maintain

a dynamic index that computes the approximate nearest

neighbors for any query 𝑞 issued at time 𝑡 only on the active

dataset 𝑃𝑡 . Such a system must support three operations (a)

insert a new point, (b) delete an existing point, and (c) search
for the nearest neighbors given a query point. The overall

quality of a fresh-ANNS system is measured by:
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• The recall-latency tradeoff for search queries, and its

robustness over time as the dataset 𝑃 evolves.

• Throughput and latency of insertions and deletions.

• Overall hardware cost (CPU, RAM and SSD footprint)

to build and maintain such an index.

We are interested in quiescent consistency [22, 31], where

the results of search operations executed at any time 𝑡 are

consistent with some total ordering of all insert and delete

operations completed before 𝑡 .

We use the following notion of recall in this paper.
1

Definition 1.1 (𝑘-recall@𝑘). For a query vector 𝑞 over

dataset 𝑃 , suppose that (a)𝐺 ⊆ 𝑃 is the set of actual 𝑘 nearest

neighbors in 𝑃 , and (b) 𝑋 ⊆ 𝑃 is the output of a 𝑘-ANNS

query to an index. Then the 𝑘-recall@𝑘 for the index for

query 𝑞 is
|𝑋∩𝐺 |

𝑘
. Recall for a set of queries refers to the

average recall over all queries.

Goal.Motivated by real-world scenarios, we seek to build

the most cost-effective system for the fresh-ANNS problem

which can maintain a billion-point index using commodity

machines with 128GB RAM and a 2TB SSD
2
and support

thousands of real-time inserts and deletes per second, and

also thousands of searches per second with high accuracy

of 95+% 5-recall@5. Indeed, the current state-of-art system

for fresh-ANNS which can support comparable update and

search performance on a billion-point dataset is based on

the classical LSH algorithm [54], and requires a hundred ma-

chines of 32GB RAM (translating to around 25 machines of

our stated configuration). In this work, we seek to reduce this
deployment cost down to a single machine per billion points.
To handle trillion-point indices (as in web-search scenar-

ios), one can employ a simple distributed approach wherein

thousand machines host a billion points each – queries are

broadcast and results aggregates while updates are routed

to the appropriate nodes.

1.1 Shortcoming of existing algorithms
Of all the algorithms for static-ANNS, the ones most easily

capable of supporting streaming support are the ones based

on simple hashing algorithms such as LSH (locality sensitive

hashing). However, these algorithms suffer from either being

too memory intensive, needing to store hundreds of hash

functions in main memory, or become extremely slow for

query processing when the index is stored on secondary

storage. For example, the state-of-art system for streaming

similarity search (or fresh-ANNS), PLSH [54], is a parallel

and distributed LSH-based mechanism. While it offers com-

parable update throughput and search performance as our

system, it ends up needing 25X more machines due to the

high RAM consumption. A similar issue can be seen with

1
An index that provides good𝑘-recall@𝑘 can be used to satisfy other notions

of recall such as finding all neighbors within a certain radius.

2
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PM-LSH, another state-of-art system based on LSH [62],

where the memory footprint is a bit lower than PLSH (due

to the system using fewer LSH tables), but the query laten-

cies are an order of magnitude slower than our system and

PLSH. Alternately, disk-based LSH indices such as SRS [53]

can host a billion-point index on a single machine, but the

query latencies are extremely slow with the system fetch-

ing around 15% of the total index (running into GBs per

query) from the disk to provide good accuracy. Another re-

cent algorithm HD-Index [5] can serve a billion-point index

with just a few megabytes of RAM footprint, but it suffers

from search latencies of a few seconds to get accuracy of

around 30%. Moreover, the algorithm only handles insertions,

and simply performs a variant of blacklisting for deletions,

and hence would need periodic rebuilding. Finally, there are

other classes of ANNS algorithms such as kd-Tree [14], Cover

Trees [17] which support reasonably efficient update policies,

but these algorithms work well only when the data dimen-

sionality is moderately small (under 20); their performance

drops when the data dimensionality is 100 or more which is

typical for points generated by deep-learning models..

At the other end of the spectrum of ANNS indices are

graph-based indexing algorithms [28, 33, 34, 43, 51, 52]. Sev-
eral comparative studies [7, 25, 41, 58] of ANNS algorithms

have concluded that they significantly out-perform other

techniques in terms of search throughput on a range of real-

world static datasets. These algorithms are also widely used

in the industry at scale. However, all known graph indices
are static and do not support updates, especially delete re-
quests [18], possibly due to the fact that simple graph modi-

fication rules for insertions and deletions do not retain the

same graph quality over a stream of insertions and deletions.

As a result, the current practice in industry is to period-

ically re-build such indices from scratch [18] to manifest

recent changes to the underlying dataset. However, this is a

very expensive operation. It would take about 1.5-2 hours on

a dedicated high-end 48-core machine to build a good qual-

ity HNSW index [47] over 100M points. So we would need

three dedicated machines for constantly rebuilding indices to

maintain even six-hourly freshness guarantee over a billion-
point index. This is apart from the cost of actually serving

the indices, which would again be anywhere between one

for DRAM-SSD hybrid indices [51] to four for in-memory in-

dices [47] depending on the exact algorithm being deployed.

This paper aims to serve and update an index over a billion

points with real-time freshness using just one machine.

This represents a significant cost advantage for web and

enterprise-scale search platforms that need to serve indices

spanning trillions of points.

1.2 Our Contributions
In this paper, we present the FreshDiskANN system to solve

the fresh-ANNS problem for points in Euclidean space with

real-time freshness, and with 5-10x fewer machines than

2



the current state-of-the-art. As part of this, we make several

technical contributions:

1. We demonstrate how simple graph update rules result

in degradation of index quality over a stream of inser-

tions and deletions for popular graph-based algorithms

such as HNSW [43] and NSG [28].

2. We develop FreshVamana, the first graph-based index

that supports insertions and deletions, and empirically

demonstrate its stability over long streams of updates.

3. In order to enable scale, our system stores the bulk

of the graph-index on an SSD, with only the most re-

cent updates stored in memory. To support this, we

design a novel two-pass StreamingMerge algorithm

which makes merges the in-memory index with the

SSD-index in a very write-efficient manner (crucial

since burdening the SSD would lead to worse search

performance as well). Notably, the time and space com-
plexity of the merge procedure is proportional to the
change set, thereby making it possible to update large

billion-point indices on a machine with limited RAM

using an order of magnitude less compute and memory

than re-building the large index from scratch.

4. Using these ideas, we design the FreshDiskANN sys-

tem to consist of a long-term SSD-resident index over

the majority of the points, and a short-term in-memory
index to aggregate recent updates. Periodically, unbe-

knownst to the end user, FreshDiskANN consolidates

the short-term index into the long-term index using

our StreamingMerge process in the background to

bound the memory footprint of the short-term index,

and hence the overall system.

We conduct rigorous week-long experiments of this sys-

tem on an (almost) billion point subset of the popular SIFT1B [36]

dataset on a 48 core machine and 3.2TB SSD. We monitor

recall stability, end-user latency and throughput for updates

and searches. Some highlights are:

• The system uses less than 128GB of DRAM at all times.

• The StreamingMerge can merge a 10% change to the

index (5% inserts + 5% deletes) to a billion-scale index

in ∼10% of the time than it takes to rebuild the index.

• FreshDiskANN can support a steady-state through-

put of 1800 inserts and 1800 deletes per second while

retaining freshness and without backlogging back-

ground merge. The system can also support short

bursts of much higher change rate, up to even 40,000

inserts/second.

• The user latency of insertion and deletion is under

1ms, even when a background merge is underway.

• FreshDiskANN supports 1000 searches/sec with 95+%

5-recall@5 over the latest content of the index, with

mean search latency well under 20𝑚𝑠 .

2 Related Work
ANNS is a classical problem with a large body of research

work. Recent surveys and benchmarks [7, 25, 41] provide a

great overview and comparison of the state-of-the-art ANN

algorithms. This section focuses on the algorithms relevant

for vectors in high-dimensional spacewith Euclideanmetrics,

and examines their suitability for the fresh-ANNS setting we

consider in this paper. Beyond ANNS for points in Euclidean

spaces, there has been work for tailored inputs and other

notions of similarity such as those for time series data, e.g., [1,

19, 40]. The work [25] provides a comprehensive study of

such algorithms and their applicability.

Trees. Some of the early research on ANNS focused on

low-dimensional points (say, 𝑑 ≤ 20). For such points, spa-

tial partitioning ideas such as 𝑅∗-trees [13], kd-trees [14]
and Cover Trees [16] work well, but these typically do not

scale well for high-dimensional data owing to the curse of

dimensionality. There have been some recent advances in

maintaining several trees and combining them with new

ideas to develop good algorithms such as FLANN [46] and

Annoy [15]. However, they are built for static indices, and

moreover, even here, the graph-based algorithms outperform

them [7] on most datasets.

Hashing. In a breakthrough result, Indyk andMotwani [32]

show that a class of algorithms, known as locality sensitive
hashing can yield provably approximate solutions to the

ANNS problem with a polynomially-sized index and sub-

linear query time. Subsequent to this work, there has been

a plethora of different LSH-based algorithms [3, 32, 62], in-

cluding those which depend on the data [4], use spectral

methods [61], distributed LSH [54], etc. While the advan-

tage of the simpler data-independent hashing methods are

that updates are almost trivial, the indices are often entirely

resident in DRAM and hence do not scale very well. Im-

plementations which make use of auxiliary storage such as

SRS [53] typically have several orders of magnitude slower

query latencies compared to the graph-based algorithms.

Other hashing-based methods [37, 42, 48] learn an optimal

hash family by exploiting the neighborhood graph. Updates

to an index would require a full re-computation of the family

and hashes for every database point, making them impracti-

cal for fresh-ANNS.

Data quantization and Inverted indices based algo-

rithms have seen success w.r.t the goal of scaling to large

datasets with low memory footprint. These algorithms ef-

fectively reduce the dimensionality of the ANNS problem

by quantizing vectors into a compressed representation so

that they may be stored using smaller amount of DRAM.

Some choices of quantizers [38] can support GPU-accelerated
search on billion-scale datasets. Popular methods like IV-

FADC [35], OPQ [29], LOPQ [39], FAISS [38], IVFOADC+G+P [12]

and IMI [8] exploit the data distribution to produce low

3



memory-footprint indices with reasonable search perfor-

mance when querying for a large number of neighbors.

While most methods[9, 29, 35, 38] minimize the vector recon-
struction error | |𝑥 − 𝑥† | |2, where 𝑥 is a database vector and

𝑥† is its reconstruction from the quantized representation,

Anisotropic Vector Quantization [30] optimizes for error for

maximum inner-product search. Some of these systems such

as FAISS [38] support insert and delete operations on an ex-

isting index under reasonable conditions like stationary data

distributions. However, due to the irreversible loss due to

the compression/quantization, these methods fail to achieve

even moderate values of 1-recall@1, sometimes plateauing at

50% recall. These methods offer good guarantees on weaker

notions such as 1-recall@100, which is the likelihood that

the true nearest neighbor for a query appears in a list of 100

candidates output by the algorithm. Hence they are not the

methods of choice for high-recall high-throughput scenarios.

A recent work, ADBV [60], proposes a hybrid model for

supporting streaming inserts and deletes. New points are

inserted into an in-memory HNSW [43] index while the main

on-disk index utilises a new PQ-based indexing algorithm

called VGPQ. In order to mitigate the accuracy loss due to PQ,

VGPQ search performs a large number of distance compu-

tations and incurs high search latencies. As distributed sys-

tem over several powerful nodes, the model has low search

throughput even when no inserts and deletes are going on.

Hence, such a system cannot be used in high-throughput

scenarios.

A recent work, ADBV [60], proposes a hybrid SQL-vector

search model. New vectors are inserted into an in-memory

HNSW index while the main on-disk index spanning upto a

billion points is spread across multiple machines. The on-disk

index is an extension of IVF-clustering [35] which is far less

efficient for search compared to graph indices in terms of the

number of distance comparisons and I/O. As a result, their

aggregate search throughput on a billion point index spread

across disks on 16 machines is lesser than the throughput of

FreshDiskANN with one machine. Our work achieves this

by designing an on-SSD updatable graph index which is far

more efficient for search. Their insertion throughput on an

index spread across 70 machines is also much lesser than

that of FreshDiskANN on one machine.

3 Graph-based ANNS indices
In this section, we recap how most state-of-the-art graph-

based indices work for static-ANNS and also highlight the

issues they face with supporting deletions.

3.1 Notation
The primary data structure in graph indices is a directed

graph with vertices corresponding to points in 𝑃 , the dataset

that is to be indexed, and edges between them. With slight

notation overload, we denote the graph𝐺 = (𝑃, 𝐸) by letting
𝑃 also denote the vertex set. Given a node 𝑝 in this directed

Algorithm 1: GreedySearch(𝑠, x𝑞, 𝑘, 𝐿)
Data: Graph 𝐺 with start node 𝑠 , query x𝑞 , result size 𝑘 ,

search list size 𝐿 ≥ 𝑘
Result: Result set L containing 𝑘-approx NNs, and a setV

containing all the visited nodes

begin
initialize sets L ← {𝑠} and V ← ∅
while L \V ≠ ∅ do

let 𝑝∗ ← argmin𝑝∈L\V | |x𝑝 − x𝑞 | |
update L ← L ∪ 𝑁out (𝑝∗) and V ← V ∪ {𝑝∗}
if |L| > 𝐿 then

update L to retain closest 𝐿 points
to x𝑞

return [closest 𝑘 points from V; V]

graph, we let 𝑁out (𝑝) and 𝑁in (𝑝) denote the set of out- and
in-edges of 𝑝 . We denote the number of points by 𝑛 = |𝑃 |.
Finally, we let x𝑝 denote the database vector corresponding to
𝑝 , and let 𝑑 (𝑝, 𝑞) = | |x𝑝 − x𝑞 | | denote the ℓ2 distance between
two points 𝑝 and𝑞. We now describe how graph-based ANNS

indices are built and used for search.

3.2 Navigability and Index Search
Roughly speaking, navigability of a directed graph is the

property that ensures that the index can be queried for near-

est neighbors using a greedy search algorithm. The greedy

search algorithm traverses the graph starting at a designated

navigating or start node 𝑠 ∈ 𝑃 . The search iterates by greed-

ily walking from the current node 𝑢 to a node 𝑣 ∈ 𝑁out (𝑢)
that minimizes the distance to the query, and terminates

when it reaches a locally-optimal node, say 𝑝∗, that has the
property 𝑑 (𝑝∗, 𝑞) ≤ 𝑑 (𝑝, 𝑞) ∀𝑝 ∈ 𝑁out (𝑝∗). Greedy search

cannot improve distance to the query point by navigating

out of 𝑝∗ and returns it as the candidate nearest neighbor

for query 𝑞. Algorithm 1 describes a variant of this greedy

search algorithm that returns 𝑘 nearest neighbor candidates.

Index Build consists of constructing a navigable graph. The

graph is typically built to achieve two contrasting objectives

to minimize search complexity: (i) make the greedy search

algorithm applied to each base point 𝑝 ∈ 𝑃 in the vertex set

converge to 𝑝 in the fewest iterations (intuitively, this would

ensure that Algorithm 1 converges to 𝑝 when searching for

a query x𝑞 if 𝑝 is the nearest-neighbor for x𝑞), and (ii) have a
maximum out-degree of at most 𝑅 for all 𝑝 ∈ 𝑃 , a parameter

typically between 16 − 128.
Algorithms like NN-Descent [24] use gradient descent

techniques to determine 𝐺 . Others start with a specific type

of graph — an empty graph with no edges [43, 51] or an

approximate 𝑘−NN graph [27, 28] — and iteratively refine

𝐺 using the following two-step construction algorithm to

improve navigability:
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• Candidate Generation - For each base point x𝑝 , run
Algorithm 1 on 𝐺 to obtain V,L. V ∪ L contains

nodes visited and/or closest to 𝑝 in𝐺 during the search

in the current graph 𝐺 , making them good candidates

for adding to 𝑁out (𝑝) and 𝑁in (𝑝), thereby improving

the navigability to 𝑝 in the updated graph 𝐺 .

• Edge Pruning – When the out-degree of a node 𝑝

exceeds 𝑅, a pruning algorithm (like Algorithm 3 with

𝛼 set to 1) filters out similar kinds of (or redundant)

edges from the adjacency list to ensure |𝑁out (𝑝) | ≤ 𝑅.
Intuitively, the procedure sorts the neighbors of 𝑝 in

increasing order of distance from 𝑝 , and only retains

an edge (𝑝, 𝑝 ′′) if there is no edge (𝑝, 𝑝 ′) which has

been retained and 𝑝 ′ is closer to 𝑝 ′′ than 𝑝 (i.e., if

Algorithm 1 can reach 𝑝 ′′ from 𝑝 through 𝑝 ′, then we

can safely remove the edge (𝑝, 𝑝 ′′)).

3.3 Why are Deletions Hard?
While graph-indices offer state-of-the-art search performance,

all known algorithms apply for the static-ANNS problem. In

particular, deletions pose a big challenge for all these algo-

rithms – e.g., see this discussion [18] on HNSW supporting

delete requests by adding them to a blacklist and omitting

from search results. Arguably, this is due to the lack of meth-

ods which modify the navigable graphs while retaining the

original search quality. To further examine this phenomenon,

we considered three popular static-ANNS algorithms, namely

HNSW, NSG, and Vamana and tried the following natural

update policies when faced with insertions and deletions.

Insertion Policy. For insertion of a new point 𝑝 , we run

the candidate generation algorithm as used by the respective

algorithms and add the chosen in- and out-edges, and if

necessary, whenever the degree of any vertex exceeds the

budget, run the corresponding pruning procedure.

Delete Policy A.When a point 𝑝 is deleted, we simply re-

move all in- and out-edges incident to 𝑝 , without adding any

newer edges to compensate for potential loss of navigability.

Indeed, note that 𝑝 might have been on several navigating

paths to other points in the graph.

Delete Policy B. When a point 𝑝 is deleted, we remove all

in- and out-edges incident to 𝑝 , and add edges in the local

neighborhood of 𝑝 as follows: for any pair of directed edges

(𝑝in, 𝑝) and (𝑝, 𝑝out) in the graph, add the edge (𝑝in, 𝑝out)
in the updated graph. If the degree bound of any vertex is

violated, we run the pruning procedure associated with the

respective algorithm to control the degrees.

Figure 1 shows that both of these delete policies are not ef-

fective. In this experiment, we consider the SIFT1Mdataset [2]

comprising of a million points in 128 dimensions, and start

with the static-ANNS index for each of the algorithms. We

then compose an update stream by selecting 5% of the points

at random and deleting them, followed by presenting them

again as insertions. We then repeat this process over multiple
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Figure 1. Search recall over 20 cycles of deleting and re-

inserting 5% of SIFT1M dataset with statically built HNSW,

Vamana, and NSG indices with 𝐿𝑠 = 44, 20, 27, respectively.

cycles. A stable update policy should result in similar search

performance after each cycle since the index is over the same

dataset. However, all of the algorithms show a consistently

deteriorating trend in search performance (the recall drops

for a fixed candidate list size). The left plot in Figure 1 shows

the trend for HNSW and Vamana indices with Delete Policy

A, while the other considers the Delete Policy B for the NSG

index. Other combinations show similar trends but we omit

them due to lack of space.

4 The FreshVamana algorithm
Following the experiments in Section 3.3, we investigated the

reason that the recall drops over multiple cycles of updates

for deleting and re-inserting the same set of points. It turns

out that the graph becomes sparse (lesser average degree) as

we update it, and hence it becomes less navigable.We suspect

that this is due to the very aggressive pruning policies of

existing algorithms such as HNSW and NSG use to favor

highly sparse graphs.

Fortunately, the sparsity-vs-navigability issue has recently

been studied from a different perspective in [51], where the

authors seek to build denser graphs to ensure the navigating

paths converge much quicker. This in turn enables them to

store such graphs on the SSD and retrieve the neighborhood

information required by Algorithm 1 as required from the

SSD without incurring large SSD latencies.

𝜶 -RNGProperty.The crucial idea in the graphs constructed
in [51] is a more relaxed pruning procedure, which removes

an edge (𝑝, 𝑝 ′′) only if there is an edge (𝑝, 𝑝 ′) and 𝑝 ′ must be

significantly closer to 𝑝 ′′ than 𝑝 , i.e., 𝑑 (𝑝 ′, 𝑝 ′′) < 𝑑 (𝑝,𝑝′′)
𝛼

for

some 𝛼 > 1. Generating such a graph using 𝛼 > 1 intuitively

ensures that the distance to the query vector progressively

decreases geometrically in 𝛼 in Algorithm 1 since we remove

edges only if there is a detour edge which makes significant

progress towards the destination. Consequently, the graphs

become denser as 𝛼 increases.

We now present one of our crucial findings and contributions
– graph index update rules for insertions and deletions that
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Algorithm 2: Insert(x𝑝 , 𝑠, 𝐿, 𝛼, 𝑅)
Data: Graph 𝐺 (𝑃, 𝐸) with start node 𝑠 , new point to be

added with vector x𝑝 , distance threshold 𝛼 > 1, out

degree bound 𝑅, search list size 𝐿

Result: Graph 𝐺 ′(𝑃 ′, 𝐸 ′) where 𝑃 ′ = 𝑃 ∪ {𝑝}
begin

initialize set of expanded nodes V ← ∅
initialize candidate list L ← ∅
[L,V] ← GreedySearch(𝑠, 𝑝, 1, 𝐿)
set 𝑝’s out-neighbors to be
𝑁out (𝑝) ← RobustPrune(𝑝,V, 𝛼, 𝑅) (Algorithm 3)

foreach 𝑗 ∈ 𝑁out (𝑝) do
if |𝑁out ( 𝑗) ∪ {𝑝}| > 𝑅 then

𝑁out ( 𝑗) ←
RobustPrune( 𝑗, 𝑁out ( 𝑗) ∪ {𝑝}, 𝛼, 𝑅)

else
update 𝑁out ( 𝑗) ← 𝑁out ( 𝑗) ∪ {𝑝}

Algorithm 3: RobustPrune(𝑝,V, 𝛼, 𝑅)
Data: Graph 𝐺 , point 𝑝 ∈ 𝑃 , candidate setV , distance

threshold 𝛼 ≥ 1, degree bound 𝑅

Result: 𝐺 is modified by setting at most 𝑅 new

out-neighbors for 𝑝

begin
V ← (V ∪ 𝑁out (𝑝)) \ {𝑝}
𝑁out (𝑝) ← ∅
while V ≠ ∅ do

𝑝∗ ← argmin𝑝′∈V 𝑑 (𝑝, 𝑝 ′)
𝑁out (𝑝) ← 𝑁out (𝑝) ∪ {𝑝∗}
if |𝑁out (𝑝) | = 𝑅 then

break

for 𝑝 ′ ∈ V do
if 𝛼 · 𝑑 (𝑝∗, 𝑝 ′) ≤ 𝑑 (𝑝, 𝑝 ′) then

remove 𝑝 ′ from V

exploit the 𝛼-RNG property to ensure continued navigability of
the graph and retain stable recall over multiple modifications.

4.1 Insertion
A new point x𝑝 is inserted into a FreshVamana index us-

ing Algorithm 2. Intuitively, it queries the current index for

nearest neighbors of 𝑝 to obtain the visited set V , gener-

ates candidate out-neighbors for x𝑝 using pruning procedure
in Algorithm 3 on V , and adds bi-directed edges between

𝑝 and the pruned candidates. If out-degree of any vertex

exceeds 𝑅, Algorithm 3 can be used to prune it to 𝑅.

We use lock-based concurrency control to guard access to

𝑁out (𝑝) for a node 𝑝 , allowing for high insertion throughput

using multiple threads. Due to the fine granularity of locking

Algorithm 4: Delete(𝐿𝐷 , 𝑅, 𝛼)
Data: Graph 𝐺 (𝑃, 𝐸) with |𝑃 | = 𝑛, set of points to be

deleted 𝐿𝐷
Result: Graph on nodes 𝑃 ′ where 𝑃 ′ = 𝑃 \ 𝐿𝐷
begin

foreach 𝑝 ∈ 𝑃 \ 𝐿𝐷 s.t. 𝑁out (𝑝) ∩ 𝐿𝐷 ≠ ∅ do
D ← 𝑁out (𝑝) ∩ 𝐿𝐷
C ← 𝑁out (𝑝) \ D //initialize candidate
list

foreach 𝑣 ∈ D do
C ← C ∪ 𝑁out (𝑣)

C ← C \ D
𝑁out (𝑝) ← RobustPrune(𝑝, C, 𝛼, 𝑅)

and the short duration for which the locks are held, insertion

throughput scales near-linearly with threads (see Appendix).

4.2 Deletion
Our deletion algorithm Algorithm 4 is along the lines of

Delete Policy B in Section 3.3, with the crucial feature being

using the relaxed 𝛼-pruning algorithm to retain density of

the modified graph. Specifically, if 𝑝 is deleted, we add edges

(𝑝 ′, 𝑝 ′′) whenever (𝑝 ′, 𝑝) and (𝑝, 𝑝 ′′) are directed edges in

the current graph. In this process, if |𝑁out (𝑝 ′) | exceeds the
maximum out-degree 𝑅, we prune it using Algorithm 3, pre-

serving the 𝛼−RNG property.

However, since this operation involves editing the neigh-

borhood for all the in-neighbors of 𝑝 , it could result be ex-

pensive to do eagerly, i.e., processing deletes as they arrive.

FreshVamana employs a lazy deletion strategy – when a

point 𝑝 is deleted, we add 𝑝 to a DeleteList without chang-
ing the graph. DeleteList contains all the points that have
been deleted but are still present in the graph. At search

time, a modified Algorithm 1 uses nodes in the DeleteList
for navigation, but filters them out from the result set.

Delete Consolidation. After accumulating a non-trivial

number of deletions (say 1-10% of the the index size), we

batch-update the graph using Algorithm 4 to update the

neighborhoods of points with out-edges to these deleted

nodes. This operation is trivially parallelized using prefix

sums to consolidate the vertex list, and a parallel map opera-

tion to locally update the graph around the deleted nodes.

4.3 Recall stability of FreshVamana
We now demonstrate how using our insert and delete al-

gorithms (along with a choice of 𝛼 > 1) ensures that the

resulting index is stable over a long stream of updates.

We start with a statically built Vamana index and subject

it to multiple cycles of insertions and deletions using the

FreshVamana update rules described in Section 4. In each

cycle, we delete 5%, 10% and 50% of randomly chosen points

from the existing index, and re-insert the same points. We

then choose appropriate 𝐿𝑠 (the candidate list size during
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and Deep1M over multiple cycles of inserting and deleting
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updating the index. 𝐿𝑠 is chosen to obtain 5−𝑟𝑒𝑐𝑎𝑙𝑙@5≈ 95%

for Cycle 0 index.

search) for 95% 5-recall@5 and plot the search recall as the

index is updated. Since both the index contents and 𝐿𝑠 are

the same after each cycle, a good set of update rules would

keep the recall stable over these cycles. Figure 2 confirms

that is indeed the case, for the million point datasets and the

100 million point SIFT100M dataset. In all these experiments,

we use an identical set of parameters 𝐿, 𝛼, 𝑅 for the static

Vamana index we begin with as well as our FreshVamana
updates. Note that in some of these plots, there is a small

initial drop in recall; this is possibly due to the fact that the

static Vamana indices which we are starting from are built

by making two passes of refinement over the dataset and

hence might have slightly better quality than the streaming

FreshVamana algorithm.

Effect of 𝛼 . Finally we study the effect of 𝛼 on recall stability.

In Figure 3, we run the FreshVamana update rules for a

stream of deletions and insertions with different 𝛼 values,

and track how the recall changes as we perform our updates.

Note that recall is stable for all indices except for the one

with 𝛼 = 1, validating the importance of using 𝛼 > 1.

5 The FreshDiskANN system
While FreshVamana can support fast concurrent inserts,

deletes and searches with an in-memory index, it will not

scale to a billion-points per machine due to the large memory

footprint of storing the graph and data in RAM. The main

idea of overall system FreshDiskANN is to store a bulk of the

graph-index on an SSD, and store only the recent changes

in RAM.
3
To further reduce the memory footprint, we can

simply store compressed vector representation (using an idea

such as Product Quantization (PQ) [35]) of all the data vec-

tors. In fact, these ideas of using 𝛼-RNG graphs and storing

only compressed vectors formed the crux of the SSD-based

DiskANN static-ANNS index [51].

While this will reduce the memory footprint of our index,

and will also ensure reasonable search latencies, we cannot

immediately run our insert and delete Algorithms 2 and 4 on

to a SSD-resident FreshVamana index. Indeed, the insertion
of a new point x𝑝 has to update the neighborhoods of as

many as 𝑅 (the parameter controlling the degree bound)

many points to add edges to 𝑝 , which would trigger up to 𝑅

random writes to the SSD. For typical indices, 𝑅 would be as

large as 64 or 128, requiring as many random SSD writes per

insert. This would severely limit the insertion throughput

and also reduce the search throughput as a high write load

on the SSD also affects its read performance, which is critical

to search latency. Similarly, each delete operation, if applied

eagerly, would result in 𝑅𝑖𝑛 writes, where 𝑅𝑖𝑛 is the in-degree

of the deleted point, which can be very large.

The FreshDiskANN system circumvents these issues and

brings together the efficiency of a SSD-based system and

the interactive latency of an in-memory system by splitting
the index into two parts: (i) an in-memory FreshVamana
component comprising of recent updates, and (ii) a larger

SSD-resident index with longer term data.

3
As FreshVamana graphs are constructed using the 𝛼-RNG property (Sec-

tion 4), the number of steps that the greedy search algorithm takes to

converge to a locally optima is much smaller than other graph algorithms.

Hence the total search latency to fetch the graph neighborhoods from SSD

is small. So the 𝛼-RNG property helps us with both ensuring recall stability

as well as obtaining tolerable search latencies for SSD-based indices.
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5.1 Components
The overall system maintains two types of indices: one Long-
Term Index (aka LTI) and one or more instances of Temporary
Index (a.k.a TempIndex), along with a DeleteList.

• LTI is an SSD-resident index that supports search re-

quests. Its memory footprint is small, and consists only

of about 25-32 bytes of compressed representations

for each point. The associated graph index and full-

precision data is stored on the SSD like [51]. Insertions
and deletions do not affect the LTI in real-time.
• One or more TempIndex objects, which are instances

of the FreshVamana index stored entirely in DRAM

(both the data and the associated graph). By design,

they contain points that have been recently inserted

to 𝑃 . As a result, their memory footprint is a small

fraction of the entire index.

• DeleteList is the list of points that are present either
in the LTI or the TempIndex, but have been requested

for deletion by the user. This list is used to filter out

the deleted points returned in the search results.

RO- and RW-TempIndex: To aid with crash recovery,

FreshDiskANN uses two types of TempIndex. At all times,

FreshDiskANNwill maintain onemutable read-write TempIndex
(called RW-TempIndex) which can accept insert requests. We

periodically convert the RW-TempIndex into a read-only
in-memory index called RO-TempIndex, and also snapshot

it to persistent storage. We then create a new empty RW-

TempIndex to ingest new points.

5.2 FreshDiskANN API
The following three operations are supported:

• Insert(x𝑝 ) to insert a new point to the index is routed

to the sole instance of RW-TempIndex, which ingests

the point using in Algorithm 2.

• Delete(𝑝) request to delete an existing point 𝑝 is added
to the DeleteList.
• Search(x𝑞, 𝐾, 𝐿) to search for the 𝐾 nearest candidates

using a candidate list of size 𝐿 is served by querying

LTI, RW-TempIndex, and all instances of RO-TempIndex
with parameters 𝐾 and 𝐿, aggregating the results and

removing deleted entries from DeleteList.

5.3 The StreamingMerge Procedure
Finally, to complete the system design, we now present de-

tails of the StreamingMerge procedure. Whenever the total

memory footprint of the various RO-TempIndex exceeds a
pre-specified threshold, the system invokes a background

merge procedure serves to change the SSD-resident LTI to
reflect the inserts from the various instances of the RO-

TempIndex and also the deletes from the DeleteList. To this

end, for notational convenience, let dataset 𝑃 reflect the

points in the LTI, and 𝑁 denote points currently staged in

the different RO-TempIndex instances, and 𝐷 denote the

points marked for deletion in DeleteList. Then the desired

end-result of the StreamingMerge is an SSD-resident LTI
over the dataset (𝑃 ∪ 𝑁 ) \ 𝐷 . Following the successful com-

pletion of the merge process, the system clears out the RO-

TempIndex instances thereby keeping the total memory foot-

print under control. There are two important constraints

that the procedure must follow:

• Have a memory footprint proportional to size of the

changes |𝐷 | and |𝑁 |, and not the size of overall index

|𝑃 |. This is critical since the LTI can be much larger

than the memory of the machine.

• Use SSD I/Os efficiently so that searches can still be

served while a merge runs in the background, and so

that the merge itself can complete fast.

At a high level, StreamingMerge first runs Algorithm 4

to process the deletes from 𝐷 to obtain an intermediate-LTI
index over the points 𝑃\𝐷 . Then StreamingMerge runs Algo-
rithm 2 to insert each of the points in𝑁 into the intermediate-

LTI to obtain the resultant LTI. However, Algorithms 2 and 4

assume that both the LTI graph, as well as the full-precision
vectors all the datapoints are stored in memory. The crucial

challenges in StreamingMerge is to simulate these algorithm

invocations in a memory and SSD-efficient manner. This is

done in three phases outlined below.

1. Delete Phase: This phase works on the input LTI in-
stance and produces an intermediate-LTI by running Algo-

rithm 4 to process the deletions 𝐷 . To do this in a memory-

efficient manner, we load the points in LTI and their neigh-

borhoods in the LTI block-by-block from the SSD, and ex-

ecute Algorithm 4 for the nodes in the block using multi-

ple threads, and write the modified block back to SSD on

the intermediate-LTI. Furthermore, whenever Algorithm 4

or Algorithm 3 make any distance comparisons, we use the
compressed PQ vectors which are already stored on behalf of
the LTI to calculate the approximate distances. Note that this
idea of replacing any exact distance computations with ap-

proximate distances using the compressed vectors will be

used in the subsequent phases of the StreamingMerge also.

2. Insert Phase: This phase adds all the new points in 𝑁 to

the intermediate-LTI by trying to simulate Algorithm 2. As

a first step, we run the GreedySearch(𝑠, 𝑝, 1, 𝐿) on the SSD-

resident intermediate-LTI to get the setV of vertices visited

on the search path. Since the graph is stored on the SSD, any

requested neighborhood 𝑁out (𝑝 ′) by the search algorithm is

fetched from the SSD. The 𝛼-RNG property ensures that the

number of such neighborhood requests is small, and hence

the overall latency per point is bounded. We then run the

RobustPrune(𝑝,V, 𝛼, 𝑅) procedure to determine the candi-

date set of neighbors for 𝑝 . However, unlike Algorithm 2,

we do not immediately attempt to insert 𝑝 into 𝑁𝑜𝑢𝑡 (𝑝 ′) for
𝑝 ′ ∈ 𝑁𝑜𝑢𝑡 (𝑝) (the backward edges) since this could result

in an impractical number of random reads and writes to
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the SSD. Instead, we maintain an in-memory data-structure
∆(𝑝 ′) and add 𝑝 to that.

3. Patch Phase: After processing all the inserts, we patch
the ∆ data-structure into the output SSD-resident LTI index.
For this, we fetch all points 𝑝 in the intermediate-LTI block-
by-block from the SSD, add the relevant out-edges for each

node 𝑝 from Δ, and check the new degree |𝑁out (𝑝)∪∆(𝑝) | ex-
ceeds 𝑅. If so, prune the neighborhood by setting 𝑁𝑜𝑢𝑡 (𝑝) =
RobustPrune(𝑝, 𝑁𝑜𝑢𝑡 (𝑝) ∪ ∆(𝑝), ·, ·). Within each block read

from the SSD, this operation can be applied to each vertex

in a data-parallel manner. Subsequently, the updated block

is written back to SSD before loading a new block.

5.4 Complexity of StreamingMerge
I/O cost. The procedure does exactly two sequential passes

over the SSD-resident data structure in the Delete and Patch

Phases. Due to the 𝛼-RNG property of the intermediate-

LTI, the insertion algorithm performs a small number of

random 4KB reads per inserted point (about 100 disk reads, a

little more than the candidate list size parameter, which we

typically set to 75). Note that this number would be much

larger without the 𝛼-RNG property due to the possibility of

very long navigation paths.

Memory footprint: Throughout the StreamingMerge
process, ∆ data structure has size 𝑂 ( |𝑁 |𝑅) where 𝑅 is the

max-degree parameter of the index which is typically a small

constant. For example, if |𝑁 | = 30𝑀 and 𝑅 = 64, this foot-

print will be ∼7GB. In addition, for approximate distances,

recall that we keep a copy of PQ coordinates for all points

in the index (∼ 32𝐺𝐵 for a billion-point index).

Compute requirement: The complexity of the insert

phase and the patch phase is essentially linear in the size

of the new points 𝑁 to insert, since the insert phase simply

runs a search using Algorithm 1 for new point in 𝑁 and

updates the ∆ data structure, and the patch phase adds the

backward edges in a block-by-block manner.

The delete phase has a small fixed cost to scan 𝑁out (𝑝)
of each point 𝑝 ∈ 𝑃 and check if there any deleted points

and a larger variable cost, linear in the delete set size |𝐷 |
that we will bound by𝑂 ( |𝐷 |𝑅2) (in expectation over random

deletes). We detail this calculation in Appendix D.

5.5 Recall Stability of StreamingMerge
While we have already demonstrated that our update algo-

rithms Algorithms 2 and 4 ensure recall stability over long

streams of updates in Section 4.3, the actual form in which

these algorithms are implemented in our StreamingMerge
procedure is different, especially with the use of approximate

compressed vectors for distance computations. Indeed, as

we process more cycles of the StreamingMerge procedure,
we expect the initial graph to be replaced by a graph entirely

built based on approximate distances. Hence, we expect a
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Figure 4. Recall evolution over multiple cycles of

StreamingMerge in steady-state over (left) 80M point index

with 10% deletes and inserts and (right) 800M point index

with 30M insertions and deletions.

small drop in recall in the initial cycles, following which we

expect the recall to stabilize.

In the experiment in Figure 4, we start with a statically

built SSD-index built on 80M points randomly sampled from

the SIFT100M dataset. Then, in each cycle, we update the in-

dex to reflect 8M deletions and an equal number of insertions

from the spare pool of 20M points using StreamingMerge.
We run this experiment for a total of 40 cycles and trace recall

for the index after each cycle in Figure 4. Note that the index

stabilizes at a lower recall value compared to the static index

it starts out with, due to the use of approximate distances in

the StreamingMerge process. We observe recall stabilization

after ≈ 20 cycles of deletion and insertion of 10% of the index

size, at which point we expect most of the graph to be deter-

mined using approximate distances. Figure 4 (right) shows a

similar plot for the 800M point subset of SIFT1B. We have

thus empirically demonstrated that the FreshDiskANN index

has stable recall over a stream of updates at steady-state.

5.6 Crash Recovery
To support crash recover, all index update operations are

written into a redo-log. When a crash leads to the loss of the

single RW-TempIndex instance and the DeleteList, they are

rebuilt by replaying updates from the redo-log since the most

recent snapshot. Since RO-TempIndex and LTI instances are
read-only and periodically snapshotted to disk, they can be

simply reloaded from disk.

The frequency at which RW-TempIndex is snapshotted to a
RO-TempIndex depends on the intended recovery time. More

frequent snapshots lead to small reconstruction times for RW-

TempIndex but create many instances of RO-TempIndex all of
which have to be searched for each query. While searching

a few additional small in-memory indices is not the rate

limiting step for answering the query (searching the large

LTI is), creating too many could can lead to inefficient search.

A typical set up for a billion-point index would hold up to

30M points in the TempIndex between merges to the LTI.
Limiting each in-memory index to 5M points results in at
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most 6 instances TempIndex which can each be searched in

0.77ms, compared to 0.89ms needed to search a single 30M

size index, for 𝐿𝑠 = 100. On the flip side, reconstructing the

RW-TempIndex from the log using a 48 core machine takes

just about 2.5 minutes if it has size 5M points as opposed to

16 minutes for a size of 30M points.

6 Evaluation
We now study the FreshDiskANN system on billion-scale

datasets. We first describe the datasets and the machines

used for all experiments reported in this paper. We defer

presentation of recall-vs-latency curves for FreshVamana
and FreshDiskANN at 𝑘 = 1, 10, 100 to Appendix E.

6.1 Experimental Setup
Hardware. All experiments are run on one of two machines:

• (mem-mc) – a 64-vcore E64d_v4 Azure virtual machine

instance used to measure latencies and recall for in-

memory indices and the FreshVamana update rules.
• (ssd-mc) – a bare-metal server with 2x Xeon 8160

CPUs (48 cores, 96 threads) and a 3.2TB Samsung

PM1725a PCIe SSD to evaluate SSD-based indices and

the overall FreshDiskANN system.

Datasets. We evaluate our algorithms and systems on the

following widely-used public benchmark datasets.

• 1 million point image descriptor datasets SIFT1M[2],

GIST1M[2], and DEEP1M[10] in 128, 960 and 98 dimen-

sions respectively. They are all in float32. DEEP1M
is generated by convolutional neural networks.

• 1 billion point SIFT1B[2] image descriptors in 128 di-

mensions. It is the largest publicly available dataset

and is in uint8 precision (total data size 128GB). We

take a random 100M point subset of this dataset, rep-

resented in float32 format and call it the SIFT100M

dataset. We think that this smaller dataset captures

many realistic medium-scale scenarios for ANNS.

6.2 Billion-Scale FreshDiskANN Evaluation
We now study the complete FreshDiskANN system in a real-

istic scenario – maintaining a large scale billion-scale index

on the ssdmachine and serving thousands of inserts, deletes

and searches per second concurrently over multiple days.

For this experiment, we use the SIFT1B dataset, but limit the

size of our indices to around 800M points, so that we have a

sufficiently big spare pool of 200M points for insertions at

all times.

Parameters. We use 𝑅 = 64, 𝐿𝑐 = 75 and 𝛼 = 1.2 for all the

system. Recall that 𝑅 is the maximum degree of the graph,

𝐿𝑐 is the list size used during the candidate generation phase

of the algorithms (the parameter is used in Algorithm 2),

and 𝛼 is used in the pruning phase for ensuring the 𝛼-RNG

property. We also use 𝐵 = 32 bytes per data vector as the

compression target in PQ (each data vector is compressed

down to 32 bytes) for the SSD-based LTI indices. We also set

a limit𝑀 of 30M points on the total size of the TempIndex
so that the memory footprint of the TempIndex is bounded
by around 13GB (128 bytes per point for the vector data,

256 bytes per point for the neighborhood information with

𝑅 = 64, and some locks and other auxiliary data structures

accounting for another 100 bytes per point). Finally, we use a

maximum of𝑇 = 40 threads for the StreamingMerge process
which runs in the background.

Memory Footprint of FreshDiskANN Deployment. As
mentioned above, the memory footprint of the TempIndex
is around 13 GB for 30M points, and our index will at any

time store at most TempIndex instances totaling 60M points,

contributing a total of∼26GB. Thememory footprint index of

the LTI for 800M points is essentially only the space needed

to store the compressed vectors, which is around 24 GB.

The space requirement for the background StreamingMerge
process is again at most 50 GB (to store the compressed

vectors of the 800M points of the LTI index and around 2 ·𝑅 ·4
bytes per inserted point for forward and backward edges in

the Δ data structure), giving us a peak memory footprint of

around 100GB. Since our index operated with a steady-state

size of 800M points, this will roughly correspond to around

125GB for a billion-point index.

Our experiment can be divided into two phases: in the

first phase, starting with a statically built index on a random

100M subset of SIFT1B, we define our update stream to com-
prise only of inserts until the total number of points in the

index reaches around 800M points. We call this the ramp-up

phase. We then transition into what we call a steady-state

phase, where we update the index by deleting and inserting

points at the same rate. We delete existing points and insert

points from the spare pool of 200M points from the SIFT1B

dataset. We then continue this for several days and observe

the behaviour of the system in terms of latencies and recall.

How fast can we feed inserts into the system in these

phases, i.e., how many threads can we use to concurrently

insert into the FreshDiskANN system? If we use too many

threads for insertion, the TempIndex will reach the limit

𝑀 of 30M points before the StreamingMerge process has

completed. This would result in a backlog of inserts not

consolidate to LTI on SSD. With the benefit of some prior ex-

periments (of how long each cycle of the StreamingMerge
takes), we arrive at the number of threads which concur-

rently feed inserts into the FreshDiskANN system in each of

the phases and describe them below.

Stage 1: Ramp Up. In the first stage of the experiment,

we use the FreshDiskANN system to start with an index of

100M points randomly chosen from the SIFT1B dataset, and

constantly feed inserts. 3 threads were used for concurrently

inserting points from the spare pool of points from SIFT1B,

and 10 threads for issuing concurrent search requests from

the query set (with search parameters set to provide > 92%

10



0 1 2

·105

0

5

10

15

20

25

30

35

40

Time elapsed since beginning of experiment (seconds)

S
e
a
r
c
h
l
a
t
e
n
c
y
(
m
s
)

Figure 5. Search latencies for 𝐿𝑠 = 100 (always > 92% 5-

recall@5) over the course of ramping up an index to size

800M. Each point is mean latency over a 10000-query batch.

5-recall@5 at all times). We chose 3 threads for inserts so

that the merge process does not get backlogged, i.e., in the

time taken by StreamingMerge to merge the previous batch

of 30M inserts to LTI, the TempIndex does not accumulate

more than 30M points. The insertions continued until the

index grew to a size of 800M points, which took around 3

days. User-perceived mean search latency over the course of

the ramp-up fluctuates mostly between 5ms, when no merge

is happening, and 15ms when StreamingMerge is running
in the background and is presented in Figure 5.

Stage 2: Steady State. In the second stage of the experiment,

we maintain an index size of around 800M while supporting

a large number of equal inserts and deletes. Externally, 2

threads insert points into the index, 1 thread issues deletes,

and 10 threads concurrently search it. Since the deletes hap-

pen near instantly, we added a sleep timer between the delete

requests to ensure that the rate of deletions is similar to that

of insertions. Note that we reduced the number of insert

threads from 3 to 2 to slow down the insertion rate to accom-

modate the longer merge times compared to the ramp-up

experiment – the StreamingMerge process now processes

30M deletes in addition to 30M inserts. We present user-

perceived latencies for search and insertions in Figure 6.

Variations in Search Latency During StreamingMerge.
The middle plot in Figure 6 shows that the user-perceived

search latencies varies across based on the phase of the

StreamingMerge process in progress. Since the Insert phase
generates a significant number of random reads to the LTI
index which interfere with the random read requests issued

by the search threads, it results in slightly higher latencies.

On the other hand, while the typical latencies are smaller

during the Delete and Patch phases of StreamingMerge,
the latencies occasionally spike as high as 40ms, which we

think is likely due to head-of-line blocking by the large se-

quential read and write operations that copy the LTI index
to and from the main memory.

UpdateThroughput of System.While FreshDiskANN pro-

vides latencies of about 1ms for insert (Figure 6) and 0.1𝜇

for delete (since they are simply added to a DeleteList), in
practice they need to be throttled so that the in-memory

TempIndex do not grow too large before the ongoing back-

ground merge completes. As a result, the speed of the merge

operation dictates the update rates the system can sustain

over long periods of time. The threads allocation described

above helps us control the rate of external insert and delete

operations to what the StreamingMerge procedure can com-

plete before the TempIndex grows to 30M points.

To better understand the thread allocation, we record the

time taken for the StreamingMerge process to merge 30M

inserts into an index of size roughly 800M using 𝑇 = 40

threads. This takes around 8400s per cycle. To prevent the

TempIndex from growing too much while the merge proce-

dure is running, we throttle the inserts to around 3500 inserts

per second, so that the TempIndex accumulates under 30M

newly inserted points in one merge cycle. Since the insertion

latencies into in-memory FreshVamana indices is around

1ms (Figure 6), we allocated a total of 3 threads concurrently

feeding into the system. This ensured that the system never

backlogged throughout the ramp-up experiment.

In the steady-state experiment where the index maintains

a constant size of about 800M points and is updated in cycles

of equal sized insertions and deletions of 30M points, the

StreamingMerge procedure takes about 16277 seconds as it

has to process deletes in addition to the inserts. Hence, in

order to ensure that the system does not get backlogged, we

throttled the insertion throughput to around 1800 inserts per

second (and similarly for deletes). We achieved this by using

two threads for the insertions, and one thread (with a sleep

timer) for deletes to match the insertion throughput.

Trade-off of Varying Number of Merge Threads 𝑇 . If
we increase the merge threads 𝑇 , the merges happen faster,

which means we can ingest insertions and deletions into the

system at a faster throughput (without the TempIndex size
growing too large). On the other hand, if 𝑇 is large, the SSD-

bandwidth used by the StreamingMerge process increases
and this adversely affects the search throughput.We examine

the merge times with varying threads in Figure 7 (left) and

the search latencies when different numbers of threads are

performing background merge in Figure 8.

I/O Cost of Search. Running search with candidate list size

𝐿𝑠 = 100 gives us the desired steady-state recall in these

experiments. For this 𝐿𝑠 value, the average I/O complexity

of searches ends up being a mere 120 random 4KB reads per
query, and the total number of distance comparisons made

is around 8000, a really tiny fraction of the cost of doing brute
11
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Figure 6. Mean latency
4
measurements for the week-long steady-state experiment with an 800M FreshDiskANN index

processing concurrent inserts, deletes, and periodic background merge. (left) Search latency with 𝐿𝑠 = 100 over the entire

experiment; (middle) Search latency during one StreamingMerge run, zoomed in from the left plot; (right) 10
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Figure 7. (left) StreamingMerge runtime with different

number of threads to merge 30M inserts and 30M deletes into

a 800M SIFT index, and (right) Trend of search throughput

with increasing search threads.

force. In contrast, systems like SRS [53] end up scanning

≈ 15% of similar-sized datasets for achieving moderate recall.

I/O Cost of Updates. Inserts and deletes involve reading

and writing the entire LTI (≈ 320GB), twice over. Since our

system amortizes this cost over 30𝑀 inserts and deletes, the

SSD write cost per update operation is around 10𝐾𝐵, which

is very small for a high dimensional problem that requires

data structure and algorithm with random access patterns.

Scaling of Search Throughput. When the index is not

processing any inserts, deletes or merges, search throughput

scales almost linearly with the number of threads issuing

search queries (see Figure 7) (right), and with lesser latency

than in Figure 6. With 64 threads, the system can support

a throughput of ∼ 6500 queries/sec with a mean and 99%

latency of under 10 and 12ms respectively.

The Cost of StreamingMerge. The StreamingMerge pro-

cedure with 40 threads takes around 16000 seconds to merge

30M inserts and deletes into a 800M point LTI (a 7.5% change),

which is 8.5% of the ≈ 190000 seconds it would take to re-

build the index from scratch with a similar thread-count.

We conclude that the merge process is significantly more

4
Mean latency computed on a batch of 10k query points with one query

per search thread
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Figure 8. Trend of search latencies for 92% search recall,

zoomed in over one cycle of merging 30M inserts and deletes

into a 800M index, using 20 threads (red) and 40 threads (blue)

for merge (time-axes are normalized to align the phases).

cost-effective than periodically rebuilding the indices, which

is the current choice of system design for graph indices. Fur-

ther, StreamingMerge scales near linearly with the number

of threads (see Figure 7). While the Delete phase scales lin-

early, the Patch and Insert phases scale sub-linearly due to

intensive SSD I/O. Using fewer threads also results in more

predictable search latencies (esp. 99% latency) due to the

reduced SSD contention. This allows us to set the number

of threads StreamingMerge uses to meet the desired update

rate – 3600 updates/sec require 40 threads, but if we were

only required to support 1000 updates/sec, we could choose

to run StreamingMergewith 10 threads, and take advantage

of higher search throughput and predictable latencies.
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7 Conclusion
In this paper, we develop FreshVamana, the first graph-

based fresh-ANNS algorithm capable of reflecting updates

to an existing index using compute proportional to the size

of updates, while ensuring the index quality is similar to

one rebuilt from scratch on the updated dataset. Using up-

date rules from FreshVamana, we design a novel two-pass

StreamingMerge procedure which reflects these updates

into an SSD-resident index with minimal write amplification.

Using FreshVamana and StreamingMerge, we develop and

rigorously evaluate FreshDiskANN, a highly-scalable fresh-
ANNS system that can maintain a dynamic index of a billion

points on a commodity machine while concurrently support-

ing inserts, deletes, and search operations at millisecond-

scale latencies.
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Figure 9. Search 5-recall@5 after each cycle of 12K inser-

tions and 10K deletions to FreshVamana, ramping up from

100K to 1M points. Horizontal lines indicate recall of the

corresponding batch built Vamana index.
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Figure 10. Search recall FreshVamana on SIFT100M while

(left) ramping up from 1 point; and (right) ramping up start-

ing from 30M points, and steady-state after 45 cycles. Hor-

izontal lines indicate recall of the Vamana index with the

same build time.

𝐿 as expected
5
, note that the final index quality is at least as

good as indices built in one shot using Vamana, whose recall

for the same parameters is marked by horizontal lines.

B Index build times
In Table 1 we compare the build time of Vamana and Fresh-
Vamana for the same build parameters. The trade-off for

this speed-up comes in the form of increased search latency

for the same 𝑘-recall@𝑘 . In Figure 11, we show that using

FreshVamana to make updates to the index takes only a frac-

tion of the time to rebuild it from scratch using Vamana. We

show a similar comparison of DiskANN and FreshDiskANN
in Table 2. Despite using more than double the resources,

building a 800M index from scratch using DiskANN takes

more than 7x the time that FreshDiskANN takes to reflect

the same changes into the index.

C Effect of 𝛼 on recall stability
To determine the optimal value of 𝛼 , we perform the Fresh-
Vamana steady-state experiments with different values of

𝛼 . In the plots in Figure 3, we use the same value of 𝛼 for

5
This is true of any index – a larger index over data from the same distribu-

tion will provide lower recall with the search parameter/complexity.

Table 1. Index build times for Vamana and FreshVamana on
mem with 𝑅 = 64, 𝐿𝑐 = 75, 𝛼 = 1.2

Dataset Vamana FreshVamana Speedup

SIFT1M 32.3s 21.8 s 1.48x

DEEP1M 26.9s 17.7 s 1.52x

GIST1M 417.2s 228.1 s 1.83x

SIFT100M 7187.1s 4672.1s 1.54x
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Figure 11. Time taken to merge delete and re-insert of 5%,

10%, and 50% of index size into a FreshVamana index, ex-

pressed relative to index rebuild time for Vamana.

Table 2. Full build time with DiskANN (96 threads) versus

FreshDiskANN (40 threads) to update a 800M index with

30M inserts and deletes

Dataset DiskANN(sec) StreamingMerge (sec)

SIFT800M 83140 s 15832 s

building the intial Vamana index and for updating it. Other

build and update parameters are same for each plot (R =

64, L = 75). We compare the evolution of search recall in

the 95% range and average degree with different 𝛼 . Finally

we compare search recall versus latency for static indices

built with different 𝛼 to choose the best candidate. For all

𝛼 > 1, average degree increases over the course of the ex-

periments and recall stabilises around the initial value. For

static indices, latency at the same recall value improves from

1 to 1.2 after which further increasing 𝛼 shows now notice-

able improvement as evidenced by recall-vs-latency plots for

Vamana indices in Figure 13. Since we want to minimise the

memory footprint of our index, we choose the 𝛼 value with

best search performance and lowest average degree, which

in this case is 1.2.
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Figure 13. Recall vs latency curves for Vamana indices on

SIFT1M and Deep1M built with different values of 𝛼

D Amortized Cost of Delete Phase in
StreamingMerge

Any non-trivial computation in the delete phase happens

only for undeleted points 𝑝 ∈ 𝑃 which have neighbors from

the delete list. For each such point 𝑝 , Algorithm 4 applies

the pruning process on the candidate list consisting of the

undeleted neighbors of 𝑝 and the undeleted neighbors of the

deleted neighbors of 𝑝 to select the best 𝑅 points from to its

updated neighborhood. In order to perform an average-case

analysis, let us assume that the delete set 𝐷 is a randomly

chosen set from the active points 𝑃 , and suppose |𝑃 | = 𝑁 and

|𝐷 |
𝑁

= 𝛽 . The expected size of the candidate list will be 𝑅(1 −
𝛽) + 𝑅2𝛽 (1 − 𝛽). Here the first term accounts for undeleted

neighbors of 𝑝 and the second term accounts for undeleted

neighbors of deleted neighbors of 𝑝 . The expected number

of undeleted points in the index is 𝑁 (1 − 𝛽). Therefore the
total number of expected operations in the delete phase will

be proportional to 𝑁𝑅(1 − 𝛽)2 (1 + 𝑅𝛽). This assumes that

the complexity of the prune procedure is linear in the size

of the candidate list which we validated empirically below.

For large values of 𝛽 , the (1 − 𝛽)2 term is diminishingly

small and the deletion phase is quick. For small values of 𝛽

(around 5%−10%) and typical values of 𝑅 ∈ [64, 128], 𝑅𝛽 ≫ 1

and hence it dominates the value of the expression. Since

𝑁𝛽 = |𝐷 |, the time complexity becomes directly proportional

to the size of the delete list.

We demonstrate the linear time complexity of Algorithm 3

in Figure 14. We delete a small fraction(10%) of SIFT1M

Vamana index and record the time taken by Algorithm 3

as the candidate list size increases.
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Figure 14. Trend of Algorithm 3 run time with increasing

size of candidate list when 10% of the SIFT1M index is being

deleted.

E 𝑘-recall@𝑘 for various k values
E.1 FreshVamana
E.1.1 Search Latency vs Recall. In Figures 15 to 17, we

compare the search latencies for Vamana and build time-

normalized FreshVamana (build parameters adjusted tomatch

the build time of Vamana) for various 𝑘-recall@𝑘 . For 1-

recall@1 and 10-recall@10, we compare latencies for 95%,

98% and 99% recall. For 100-recall@100, we compare over

98% and 99% recall because the lowest search list parameter

𝐿 value gives 98% recall.

E.1.2 Recall stability of FreshVamana. In Figure 18, we
demonstrate 𝑘-recall@𝑘 stability of FreshVamana for com-

monly used k values. We show the post-insertion recall

trends for 1-recall@1, 10-recall@10 and 100-recall@100. For

𝑘 = 1, we show how the 95% and 99.9% recall are stable.

For 𝑘 = 10, we show that 95% and 99% recall are stable. For

𝑘 = 100, the lowest valid search list parameter 𝐿 value is 100

and this gives 98% recall. So we show the stability of 98%

and 99% recall.

E.2 FreshDiskANN
E.2.1 Search latencies over one merge cycle. In ????,
we present the evolution of mean search latency for 100-

recall@100 and 10-recall@10 over the course of one merge

cycle in a 800M FreshDiskANN steady-state experiment.
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Figure 15. Query latency for Vamana and build-time nor-

malized FreshVamana 1-recall@1 at 95%, 98%, and 99%.
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Figure 16. Query latency for Vamana and build-time nor-

malized FreshVamana 10-recall@10 at 95%, 98%, and 99%.
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Figure 17. Query latency for Vamana and build-time nor-

malized FreshVamana 100-recall@100 at 98%, and 99%.

F Search latency of FreshDiskANN
In Figure 21, we observe the effect of number of search

threads on mean search latencies for 800M index when no

merge is going on.
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Figure 18. Post-insertion search 𝑘-recall@𝑘 for 𝑘 =

1, 10, 100 of FreshVamana index over 50 cycles of deletion
and re-insertion of 5%, 10% and 50% (rows 1, 2 and 3 re-

spectively) of SIFT1M index with varying search list size

parameter 𝐿.

G Concurrency during StreamingMerge
In this section, we present our observations on search latency

duringmerge through in-depth experiments on FreshDiskANN
merge with varying thread allocations. All experiments are

30M insertions and deletions into a 800M FreshDiskANN
index.

G.1 Search threads fixed - varying merge threads
We run the merge on SIFT800M index with different thread

allocations to understand the effect of merge on search la-

tency. In Figure 8, we plot a smoothed curve of mean search

latencies when merge uses 20 and 40 threads. Merge with 40

threads takes approximately half the time as that with 20, so

there are two x axes adjusted to roughly align their Delete,

Insert and Patch phases. As evident from the figure, search
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Figure 21. Trend of mean latencies for 95% search recall on

a 800M SIFT index with different number of threads. Each

point is calculated over a search batch of 10000 queries
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Figure 22. Trend of mean search latencies for 92% search

recall, zoomed in over one cycle of inserting and deleting 30M

points concurrently into a 800M SIFT index, using different

number of threads for search. Each point is the mean latency

over a search batch of 10000 queries.
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Figure 19. Trend of mean search latencies for 95% search

100-recall@100, zoomed in over one cycle of inserting and

deleting 30M points concurrently into a 800M SIFT index,

using different 10 for search. Each point is the mean latency

over a search batch of 10000 queries.

0 0.2 0.4 0.6 0.8 1 1.2

·104

5

10

15

20

25

30

Delete Insert

Patch

Time elapsed(sec)

S
e
a
r
c
h
l
a
t
e
n
c
y
(
m
s
)

Figure 20. Trend of mean search latencies for 95% search

10-recall@10, zoomed in over one cycle of inserting and

deleting 30M points concurrently into a 800M SIFT index,

using different 10 for search. Each point is the mean latency

over a search batch of 10000 queries.

latencies with 40 thread merge are consistently higher in the

Delete and Insert phases of merge.

G.2 Merge threads fixed - varying search threads
We run the merge on SIFT800M index with different thread

allocations to understand the effect of number of search

threads used during merge on search latency. We increase

the number of search threads while fixing 40 threads for

merge, and observe how the search latency trend evolves in

over one merge cycle Figure 22.
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