
Relaxed Operator Fusion for In-Memory Databases:
Making Compilation, Vectorization, and Prefetching

Work Together At Last

Prashanth Menon Todd C. Mowry Andrew Pavlo
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
pmenon@cs.cmu.edu tcm@cs.cmu.edu pavlo@cs.cmu.edu

ABSTRACT
In-memory database management systems (DBMSs) are a key com-
ponent of modern on-line analytic processing (OLAP) applications,
since they provide low-latency access to large volumes of data. Be-
cause disk accesses are no longer the principle bottleneck in such
systems, the focus in designing query execution engines has shifted
to optimizing CPU performance. Recent systems have revived an
older technique of using just-in-time (JIT) compilation to execute
queries as native code instead of interpreting a plan. The state-of-
the-art in query compilation is to fuse operators together in a query
plan to minimize materialization overhead by passing tuples effi-
ciently between operators. Our empirical analysis shows, however,
that more tactful materialization yields better performance.

We present a query processing model called “relaxed operator
fusion” that allows the DBMS to introduce staging points in the
query plan where intermediate results are temporarily materialized.
This allows the DBMS to take advantage of inter-tuple parallelism
inherent in the plan using a combination of prefetching and SIMD
vectorization to support faster query execution on data sets that
exceed the size of CPU-level caches. Our evaluation shows that
our approach reduces the execution time of OLAP queries by up to
2.2⇥ and achieves up to 1.8⇥ better performance compared to other
in-memory DBMSs.

PVLDB Reference Format:
Prashanth Menon, Todd C. Mowry, Andrew Pavlo. Relaxed Operator Fu-
sion for In-Memory Databases: Making Compilation, Vectorization, and
Prefetching Work Together At Last. PVLDB, 11(1): �1�-�13, 2017.
DOI: https://doi.org/10.14778/3136610.3136611

1. INTRODUCTION
As DRAM becomes increasingly cost-effective, it enables greater

numbers of DBMS applications to become memory-resident. Given
this trend, we anticipate that most future OLAP applications will use
in-memory DBMSs. Because in-memory DBMSs are designed such
that the bulk of the working dataset fits in memory, disk accesses
are no longer the main bottleneck in query execution. Instead, cache
misses to memory and computational throughput are much more
important factors in the performance of in-memory DBMSs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 1
Copyright 2017 VLDB Endowment 2150-8097/17/09... $ 10.00.
DOI: https://doi.org/10.14778/3136610.3136611

Modern CPUs support instructions that help on both of these
fronts: (1) software prefetch instructions can move blocks of data
from memory into the CPU caches before they are needed, thereby
hiding the latency of expensive cache misses [14, 22]; and (2)
SIMD instructions can exploit vector-style data parallelism to boost
computational throughput [33]. Although both software prefetching
and SIMD have been studied in the past (in isolation) for specific
DBMS operators, our focus in this paper is how to successfully
combine both techniques across entire query plans.

A key challenge for both software prefetching and SIMD vec-
torization is that neither technique works well in a tuple-at-a-time
model (i.e., Volcano [19]). In order to successfully hide cache miss
latency with prefetching, the software must prefetch a number of
tuples ahead (to overlap the cache miss with the processing of other
tuples). To bundle together SIMD-width vectors for SIMD process-
ing, the software needs to extract data parallelism across chunks
of tuples at a time. While both software prefetching and SIMD
vectorization require the ability to look across multiple tuples at a
time, there are key differences and subtleties in how they interact
with each other. For example, SIMD vector instructions require that
data be packed together contiguously, whereas prefetching needs
to generate a set of addresses (to be prefetched) ahead of time, but
it does not require either those addresses (or the data blocks that
they point to) to be arranged contiguously. In addition, since the
relative sparsity of the data that is being processed tends to increase
in the higher levels of a query plan tree, this also changes relative
trade-offs between software prefetching and SIMD vectorization.

Until now, no DBMS has taken a holistic view on how to use all
of the above techniques effectively together throughout the entire
query plan. Most systems that support some form of query com-
pilation do not use the vectorized query processing model or only
compile a portion of the query plan (e.g., predicates). Likewise, no
system employs data-level parallelism optimizations (i.e., SIMD) or
explicit prefetching. Part of this reason is that the hardware advance-
ments needed to support SIMD (e.g., wide registers) and software
prefetching were introduced in the last five years.

Given this, our focus is on getting prefetching and vectorization
to work together efficiently using a new processing model called re-
laxed operator fusion (ROF). ROF enables the DBMS to structure
the generated query code such that portions are combined together to
take advantage of SIMD vectorization and software-level prefetch-
ing. To evaluate our approach, we implemented our ROF model in
the Peloton in-memory DBMS [5] and measured its efficacy with
the TPC-H benchmark [40]. Our experimental results show that
ROF improves the performance of the DBMS for OLAP queries by
up to 2.2⇥. We also compare two other in-memory OLAP systems
(HyPer [20], Actian Vector [1]) and show that ROF’s combination

1

SELECT SUM(...) AS revenue
FROM LineItem JOIN Part ON l_partkey = p_partkey
WHERE (CLAUSE1) OR (CLAUSE2) OR (CLAUSE3)

Figure 1: TPC-H Q19 – An abbreviated version of TPC-H’s Q19. The three
clauses are a sequence of conjunctive predicates on attributes in both the
LineItem and Part tables.

of query compilation with SIMD and prefetching achieves up to
1.8⇥ the performance than the two techniques by themselves.

The remainder of this paper is structured as follows. Sect. 2
begins with a discussion of query plan compilation, vectorization,
and prefetching on modern CPU architectures. Next, in Sect. 4, we
describe our relaxed operator fusion technique for efficient query
execution. In Sect. 5, we present our experimental evaluation. Lastly,
we conclude with related work in Sect. 6.

2. BACKGROUND
We first provide an overview of the fundamental concepts of query

compilation, vectorized query processing, and prefetching. It is only
through an intelligent orchestration of these methods that make it
possible to use them together. To aid in our discussion, we use the
Q19 query from the TPC-H benchmark [40]. A simplified version
of this query’s SQL is shown in Fig. 1. We omit the query’s WHERE
clauses for simplicity; they are not important for our exposition.

2.1 Query Compilation
There are multiple ways to compile queries in a DBMS. One

method is to generate C/C++ code that is then compiled to native
code using an external compiler (e.g., gcc). Another method is to
generate an intermediate representation (IR) that is compiled into
machine code by a runtime engine (e.g., LLVM). Lastly, staging-based
approaches exist wherein a query engine is partially evaluated to
automatically generate specialized C/C++ code that is compiled
using an external compiler [21].

In addition to the variations in how the DBMS compiles a query
into native code, there are several techniques for organizing this
code [30, 41, 37, 31]. One naïve way is to create a separate routine
per operator. Operators then invoke the routines of their children op-
erators to pull up the next data (e.g., tuples) to process. Although this
is faster than interpretation, the CPU can still incur expensive branch
mispredictions because the code jumps between routines [30].

A better approach (used in HyPer [30] and MemSQL [32]) is to
employ a push-based model that reduces the number of function
calls and streamlines execution. To do this, the DBMS’s optimizer
first identifies the pipeline breakers in the query’s plan. A pipeline
breaker is any operator that explicitly spills any or all tuples out of
CPU registers into memory. In a push-based model, child operators
produce and push tuples to their parents, requesting them to consume
the tuples. A tuple’s attributes are loaded into CPU registers and
flow along the pipeline’s operators from the start of one breaker to
the start of the next breaker, at which point it must be materialized.
Any operator between two pipeline breakers operate on tuples whose
contents are in CPU registers, thus improving data locality.

To illustrate this approach, consider the plan shown in Fig. 2a
for the TPC-H query in Fig. 1 annotated with its three pipelines
P1, P2, and P3. In this work, we use ⌦ to denote consumption
of the plan’s output. The DBMS’s optimizer generates one loop
for every pipeline. Each loop iteration begins by reading a tuple
from either a base table or an intermediate data structure (e.g., a
hash-table used for a join). The routine then processes the tuple
through all operators in the pipeline, storing a (potentially modified)
version of the tuple into the next materialized state for use in the
next pipeline. Combining the execution of multiple operators within

⌦

�

�2

1

Part �1

LineItem

P1 P2

P3

(a) Query Plan with
Pipelines

⌦

�

�2

1

Part ⌅1

�1

LineItem

P1 P2

P3

(b) Query Plan using ROF

P1: HashTable ht; // Join Hash -Table

// Scan Part table , P
for (auto &part : P.GetTuples ()) {

ht.Insert(part);
}

P2: // Running Aggregate
Aggregator agg;

// Scan LineItem table , L
for (auto &lineitem : L.GetTuples ()) {

if (PassesPredicate1(lineitem)) {
auto &part = ht.Probe(lineitem);
if (PassesPredicate2(lineitem , part)) {

agg.Aggregate(lineitem , part);
} } }

P3: return agg.GetRevenue ();

(c) Generated Code

Figure 2: Query Compilation Example – The plan for TPC-H Q19 (Fig. 2a)
and its corresponding generated code (Fig. 2c). The plan shown in Fig. 2b
uses our relaxed operator fusion model.

a single loop iteration is known as operator fusion. Fusing together
pipeline operators in this manner obviates the need to materialize
tuple data to memory, and can instead pass tuple attributes through
CPU registers, or the stack which will likely be in the cache.

Returning to our example, Fig. 2c shows the colored blocks of
code that correspond to the identically-colored pipeline in the query
execution plan in Fig. 2a. The first block of code (P1) performs a
scan on the Part table and the build-phase of the join. The second
block (P2) scans the LineItem table, performs the join with Part,
and computes the aggregate function. The code fragments demon-
strate that pipelined operations execute entirely using CPU registers
and only access memory to retrieve new tuples or to materialize
results at the pipeline breakers.

2.2 Vectorized Processing
The code in Fig. 2c achieves better performance than interpreted

query plans because it executes fewer CPU instructions, including
costly branches and function calls. But it processes data in a tuple-
at-a-time manner, which makes it difficult for the DBMS to employ
optimizations that operate on multiple tuples at a time [6].

Generating multiple tuples per iteration has been explored in
previous systems. MonetDB’s bulk processing model materializes
the entire output of each operator to reduce the number of function
calls in the system. The drawback of this approach is that this is
bad for cache locality unless the system stores tables in a columnar
format and each query’s predicates are selective [43].

Instead of materializing the entire output per operator, the X100
project [11] for MonetDB that formed the basis of VectorWise
(now Actian Vector) generated a vector of results (typically 100–

2

P1: HashTable ht; // Join Hash -Table

// Scan Part table , P, by vectors
for (auto &block : P.GetBlocks ()) {

ht.Insert(block);
}

P2: // Running Aggregate
Aggregator agg;

// Scan LineItem table , L
for (auto &block : L.GetBlocks ()) {

auto &sel_1 = PassesPredicate1(block);
auto &result = ht.Probe(block , sel_1);
auto &part_block =

Reconstruct(P, result.LeftMatches ());
auto &sel_2 =

PassesPredicate2(block , part_block ,
result);

agg.Aggregate(block , part_block , sel_2);
}

P3: return agg.GetRevenue ();

Figure 3: Vectorization Example – An execution plan for TPC-H Q19 from
Fig. 1 that uses the vectorized processing model.

10k tuples). This approach is also used in the Snowflake [17] and
Tupleware [16] systems. Modern CPUs are inherently well-suited
to vectorized processing. Since loops are tight and iterations are
often independent, out-of-order CPUs can execute multiple itera-
tions concurrently, fully leveraging its deep pipelines. A vectorized
engine relies on the compiler to automatically detect loops that can
be converted to SIMD, but modern compilers are only able to op-
timize simple loops involving computation over numeric columns.
Only recently has there been work demonstrating how to manually
optimize more complex operations with SIMD [33, 34].

Fig. 3 shows pseudo-code for TPC-H Q19 using the vectorized
processing model. First, P1 is almost identical to its counterpart
in Fig. 2c, except tuples are read from Part in blocks. Moreover,
since vectorized DBMSs employ late materialization, only the join-
key attribute and the corresponding tuple ID is stored in the hash-
table. P2 reads blocks of tuples from LineItem and passes them
through the predicate. In contrast to tuple-at-a-time-processing, the
PassesPredicate1 function is applied to all tuples in the block in
one iteration All of the predicate filter functions produce an array of
the positions of the tuples in the block that pass the predicate (i.e.,
selection vector). This vector is woven through each call to retain
only the valid tuples. The system then probes the hash-table with the
input block and the selection vector to find join match candidates. It
uses this result to reconstruct the block of tuples from the Part table.
The penultimate operation (filter) uses both blocks and the selection
vector from the join to generate the final list of valid tuples.

Vectorized processing leverages both modern compilers and mod-
ern CPUs to achieve good performance. It also enables the use of
explicit SIMD vectorization; however, most DBMSs do not employ
SIMD vectorization throughout an entire query plan. Many sys-
tems instead only use SIMD in limited ways, such as for internal
sub-tasks (e.g., checksums). Others have shown how to use SIMD
for all of the operators in a relational DBMS but they make a ma-
jor assumption that the data set is small enough to fit in the CPU
caches [33], which is usually not possible for real applications. But
this means that if the data set does not fit in the CPU caches, then
the processor will stall because of memory accesses and then the
benefit of vectorization will be minimal.

2.3 Prefetching
The idea behind prefetching is that the system anticipates DBMS

memory accesses and pro-actively move data from memory into
CPU caches before it is needed, thereby avoiding a cache miss

when the data is subsequently accessed. Prefetches can be launched
either by hardware predictors or through explicit software prefetch
instructions. For the former, modern CPUs can detect and prefetch
regular strided access patterns. But while such hardware prefetchers
are useful when the DBMS sequentially scans a single column,
they are unable to prefetch data under irregular access patterns
(e.g., hash-table or index probing). Today’s compilers can also
automatically insert software prefetch instructions into code for
array-based applications [29] and others have studied algorithms
for prefetching in pointer-based applications [27]. Like hardware
prefetchers, however, modern compilers are unable to detect and
handle the frequent irregular patterns found in DBMS operations.

Using software prefetching to optimize DBMS operators has also
been studied in the past [14, 22]. A common theme in these ap-
proaches is to transform the primary input-processing loop from one
consisting of N dependent memory accesses per-tuple into a loop
with N+1 code steps, where each step consumes data prefetched dur-
ing the previous step and launches new prefetches for data required
in the next step. Group prefetching (GP) [14] works by process-
ing input tuples in groups of size G. Tuples in the same group
proceed through code steps in lock-step, thereby ensuring at most
G simultaneous independent in-flight memory accesses.Software-
pipelined prefetching (SPP) works by processing different tuples
in each code step, thereby creating a fluid pipeline. Asynchronous
memory-access chaining (AMAC) [22] works by having a window
of tuples in different steps of processing, swapping out tuples as
soon as they complete to enable early stopping.

Software prefetch instructions were added to the ISAs of the
major commercial CPUs starting roughly 20 years ago. While CPUs
initially supported only a limited number of simultaneous in-flight
prefetches, it has increased over time. It is still the case, however,
that a DBMS needs to be careful not to launch too many prefetches
in a short period of time, because the CPU is likely to drop them
once the hardware buffer that tracks outstanding requests fills up.

3. PROBLEM OVERVIEW
In the previous section, we described how query compilation,

vectorized processing, and prefetching can optimize query execution
for in-memory DBMSs. A natural question to ask is whether it is
possible to combine these techniques into a single query processing
model that embodies the benefits of them all?

To the best of our knowledge, no DBMS has successfully com-
bined all techniques into a single query processing engine. Part
of the reason is that most systems that employ query compilation
generate tuple-at-a-time code that avoids tuple materialization. As
we discussed above, however, both vectorization and prefetching
requires a vector of input tuples to successfully exploit data-level
parallelism. Recent work has explored implementing SIMD scans
in a query compiling DBMS, but it requires reverting to interpreted
scans that feed its results into compiled code tuple-at-a-time [25]
or is unable to stage data suitably to use prefetching [15]. DBMSs
based on vectorized processing rely on out-of-order CPUs to exploit
data-level parallelism, but this often is not possible for complex
operators, such as hash-joins or index probes. Hence, we contend
that what is needed is a hybrid model that is able to tactfully mate-
rialize state to support both tuple-at-a-time processing, vectorized
processing, and prefetching.

To help demonstrate this point, we execute a microbenchmark
that performs a hash-join between two tables, each containing a
single 32-bit integer column (as in [33]). We implemented three
different approaches: (1) a scalar tuple-at-a-time join, (2) a SIMD
join using the vertical vectorization technique described in [33], and
(3) a tuple-at-a-time join modified to use group-prefetching [14].

3

Figure 4: Microbenchmark – Effect of hash-table size on join performance

We measure the overall throughput in output tuples per-second
as we vary the size of the join’s hash-table from 1 MB to 1024 MB.
We keep the size of the probe table (A) fixed to 100m tuples, totaling
⇠382 MB of raw data. We vary the size of the build table (B) such
that it produces a hash-table of the desired size in the experiment.
The hash-table uses open-addressing with linear probing, a 50% fill-
factor, and the 32-bit finalizer from MurmurHash3 [9] as the hash
function. We choose this to simulate real-world implementations
and because it requires minimal computation (three bit-shifts, two
multiplications, and three XORs). Each hash-table bucket stores a 4-
byte key and a 4-byte payload, and the hash-table is organized as an
array-of-structs. The values in both tables are uniformly distributed,
and each tuple in A matches with at most one tuple in B. The join
produces a combined table with 100m tuples with a total size of
⇠381 MB. We executed our test on 20 hardware threads (hyper-
threading is disabled) with 25 MB of shared L3 CPU cache. We
defer the full description of our environment until Sect. 5.

From the results shown in Fig. 4, we see that SIMD probes utiliz-
ing the vertical vectorization technique performs worse than tuple-at-
a-time probes with prefetching, even when the hash-table is cache-
resident. This is because vectorization requires recomputing hash
values on hash and key collisions. The second observation is that
both tuple-at-a-time techniques with and without prefetching out-
perform the SIMD version when the hash-table does not fit in cache.
This is because the join shifts from a compute-bound operation to a
memory-bound operation for which SIMD does not help. Lastly, we
see that tuple-at-a-time processing with prefetching is consistently
better than all approaches, often by up to 1.2⇥.

The main takeaway from the microbenchmark results is that tuple-
at-a-time processing with prefetching outperforms SIMD for hash-
joins regardless of hash-table sizes. Prefetching requires looking
across a vector of tuples to exploit inter-tuple parallelism, but fully
pipelined compiled plans avoid any materialization. Moreover, data
becomes more sparse and memory accesses become more random
as we move up the query plan tree, making prefetching that much
more important. At the leaves of the tree, the DBMS can rely on
the hardware prefetcher; this is not true higher up. Neither wholly
vectorized nor wholly compiled query plans are optimal. What is
needed is the ability for the DBMS to tactfully materialize tuples
through prefetching at various points in the query plan — to enable
vectorization and exploit inter-tuple parallelism — and otherwise
fuse operators to ensure efficient pipelining.

4. RELAXED OPERATOR FUSION
The primary goal of operator fusion is to minimize materializa-

tion. We contend that strategic materialization can be advantageous
as it can exploit inter-tuple parallelism inherent in query execu-
tion. Tuple-at-a-time processing by its nature exposes no inter-tuple

parallelism. Thus, to facilitate strategic materialization, one could
relax the requirement that operators within a pipeline be fused to-
gether. With this, the DBMS instead decomposes pipelines into
stages. A stage is a partition of a pipeline in which all operators
are fused together. Stages within a pipeline communicate solely
through cache-resident vectors of tuple IDs. Tuples are processed
sequentially through operators in any given stage one-at-a-time. If
the tuple is valid in the stage, its ID is appended into the stage’s
output vector. Processing remains within a stage while the stage’s
output vector is not full. If and when this vector reaches capacity,
processing shifts to the next stage in the pipeline, where the output
vector of the previous stage serves as the input to the current. Since
there is always exactly one active processing stage in ROF, we en-
sure both input and output vectors (when sufficiently small) will
remain in the CPU’s caches.

ROF is a hybrid between pipelined tuple-at-a-time processing and
vectorized processing. There are two key distinguishing character-
istics between ROF and traditional vectorized processing; with the
exception of the last stage iteration, ROF stages always deliver a full
vector of input to the next stage in the pipeline, unlike vectorized
processing that may deliver input vectors restricted by a selection
vector. Secondly, ROF enables vectorization across multiple se-
quential relational operators (i.e., a stage), whereas conventional
vectorization operates on a single relational operator, and often
times within relational operators (e.g., vectorized hash computation
followed by a vectorized hash-table lookup).

To help illustrate ROF’s staging, we first walk through an example.
We then describe how to implement ROF in an in-memory DBMS.

4.1 Example
Returning again to our TPC-H Q19 example, Fig. 2b shows a

modified query plan using our ROF technique to introduce a single
stage boundary after the first predicate (�1). The ⌅ operator denotes
an output vector that represents the boundary between stages. The
code generated for this modified query plan is shown in Fig. 5. In
the first stage (lines 13–20), tuples are read from the LineItem table
and passed through the filter to determine their validity in the query.
If a tuple passes through the filter (�1), then its ID is appended to
the stage’s output vector (⌅). When this vector reaches capacity,
or when the scan operator has exhausted tuples in LineItem, the
vector is delivered to the next stage.

The next stage in the pipeline (lines 22–30) uses this vector to
read valid LineItem tuples for probing the hash-table and finding
matches. If a match exists, both components are passed through the
secondary predicate (�2) to again check the validity of the tuple in
the query. If it passes this predicate, it is aggregated as part of the
final aggregation operator.

We first note that one loop is still generated per-pipeline (lines
11–31). A pipeline loop contains the logic for all stages contained
in the pipeline. To facilitate this, the DBMS splits pipeline loops
into multiple inner-loops, one for each stage in the pipeline. In this
example, lines 13–20 and 22–30 are for the first and second stages,
respectively. The DBMS fuses together the code for the operators
within a stage loop. This is seen in Fig. 5 as line 26 corresponds to
the probe, line 27 to the second predicate, and line 28 to the final
aggregation. In general, there are the same number of inner-loops
per pipeline loop as there are stages, and the number of stage output
vectors (⌅) is equal to one less than the number of stages.

Lastly, the code maintains both a read and write position for each
output vector. The write position tracks the number of tuples in the
vector; the read position tracks how far into the vector a given stage
has read. A stage has exhausted its input when either (1) the read po-
sition has surpassed the amount of data in the materialized state (i.e.,

4

zhjwpku
Highlight

zhjwpku
Highlight

zhjwpku
Highlight

1 #define VECTOR_SIZE 256

3 HashTable join_table; // Join Operator Table
4 Aggregator aggregator; // Running Aggregator

6 int buf[VECTOR_SIZE] = {0}; // Stage Vector
7 int buf_idx = 0; // Stage Vector Offset
8 oid tid = 0; // Tuple ID

10 // Pipeline P2
11 while (tid < L.GetNumTuples ()) {
12 // Stage #1: Scan LineItem , L
13 for (buf_idx = 0;
14 tid < L.GetNumTuples (); tid++) {
15 auto &lineitem = L.GetTuple(tid);
16 if (PassesPredicate1(lineitem)) {
17 buf[buf_idx ++] = tid;
18 if (buf_idx == VECTOR_SIZE) break;
19 }
20 }
21 // Stage #2: Probe , filter , aggregate
22 for (int read_idx = 0;
23 read_idx < buf_idx; read_idx ++) {
24 auto &lineitem =
25 L.GetTuple(buf[read_idx]));
26 auto &part = join_table.Probe(lineitem);
27 if (PassesPredicate2(lineitem , part)) {
28 aggregator.Aggregate(lineitem , part);
29 } } }

Figure 5: ROF Staged Pipeline Code Routine – The example of the pseudo-
code generated for pipeline P2 in the query plan shown in Fig. 2b. In the first
stage, the code fills the stage buffer with tuples from table LineItem that
satisfy the scan predicate. Then in the second stage, the routine probes the
join table, filters the results of the join, and aggregates the filtered results.

data table or hash-table) or (2) the read and write index are equal
for the input vector. Therefore, a pipeline is complete only when
all of its constituent stages are finished. If a stage accesses external
data structures that are needed in subsequent stages, ROF requires a
companion output vector that stores data positions/pointers that it is
aligned with the primary TID output vector.

Our ROF technique is flexible enough to model both tuple-at-a-
time processing and vectorized processing, and hence, subsumes
both models. The former can be realized by creating exactly one
stage per pipeline. Since a stage fuses all operators it contains and
every pipeline has only one stage, pipeline loops contain no inter-
mediate output vectors. Vectorized processing can be modeled by
installing a stage boundary between pairs of operators in a pipeline.

Staging alone does not provide many benefits; however, it facili-
ties two optimizations not possible otherwise: SIMD vectorization,
and prefetching of non-cache-resident data.

4.2 Vectorization
SIMD processing is generally impossible when executing a query

tuple-at-a-time. Our ROF technique enables operators to use SIMD
by introducing a stage boundary on their input, thereby feeding
them a vector of tuples. The question now becomes whether to
also impose a stage boundary on the output of a SIMD operator.
With a boundary, SIMD operators can efficiently issue selective
stores of valid tuple IDs into their output vectors. With no boundary,
the results of the operator are pipelined through all operators that
follow in the stage. This can be done using one of two methods.
Both methods assume the result of a SIMD operator resides in a
SIMD register. In the first method, the operator breaks out of SIMD
code to iterate over the results in the individual SIMD lanes one-
at-a-time [12, 42]. Each result is pipelined to the next operator in
the stage. In the second method, rather than iterate over individual
lanes, the operator delivers its results in a SIMD register to the next
operator in the stage. Both methods are not ideal. Breaking out of
SIMD code unnecessarily ties up the registers for the duration of the

27 50 2039 46 34 41 48

SIMD Compare

attr_A

0 0Bitmask
0
1

254
255

0
1 3 7TID

SIMD Permute

1 3 7TID

SIMD Masked
Store

…Output 0 2 64 5

Permutation Table

174 0,2,4,5,6

movemask

…
…

Permuted
Bitmask 0 0 0

1 1 1 1 1

1 1 1 1 1
0 2 64 5

0 42 5 6

old write position new write position

old read position new read position

…
1 3 7TID 0 42 5 6 …

Figure 6: SIMD Predicate Evaluation Example – An illustration of how to
use SIMD to evaluate the predicate for TPC-H Q19.

stage. Delivering the entire register risks under-utilization if not all
input tuples pass the operator, resulting in unnecessary computation.

Given this, we greedily force a stage boundary on all SIMD
operator outputs. The advantages of this are (1) SIMD operators
always deliver a 100% full vector of only valid tuples, (2) it frees
subsequent operators from performing validity checks, and (3) the
DBMS can generate tight loops that are exclusively SIMD. We now
describe how to implement a SIMD scan using these boundaries.

Implementation: In contrast to scalar selection where the result
of applying a predicate against a tuple is a single boolean value
indicating the validity of the tuple, the result of a SIMD application
of a predicate is a bit-mask. Processing n elements in parallel
produces a bit-mask stored in a SIMD register where all bits of each
of the n elements are either 0 or 1 (to indicate the validity of the
associated tuple). To determine which tuples are valid using the
bit-mask, the DBMS could employ partial vectorization and iterate
over the bits in the mask to extract one bit at a time.

ROF uses a different approach that is wholly in SIMD code.
The technique leverages a precomputed, cache-resident index to
lookup permutation masks that are used to shuffle SIMD elements
into valid and invalid components. The illustration in Fig. 6 is
performing a SIMD scan over a 4-byte integer column attr_A and
evaluating the predicate attr_A < 44. The DBMS first loads as
many attribute values as possible (along with their tuple IDs) into
the widest available SIMD register. Next, it applies the predicate
to produce a bit-mask. In the example, the tuples with IDs (1, 3, 7)
fail to pass the predicate. To correctly write out only the valid IDs,
the DBMS shuffles the tuple ID SIMD register so that the valid and
invalid tuple IDs are stored contiguously, effectively partitioning
the register. To achieve this, the DBMS invokes the movemask
instruction to convert the bit-mask into an integer number that it
uses as an index into a permutation table. This is a precomputed
table that maps a given bit-mask value to a 8-byte bit-mask that
corresponds to the correct re-arrangement of elements in the SIMD
register to partition it into valid and invalid parts. In the example,
the bit-mask’s value is 174, which corresponds to the bit-mask
(0,2,4,5,6). Applying this permutation bit-mask moves elements in
positions 0, 2, 4, 5, and 6 to the first five elements in the register. We
apply this permutation to both the original bit-mask and the tuple
ID counter. The DBMS then writes the modified tuple ID counter to

5

zhjwpku
Highlight

B1 B3 ... BN-1 BNB2

Status Key Value Hash

8 bytes |Key| |Value| 4 bytes

Figure 7: Hash-Table Data Structure – An overview of the DBMS’s open-
addressing hash-table used for joins (with BN buckets).

the output vector at the current write position using a masked store
with the modified bit-mask as the selection mask. The DBMS then
increments the new write position by the number of valid tuples
(using the popcnt instruction), loads a new vector of values, and
increments the tuple ID vector by eight.

The permutation table stores an 8-byte value for each possible
input bit-mask. A SIMD register storing n elements can produce
2n masks. With AVX2 256-bit registers operating on eight 4-byte
integers, this results in 28 = 256 possible bit-masks. Thus, the size
of the largest permutation table is at most 28 ⇥ 8 = 2 KB, small
enough to fit in the CPU’s L1 cache.

4.3 Prefetching
Aside from the regular patterns of sequential scans, the more com-

plex memory accesses within a DBMS are beyond the scope of what
today’s hardware or commercial compilers can handle. Therefore,
we propose new compiler passes for automatically inserting prefetch
instructions that can handle the important irregular, data-dependent
memory accesses of an OLAP DBMS.

The DBMS must prefetch sufficiently far in advance to hide the
memory latency (overlapping it with useful computation), while at
the same time avoiding the overhead of unnecessary prefetches [29].
Limiting the scope of prefetching to within the processing of a
single tuple in a pipeline is inefficient because by the time the
DBMS knows how far up the query plan the tuple will go, there
is not sufficient computation to hide the memory latency. On the
other hand, aggressively prefetching all of the data needed within a
pipeline can also hurt performance due to cache pollution and wasted
instructions. These challenges are exacerbated as the complexity
within a pipeline increases, since it becomes increasingly difficult
to predict data addresses in advance.

Our ROF model avoids all of these problems. The DBMS installs
a stage boundary at the input to any operator that requires random
access to data structures that are larger than the cache. This ensures
that prefetch-enabled operators receive a full vector of input tuples,
enabling it to overlap computation and memory accesses since these
tuples can be processed independently. As we will show in Sect. 5,
hash-joins and hash-based aggregations are two classes of important
operators that yield significant improvements with prefetching.

Implementation: To help ground our discussion of how to im-
plement prefetching in ROF, we briefly discuss the design of the
hash-table used in both hash-joins and hash-based aggregations,
found in Fig. 7. We use an open-addressing hash-table design
with linear probing for hash and key-collisions. Previous work has
shown this design to be robust and cache-friendly [35]. We use
MurmurHash3 [9] as our primary hash function. This is differs
from previous work [33] that prefers to use computationally simpler
(and therefore faster) hash functions, such as multiply-add-shift.
We want to use a general-purpose hash function that can (1) work
on multiple different non-integer data types, (2) provide a diverse
hash distribution, and (3) execute fast. MurmurHash3 satisfies these
requirements and used in many popular systems [4, 2, 3].

Our hash-table, shown in Fig. 7, is laid out as a contiguous array
of buckets. Buckets begin with an 8-byte status field that indicates
(1) if this bucket is empty, (2) if it is occupied by a single key-value

pair, or (3) if it is occupied and there are duplicate values for the key.
Duplicate values are stored externally in a contiguous memory space,
and the status field is re-purposed to store a pointer to this memory
location. We store the status and key value near the beginning of
the bucket to ensure we can read both with one memory-load; this
is obviously not possible if the key exceeds the size of a cache-line
(minus 8 bytes). This is important since the status field is read on
every hash-table access for both insertions and probes, whereas the
key is needed to resolve key-collisions. The hash value is used only
during table resizing to avoid recomputation. Since resizing is far
more infrequent than insertions and probes, storing the hash value
at the end does not impact overall join or aggregation performance.

Our hash-table design is amenable to both software and hardware
prefetching. Since joins and aggregations operate on tuple vectors,
software prefeteching will speed up the initial hash-table probe.
Secondly, the hardware prefetcher kicks in to accelerate the linear
probing search sequence for hash collisions. By front-loading the
status field and the key, the DBMS tries to ensure that at most
one memory reference to a bucket is necessary to check both if the
bucket is occupied and if the keys match.

Although we can employ any software prefetching technique
with ROF, we decided to use GP for multiple reasons. Foremost is
that generating GP code is simpler than with SPP and AMAC. GP
also naturally provides synchronization boundaries between code
stages for a group to resolve potential data races when inserting
duplicate key-value pairs. Additionally, it was shown in [14] that
SPP offered minimal performance improvement in comparison to
GP while having a more complex code structure. Finally, using
an open-addressing hash-table with linear probing means that all
tuples have exactly one random access into the hash-table during
probes and insertions (with the exception of duplicate-handling
which requires two). Since all tuples in a group have the same
number of random accesses even in the presence of skew, AMAC
does not improve performance over GP.

4.4 Query Planning
A DBMS’s optimizer has to make two decisions per query when

generating code with the ROF model: (1) whether to enable SIMD
predicate evaluation and (2) whether to enable prefetching.

During optimization, Peloton’s planner takes a greedy approach
and installs a boundary after every scan operator if the scan has a
SIMD-able predicate. Determining whether a given predicate can be
implemented using SIMD instructions is a straightforward process
that uses data-type and operation information already encoded in
the expression tree. As we will show in Sect. 5, using SIMD when
evaluating predicates during a scan never degrades performance.

The planner can also employ prefetching optimizations using two
methods. In the first method, the query planner relies on database-
and query-level statistics to estimate the sizes of all intermediate
materialized data structures required by the query. For operators
that require random access to data structures whose size exceeds the
cache size, the planner will install a stage boundary at the operator’s
input to facilitate prefetching. This heuristic can backfire if the
collected statistics are inaccurate (see Sect. 5.3) and result in a
minor performance degradation. An alternative approach is for the
query planner to always install a stage boundary at the input to any
operator that performs random memory accesses, but generate two
code paths: one path that does prefetching and one that does not.
The query compiler generates statistics collection code to track the
size of intermediate data structures, and then uses this information
to guide the program through either code path at runtime. In this
way, the decision to prefetch is independent of query planning. We
note that this approach will result in a code explosion as each branch

6

⌦

Sort

�

�

LineItem

P1

P2

P3

(a) Q1

⌦

Sort

12(Group)

11

�1

Customer

�2

Orders

�3

LineItem

P1
P2

P3

P4

(b) Q3

⌦

Sort

�

1(Group)

Customer �

Orders

P1
P2

P3

P4

(c) Q13

⌦

�

1

�

LineItem

Part

P1
P2

P3

(d) Q14

Figure 8: TPC-H Query Plans with Pipelines – The high-level query plan for the subset of the TPC-H queries that we evaluate in our experiments, and do
deep-dive analysis on. Each plan is annotated with their pipelines [30].

requires a duplication of the remaining query logic; this process can
repeat for each prefetching operator. ROF remedies this by installing
a stage boundary at the operator’s output, thereby duplicating only
the operator’s logic rather than the entire query plan.

5. EXPERIMENTAL EVALUATION
We now present an analysis of our ROF query processing model.

For this evaluation, we implemented ROF in the Peloton in-memory
DBMS [5]. Peloton is an HTAP DBMS that used interpretation-
based execution engine for queries. We modified the system’s query
planner to support JIT compilation using LLVM (v3.7). We then
extended the planner to also generate compiled query plans using
our proposed ROF optimizations.

We performed our evaluation on a machine with a dual-socket
10-core Intel Xeon E5-2630v4 CPU with 25 MB of L3 cache and
128 GB of DRAM. This is a Broadwell-class CPU that supports
AVX2 256-bit SIMD registers and ten outstanding memory prefetch
requests (i.e., ten line-fill buffer (LFB) slots) per physical core. We
also tested our ROF approach with an older Haswell CPU and did
not notice any changes in performance trends.

In this section, we first describe the workload that we use in our
evaluation. We then present a high-level comparison of the per-
formance of our ROF query processing model versus a baseline
implementation that only uses query compilation. Next, we provide
a detailed breakdown of the query plans to explain where the opti-
mizations of the ROF model have their greatest impact. We then
select the optimal query plan for each TPC-H query and measure the
sensitivity of the results to two important compiler parameters for
ROF (i.e., vector size and prefetching distance). To prevent cache
coherence traffic from interfering with our measurements, we limit
the DBMS to only use a single thread per query and do not execute
multiple queries at the same time for these initial experiments. We
then evaluate the DBMS’s performance with ROF when using multi-
ple threads and finish with a comparison of the absolute performance
of Peloton with ROF against two state-of-the-art OLAP DBMSs.

We ensure that the DBMS loads the entire database into the same
NUMA region using numactl. We run each experiment ten times
and report the average measured execution time over all trials.

5.1 Workload
We use a subset the TPC-H benchmark in this evaluation [40].

TPC-H is a decision support system workload that simulates an
OLAP environment where there is little to prior knowledge of the
queries. It contains eight tables in 3NF schema. We use a scale
factor of 10 in each experiment (⇠10 GB). Peloton is still early in
development; we plan to run larger scale experiments are it matures.

Although the TPC-H workload contains 22 queries, we select
eight queries that cover all TPC-H choke-point query classifica-
tions [10] that vary from compute- to memory/join-intensive queries.

Figure 9: Baseline Comparison – Query execution time when using regular
query compilation (baseline) and when using ROF (optimized).

Thus, we expect our results to generalize and extend to the remain-
ing TPC-H queries. An illustration of the pipelined plans for these
queries is shown in Fig. 8; the plan for Q19 is shown in Fig. 2a.

5.2 Baseline Comparison
For this first experiment, we execute the TPC-H queries using the

data-centric approach used in HyPer [30] and other DBMSs that
support query compilation. We deem this as the baseline approach.
We then execute the queries with our ROF model. This demon-
strates the improvements that are achievable with the prefetching
and vectorization optimizations that we describe in Sect. 4.

Fig. 9 shows the performance of our execution engine (which
implements a data-centric query compilation engine [30]) both with
and without our ROF technique enabled. As we see in Fig. 9, our
ROF technique yields performance gains ranging from 1.7⇥ to 2.5⇥
for seven of eight queries (i.e., all but Q1, which we will discuss in
detail below).

5.3 Optimization Breakdown
To better understand how ROF impacts performance, we now

present case studies for a subset of the TPC-H queries we evaluated
in Fig. 9. For the sake of space, we only discuss in detail five of
the eight TPC-H queries we evaluate. The results we draw extend
to the remaining queries. Figs. 10 to 14 show the execution time
for each query broken down by the time spent in each pipeline
in the original query plans from Fig. 8 as we incrementally apply
ROF to additional operators within the tree. The leftmost bar is the
baseline execution (without ROF), the next bar applies ROF to one
operator, the bar after that includes both plus applying ROF to any
additional operators. These optimizations are cumulative and each
one is orthogonal to the previous. We describe the details of these
optimizations in a table below each graph.

Q1 Case Study: ROF yields only a marginal improvement (1.04⇥)
over the baseline for this query. The bulk of Q1’s execution time
is spent in P1, which performs a selection and an aggregation. P2
and P3 are not easily visible in Fig. 10: the time spent materializing

7

O1
Modification: P1) (LineItem ! � ! ⌅ ! �)
Description: Apply SIMD to predicate �.

O2
Modification: —
Description: Use ⌅ to prefetch buckets on � build.

Figure 10: Q1 Case Study – The breakdown of the ROF optimizations
applied to TPC-H Q1 query plan shown in Fig. 8a.

aggregated data into a memory heap (in preparation for sorting) and
the sorting itself accounts for less than 0.3% of the execution time.

For our first optimization (O1), the planner converts the predicate
on the LineItem table into a SIMD scan. It adds a stage boundary
after � in P1, and converts the scalar predicate evaluation into a
SIMD check. But because this predicate matches almost the entire
table (i.e., 98% selectivity). At such high-selectivity, the benefit
data-level parallelism (i.e., reduced CPI) from using SIMD predicate
evaluation is offset by the overhead of (redundant) data copying of
valid IDs into an output vector. Thus, in this case SIMD yields only
a marginal reduction in latency. Moreover, the scan portion of P1
accounts for only 4% of the overall time; the remaining 96% of the
time is in the aggregation (�). This means that applying SIMD to the
scan (assuming a maximum theoretical speedup of 8⇥ using AVX2
256-bit registers) can only achieve a speedup of at most 1.036⇥.

The second optimization (O2) uses the output of the SIMD scan
stored in �’s output stage vector (⌅) to prefetch hash-table entries in
the build phase of the aggregation (�). But Fig. 10 shows prefetching
makes the query slower. �’s hash-table is sufficiently small enough
(just four entries) to fit in the CPU’s L1 cache, obviating the need
for prefetching. The overhead of the DBMS invoking the prefetch
instructions is non-negligible and thus degrades performance. O2
highlights the importance of accurate query statistics. Inaccurate
statistics may lead the planner to incorrectly install an ROF stage
boundary to enable prefetching resulting in reduced performance.

Q3 Case Study: This next query is the most complex one from
the TPC-H workload that we evaluate. As such, it presents the
largest number of opportunities to apply our ROF technique. The
first observation from the measurements in Fig. 11 is that the opti-
mizations that apply SIMD predicate evaluation (i.e., O1, O2, and
O5) all offer marginal performance improvements. This is because
the majority of time spent in pipelines P1, P2, and P3 are not scan-
ning table data, but rather in the joins ./1 and ./2. Roughly 1% of
time in P1 is spent filtering Customer tuples, 3.7% of P2 is on scan-
ning and filtering the Orders table, and 7% of P3 is on scanning
the LineItem table. Although using SIMD with these operators
provides some benefit, it does not address the main bottlenecks.

Instead, the more complex, memory-intensive operators will pro-
duce greater improvements. These are the optimizations that im-
plement prefetching of hash-table buckets for either the build- or
probe-phase of joins ./1 or ./2 (i.e., O3, O4, and O6). O3 uses the
staging vector written to by the SIMD predicate on �2 to prefetch
hash-table buckets for the probe of ./1. This speeds up P2 by 1.4⇥.
O4 improves upon this by introducing a second stage boundary after
the join ./1. This second stage prefetches hash-table buckets during

O1
Modification: P1) (Customer ! �1 ! ⌅1 !./1)
Description: Apply SIMD to predicate �1 (Cutomer).

O2
Modification: P2) (Orders ! �2 ! ⌅2 !./1!./2)
Description: Apply SIMD to predicate �2 (Orders).

O3
Modification: —
Description: Use ⌅2 to prefetch buckets during ./1 probe.

O4
Modification: P2) (Orders ! �2 ! ⌅2 !./1! ⌅3 !./2)
Description: Use ⌅3 to prefetch buckets during build of ./2.

O5
Modification: P3) (LineItem ! �3 ! ⌅4 !./2! Sort)
Description: Apply SIMD to predicate �3.

O6
Modification: —
Description: Use ⌅4 to prefetch buckets for ./2 probe.

Figure 11: Q3 Case Study – The breakdown of the ROF optimizations
applied to TPC-H Q3 query plan shown in Fig. 8b.

O1
Modification: P2) (Orders ! � ! ⌅1 !./! �)
Description: Use ⌅1 to prefetch buckets for build and probe of ./.

O2
Modification: P2) (Orders ! � ! ⌅1 !./! ⌅2 ! �)
Description: Use ⌅2 to prefetch buckets during build of �.

Figure 12: Q13 Case Study – The breakdown of the ROF optimizations
applied to TPC-H Q13 query plan shown in Fig. 8c.

the build phase of the join ./2. O4’s prefetching improves P2’s
execution time by 1.26⇥ and for the overall query by 1.14⇥.

The last and most important optimization for Q3 is O6 because
this highlights the advantage of the ROF approach. While using
SIMD for the predicate evaluation on LineItem (which is the largest
table in the query) only increases performance by 1.02⇥, using the
resulting output vector to perform prefetching on the probe of ./2
results in an improvement of 1.38⇥. In general, we find that using
ROF optimizations across this query plan improves by up to 1.61⇥,
with much of this resulting from prefetching.

Q13 Case Study: This query presents another interesting data
point because it demonstrates that ROF can still improve perfor-
mance when only using prefetching without SIMD. Q13 contains a
predicate on Orders that cannot be implemented using SIMD since
it contains a non-trivial LIKE clause on a string column. However,
by installing a stage boundary after the predicate (�), Fig. 12 shows
that ROF still improves performance over the baseline.

The first optimization (O1) prefetches hash-table buckets for both
the build- and probe-phases of the group-join (./). We implement

8

O1
Modification: P1) (LineItem ! � ! ⌅ !./)
Description: Apply SIMD to predicate � (LineItem).

O2
Modification: —
Description: Use ⌅ and Part to prefetch buckets during join ./.

Figure 13: Q14 Case Study – The breakdown of the ROF optimizations
applied to TPC-H Q14 query plan shown in Fig. 8d.

the group-join operator from [28]. As described previously, the
DBMS installs a stage boundary (⌅1) after the predicate �. The
scan of Orders is entirely scalar, and its output is written to the
stage’s output vector. The DBMS is then able to prefetch on the
build input since it is already being read from materialized state (i.e.,
the Customer table). O1 results in a performance improvement of
1.34⇥ over the baseline.

The second optimization (O2) prefetches hash-table buckets needed
during the build phase of the aggregation (�). Once again the DBMS
installs a stage boundary (⌅2) after the group-join (./). This opti-
mization further improves performance over O1 by 1.04⇥, resulting
in an overall improvement of 1.5⇥ compared to the baseline.

Q14 Case Study: The predicate on the LineItem table has only a
2% selectivity and, hence, it is an ideal candidate for being converted
into a SIMD predicate. To do so, in O1 the planner installs a stage
boundary (⌅) after the predicate over LineItem (�). This improves
P1’s execution time by 1.89⇥ and Q14’s overall time by 1.37⇥.

Next, the planner enables prefetching for both the build- and
probe-phases of the join in O2. For P1, this is facilitated by re-using
O1’s output vector (⌅) for the SIMD predicate (�). P2 does not
need an additional stage since the scan of the Part table is directly
from the table. O2 further improves performance by 1.45⇥ from
the previous optimization and by almost 2⇥ over the baseline.

We do not apply any optimizations on the aggregation operator
(�) because it is static (i.e., it always generates a single output
tuple). In generated code, the aggregation is implemented as a
simple counter. Hence, P3 requires no computation and contributes
effectively nothing to the query’s overall execution time of the query.

Q19 Case Study: Like Q14, the predicate on the LineItem table
in this query is selective; less than 4% of tuples make it through
the filter. This predicate is extracted from a much larger disjunctive
predicate that is applied to the results of the join (./). Again, this
means that the predicate is a good candidate for SIMD evaluation.
Thus, O1 installs a stage boundary and output vector (⌅1), after the
predicate on LineItem (�1). The results in Fig. 14 show that O1
improves the overall performance of the query by almost 1.6⇥.

The second optimization uses O1’s output vector to issue prefetch
instructions for hash-table buckets during the hash-join probe. Sim-
ilarly, O2 also modifies P1 to prefetch hash-table buckets to build
./. Together these two optimizations further improve Q19’s perfor-
mance by almost 1.6⇥ and almost 2.5⇥ over the baseline imple-
mentation. We note that the contribution of P3 is effectively zero
because it is a static aggregation that performs no computation.

O1
Modification: P2) (LineItem ! �1 ! ⌅1 !./! �2 ! �)
Description: Apply SIMD to predicate �1 (LineItem).

O2
Modification: —
Description: Use ⌅1 to prefetch buckets during probe of ./.

O3
Modification: P2) (LineItem ! �1 ! ⌅1 !./! ⌅2 !
�2 ! ⌅3 ! �)
Description: Insert staging points between every pair of operators.

Figure 14: Q19 Case Study – The breakdown of the ROF optimizations
applied to TPC-H Q19 query plan shown in Fig. 2a.

5.4 Sensitivity to Vector Width
In the previous experiments, we executed the queries using the

optimal vector sizes and prefetch group size. We now analyze the
sensitivity of the ROF model to these two configuration parameters.
Our evaluation shows that these parameters are independent to each
other and thus we will examine them separately. We begin with
measuring the effect of the stage output vector size to overall query
performance. We select the optimal staged plan for the eight TPC-H
queries and fix the prefetch group size to 16. We then vary the size
of all the output vectors in each plan from 64 to 256k tuples.

The results in Fig. 15 show that all but one of the queries (Q13)
are insensitive to the size of the stages’ output vectors. This is
notable for Q14 and Q19 because we showed in the previous ex-
periment that they both benefited greatly from SIMD vectorization.
This is because their scans are highly selective (2% for Q14 on
the Orders table and 4% for Q19 on the LineItem table), and so
using SIMD shifts the main bottleneck to the next stage in their
respective pipelines. For Q14, this is mainly the probe-side of the
join, whereas it is the build-side of the join in Q19. The extra latency
incurred due to accessing larger-than-cache hash-tables constitutes
the largest time component of their execution plan, even though it is
ameliorated through prefetching.

Q1 is also insensitive to the vector size, but for a slightly different
reason. In this query, more than 98% of the tuples in the LineItem
table qualify the predicate. As such, the primary bottleneck in the
first pipeline is not in the SIMD scan, but in the aggregation. This
aggregation does not benefit from larger vector sizes, which is why
Q1 is not impacted by varying this configuration parameter.

For Q13, the primary bottleneck in the query plan is the evaluation
of the LIKE clause on the o_comment field of the Orders table. Since
the DBMS cannot execute this predicate using SIMD, increasing the
size of the predicate’s output vector does not help. It instead uses
this vector to prefetch hash-table buckets as part of the subsequent
probe. But since the query plan uses a group size of 16, the system
is already able to saturate the memory parallelism in the hardware
and thus larger vector sizes do not help.

The only query whose performance gets better as the vector width
increases is Q3. The results show that this query benefits slightly
with larger vector sizes, but does not improve further when vector
size exceeds 16k tuples. This is because the SIMD scan on the
LineItem table remains in the SIMD code stage over a larger range
of tuples. The predicate is roughly 54% selective, and so using

9

Figure 15: Sensitivity to Vector Width – The average execution time of the
TPC-H queries when varying the maximum number of tuples stored in the
ROF’s stage output vectors.

larger vectors reduces the number of outer-most loop iterations.
In general, larger vectors reduces the total number of outer-most
loop iterations. This is helpful for scan queries with low-selectivity
predicates. However, larger vectors don’t improve performance
for queries with joins. This is because modern CPUs support a
limited number of outstanding memory references, making the query
become memory-bound quicker than CPU-bound.

5.5 Sensitivity to Prefetching Distance
We next analyze the performance of the DBMS when varying

the size of the ROF model’s prefetch groups. We again use the
best staged plans that we generated in Sect. 5.2 for each query.
This time we fix the output vector size constant to use the optimal
configuration for each query as determined in Sect. 5.4. We then
vary the group sizes from zero (disabling prefetching) to 256 tuples.

The results in Fig. 16 show that prefetch group size has a strong
influence the performance of all queries, with the exception of Q1
and Q6. Q6’s performance remains constant across prefetch groups
because it contains only a sequential scan. In the previous section,
we showed that Q1 is insensitive to the output vector size. But
we now also see that Q1 is not affected by this other parameter as
well. We attribute this to the fact that the only data structure that
is prefetched in Q1 (i.e., aggregate hash-table) fits in the CPU’s L1
cache. In fact, Fig. 16 shows that Q1’s lowest execution time is when
there is no prefetching at all. This indicates that the combination of
the weak predicate and a small hash-table makes Q1 ill-suited for
ROF. We note, however, that ROF does not degrade the performance
of Q1 (as seen in Figs. 9 and 10) since the predicate, though weak,
can still use SIMD vectorization.

Our second observation is that all of the queries get faster with
increasing group sizes up until 16 tuples. The CPU used in our eval-
uation supports a maximum of 10 outstanding L1 cache references
(per core), and thus one would expect the optimal group size to be
10 since this should saturate the CPU’s memory-level parallelism.
These results, however, show that the optimal group size is 16. This
is because the GP technique that we implemented is also limited by
instruction count. Using larger group sizes enable fewer iterations of
the outer-most loop, which reduces overall instruction count. Hence,
groups larger than 16 do not improve performance because at that
point the DBMS saturates the CPU.

5.6 Multi-threaded Execution
We now evaluate the performance of Peloton with ROF when

executing queries using a multiple threads. We implemented a sim-
plified version of the multi-threaded execution strategy employed
in HyPer [26]. Each pipeline in the query plan is executed us-
ing multiple threads that each modify only thread-local state. At

Figure 16: Sensitivity to Prefetching Distance – The execution time of the
TPC-H queries when varying the ROF model’s group prefetch size.

pipeline-breaking operators, a single coordinator thread coalesces
data produced by each execution thread.

We ran the eight TPC-H queries from Sect. 5.2, using each query’s
best staged plan. We vary the number of execution threads from
one to the number of physical cores in the benchmark machine. We
report averages over ten runs using a TPC-H SF10 database.

The results in Fig. 17 demonstrate that using ROF with vectoriza-
tion and prefetching complements multi-threaded query execution.
We first note that the jump in execution time when moving from one
thread to two threads for all the queries is due to the non-negligible
bookkeeping and synchronization overhead that is necessary to sup-
port multi-threaded execution. This is independent of the ROF
model. As described earlier, hash-joins end at a synchronization bar-
rier on the build-side as execution threads wait for the coordinator
thread to construct a global hash-table. For low thread counts, this
overhead outweighs the benefit of multiple threads. But this cost is
eliminated with the addition of more execution threads.

Fig. 17a shows that ROF does not improve Q1 since it is a CPU-
bound query with a high-selectivity predicate. This corroborates our
previous results in Sects. 5.3 to 5.5. Executing Q1 with multiple
threads yields a consistent increase up to 20 cores at which point all
CPUs are fully utilized and have saturated the memory bandwidth.

The other seven TPC-H queries exhibit similar speed-up with
increasing thread counts. Although each execution thread constructs
a small thread-local hash-table, the size of the coordinator thread’s
global hash-table will always exceed the CPU cache size. Since
the join’s probe-side is usually an order-of-magnitude larger than
the build-side, Figs. 17b and 17f to 17h shows that using ROF with
prefetching improves performance by 1.5–1.61⇥ over the baseline.

One final observation is the slight variance in execution times in
Q3 and Q13 with more than 10 threads. This jitter is due to NUMA
effects on our two CPU machine (10 cores per socket). Both Q3 and
Q13 execute using a group hash-join, meaning that the DBMS uses
the materialized hash-table during building and probing. Concurrent
updates to the table are serialized using 64-bit compare-and-swap
instructions. Hence, CPUs in different NUMA regions experience
different latency when accessing these counters stored in the global
hash-table. Q5 exhibits this effect as it requires two global hash-
tables probes (i.e., four random memory accesses). Despite this,
ROF is still improves performance by 1.5⇥.

5.7 System Comparison
Lastly, we compare Peloton with ROF against two state-of-the-art

in-memory databases: Vector [1] and HyPer [20]. The former is
a columnar DBMS based on MonetDB/x100. It uses a vectorized
execution engine that supports both compressed tables and SIMD
instructions when available. The latter is also a columnar DBMS,
but uses LLVM (like Peloton) to generate compiled tuple-at-a-time

10

(a) Q1 (b) Q3 (c) Q4 (d) Q5

(e) Q6 (f) Q13 (g) Q14 (h) Q19

Figure 17: Multi-threaded Execution – The performance of Peloton when using multiple threads to execute queries with and without the ROF model.

Figure 18: System Comparison – Performance evaluation of the TPC-H
benchmark in Vector, HyPer, and Peloton with and without our ROF model.

query plans. For Peloton, we execute the queries both with and
without our ROF model enabled; this corresponds to the “baseline”
and “optimized” configurations from Sect. 5.2.

We deployed all of the DBMS using the same hardware and
database as described in Sect. 5.1. To ensure a fair comparison, we
disabled multi-threaded execution in all of the systems and made
a good faith effort to tune each one for TPC-H. We note, however,
that both Vector and HyPer include additional optimizations that
may not exist across all three DBMSs. Thus, we tried to ensure the
query plans generated in each system are equivalent or at least do
not differ too greatly. We warm up each DBMS first by executing
all of the TPC-H queries without taking measurements.

The results of this experiment are shown in Fig. 18. We now
provide an analysis of the eight TPC-H queries:

Q1: HyPer performs the best in Q1, completing almost 1.38⇥
faster than Peloton, and more than 6.5⇥ faster than Vector. This is
because HyPer uses fixed-point decimal arithmetic rather than more
computationally expensive floating point arithmetic.

Q3: Peloton with our ROF technique outperforms Vector and
HyPer by 1.8⇥ and 1.5⇥, respectively. Additionally, we see that
Peloton without our ROF technique is comparable to HyPer since
they both use the same push-based compiled queries. Q3 contains
two joins, both of which access a hash-table that does not fit in
cache if the join is not partitioned using early materialization. This
means that every access to the hash-table is a cache-miss. Our ROF
technique hides this cache-miss latency by overlapping computation
and memory accesses of different tuples. While (radix) partitioning-

based joins is another strategy to solve this problem, previous work
has shown that the subsequent overhead of gathering attributes nec-
essary for operators following the join negates the benefits of gained
by in-cache joins [36]. Second, Vector executes the LineItem predi-
cate using a SIMD scan. This version of HyPer does not implement
SIMD scans, though this is addressed in later work [25].

Q4: Peloton with our ROF technique outperforms both Vector
and HyPer by 1.8⇥ and 1.2⇥, respectively. Peloton without ROF
has performance comparable to Vector, but is outperformed by
HyPer. The primary reason for this is because HyPer uses CRC32
for hashing, implemented using SIMD (SSE4), whereas Peloton
uses the more computationally intensive MurmurHash3. Thus, the
cache benefits afforded by prefetching with ROF are slightly offset
by the higher instruction overhead (in comparison to HyPer) due
to a more complex hash function. In general, Peloton with ROF
improves performance over the baseline by more than 2⇥.

Q5: Peloton with ROF is roughly 3.4⇥ faster than Vector and
1.1⇥ faster than HyPer. Q5 stresses join performance as it contains
a five-way join between the largest tables in the benchmark. Hence,
prefetching plays an important role as materialized join-tables will
exceed the size of cache. Peloton with ROF (and prefetching) im-
proves baseline performance by over 2⇥, but only offers a small
improvement over HyPer. As in Q4, this is due to the simpler
CRC32 hash function employed by HyPer. The scan over LineItem
contains no restrictions before probing the hash-table on Orders,
hence the majority of time is spent performing hash computations
in Peloton. This higher instruction count in comparison to HyPer
offsets the benefits of prefetching.

Q6: Peloton with ROF outperforms Vector by 5.4⇥ and HyPer
by 2.3⇥. Q6 is a sequential scan with a highly selective predi-
cate (1.2%). Hence, leveraging SIMD predicate evaluation yields
significant performance improvements, more than 2⇥ in Peloton.
The version of HyPer we use does not include the SIMD optimiza-
tions [25], but we believe it will also enjoy similar benefits of SIMD.

Q13: In Q13, we see that Peloton without ROF performs worse
than Vector, but when we enable ROF to remove the cache miss
penalties incurred during the join it performs roughly 1.4⇥ faster
than Vector. We note here that the majority of time spent in executing
this query is in the scan of the Orders table. This is because the
scan involves a LIKE clause and thus the query’s performance hinges
on the performance this evaluation. We note that Peloton uses a
simple comparison for the LIKE function that assumes clean input
data. The slower results for Vector and HyPer suggest to us that they

11

are likely using more sophisticated implementations that are able to
handle problematic data better (e.g., broken UTF encodings).

Q14: This query contains a highly selective scan on LineItem
that benefits from a SIMD implementation. Peloton and Vector
are able to take advantage of this optimization, but HyPer (in this
version) and Peloton without ROF must execute a scalar scan. We
note that both Peloton and Vector implement Q14 with a hash-join,
whereas HyPer uses an index nested-loop join. This is the reason
why Peloton without ROF is slower than HyPer since the probe
phase of the join will incur the additional overhead of duplicate chain
traversal. But with the addition of SIMD scan and prefetching over
the build- and probe-phase of the join, Peloton with ROF performs
3.9⇥ and 1.35⇥ faster than Vector and HyPer, respectively.

Q19: Similar to Q14, Q19 also contains a highly selective scan
on LineItem. But Peloton uses dictionary-encoding for the filtered
attributes because their cardinalities are sufficiently small. With
dictionary-encoding enabled, Peloton with ROF converts the scalar
scan over LineItem into vectorized scan using SIMD. Vector also
automatically compresses strings. With the addition of prefetching
and staging, Peloton with ROF executes this query 6⇥ faster than
Vector and 8⇥ faster than HyPer.

6. RELATED WORK
A primitive form of code generation was developed for IBM Sys-

tem R in 1970s [13]. System R directly compiled SQL statements
into assembly code by selecting pre-defined code templates for each
operator. The IBM researchers later remarked that though compil-
ing repetitive queries had obvious benefits by avoiding the cost of
parsing and optimization, the benefits of compiling ad-hoc queries
were less clear. But IBM abandoned this approach in the early 1980s
because of the high cost of external function calls, poor portability
across operating systems, and software engineering complications.

Query compilation was not considered in any major DBMS in
the 1980s and 1990s (with a few minor exceptions). Instead, it
was supplanted by the Volcano query processing model [19]. The
Volcano abstraction allows a DBMS’s query planner to compose
plans from operators. It is also easier to implement and manage in
practice and offers comparable performance as query compilation
when operating in a disk-oriented DBMS. This is because the domi-
nant factor in query evaluation is the time required to retrieve data
from disk and not the overhead of interpretation.

More recently, query compilation has been used in modern in-
memory DBMSs. One of the first systems to revive the technique
was Microsoft’s Hekaton [18], an in-memory OLTP storage manager
for the SQL Server DBMS. Hekaton compiles queries by transform-
ing a conventional query plan into a single C-code function that
implements a Volcano-style iterator.

Cloudera’s Impala [23] is a distributed OLAP DBMS with a
mixed C++/LLVM vectorized execution engine. Impala uses LLVM
to compile query-specific versions of frequently executed functions,
including functions to parse tuples, compute tuple hashes, and eval-
uate predicates. Impala also compiles and inlines UDFs into the
query’s execution plan.

HyPer [20] pioneered the data-centric (push-based) query execu-
tion model [30]. HyPer translates a given query plan into LLVM IR,
but relies on precompiled C++ code for the more complex query-
agnostic database logic. The push-based engine fuses together all
operators in a pipeline, obviating the need to materialize data be-
tween operators, instead allowing them to access tuple attributes
directly in CPU registers. This produces compact loops that improve
code locality and overall execution time.

MemSQL [4] also uses the LLVM to perform whole query compi-
lation. Query parameters are stripped out from queries to avoid the
need for recompilation when the query is run with new input values.

LegoBase [21] uses generative-programming (i.e., staging) to
partially evaluate a Volcano-style interpretation engine and produce
highly customized C query code. Optimizations to convert to push-
based dataflow, row or columnar formats, or vectorized or tuple-at-
a-time processing are applied during this transformation.

DBToaster [8, 7] is a stream processing engine designed for effi-
cient view maintenance. In existing DBMSs, incremental updates
to materialized views are treated like an update to a regular table.
DBToaster instead analyzes these relationships to construct an opti-
mized delta query that often obviates the need for subsequent scans
of base tables. It then translates this delta query into C++ code and
compiles it into machine code using a standard compiler.

Tupleware [15] is a distributed DBMS that automatically com-
piles workflows composed of UDFs into LLVM IR. Workflows
are introspected to find vectorizable and non-vectorizable portions
that drives the code generation process. Tupleware also presents a
new hybrid predicate evaluation technique that separates predicate
checking with output copying using a heuristic model.

In [38] and [37], the authors compared the performance of a
vectorized and compiled query engine across three different simple
query types: projections, selections and hash joins. They conclude
that neither technique is always optimal, but that a combination of
the two techniques is required to achieve the best performance.

The HIQUE [24] system uses query compilation without the
Volcano iterator model. Instead, HIQUE translates the algebraic
query plan into C++ using code templates for each operator. These
templates form the structure of the operator, but low-level record
access methods and predicate evaluation logic is customized per
query. Unlike our ROF model, each operator in HIQUE always
materializes its results, which prevents operator pipelining.

MapD [39] is a GPU-accelerated DBMS designed to handle read-
only queries. It implements a mixed C++/LLVM execution engine.
All query-specific routines and predicate expressions are compiled
into LLVM IR, then JIT compiled into native GPU code through
Nvidia’s intermediary NVVM IR. Like MemSQL, MapD extracts
constants to avoid recompilation when a query is re-executed with
different parameters. It does this by using the generated IR as a key
into a hash-table that maps IR to JITed query code.

7. CONCLUSION
We presented the relaxed operator fusion query processing model

for in-memory OLAP DBMSs. With ROF, the DBMS introduces
staging points in a query plan where intermediate results are tem-
porarily materialized to cache-resident buffers. Such buffers enables
the DBMS to employ various optimizations to exploit inter-tuple par-
allelism using a combination of vectorization and software prefetch-
ing. This allows a DBMS to support faster OLAP query execution
and to support vectorization optimizations that were previously not
possible when data sets exceed the size of CPU-level caches. We
implemented our ROF model in the Peloton in-memory DBMS and
showed that it reduces the execution time of OLAP queries by up
to 2.2⇥. We also compared Peloton with ROF against two other
in-memory DBMSs (HyPer and Actian Vector) and showed that it
achieves 1.8⇥ lower execution times.

Acknowledgements: This work was supported (in part) by the
National Science Foundation (CCF-1438955, IIS-1718582), and the
Intel Science and Technology Center for Visual Cloud Systems. We
also would like to thank Tim Kraska for his feedback.

12

8. REFERENCES[1] Actian Vector. http://esd.actian.com/product/Vector.
[2] Apache Cassandra. http://cassandra.apache.org/.
[3] Apache Spark. http://spark.apache.org/.
[4] MemSQL. http://www.memsql.com.
[5] Peloton Database Management System. http://pelotondb.io.
[6] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs.

row-stores: How different are they really? In SIGMOD, pages
967–980, 2008.

[7] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster:
Higher-order delta processing for dynamic, frequently fresh views.
PVLDB, 5(10):968–979, 2012.

[8] Y. Ahmad and C. Koch. Dbtoaster: A SQL compiler for
high-performance delta processing in main-memory databases.
PVLDB, 2(2):1566–1569, 2009.

[9] A. Appleby. MurMur3 Hash.
https://github.com/aappleby/smhasher.

[10] P. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden
Messages and Lessons Learned from an Influential Benchmark. 2014.

[11] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-pipelining query execution. In CIDR, 2005.

[12] D. Broneske, A. Meister, and G. Saake. Hardware-sensitive scan
operator variants for compiled selection pipelines. In
Datenbanksysteme für Business, Technologie und Web (BTW), pages
403–412, 2017.

[13] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F.
King, B. G. Lindsay, R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G.
Selinger, M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W. Wade, and
R. A. Yost. A history and evaluation of system r. Commun. ACM,
24:632–646, October 1981.

[14] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving
hash join performance through prefetching. In ICDE, pages 116–127,
2004.

[15] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig,
U. Cetintemel, and S. Zdonik. An architecture for compiling
udf-centric workflows. PVLDB, 8(12):1466–1477, 2015.

[16] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and
S. B. Zdonik. Tupleware: "big" data, big analytics, small clusters. In
CIDR, 2015.

[17] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W.
Lee, A. Motivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn,
S. Triantafyllis, and P. Unterbrunner. The snowflake elastic data
warehouse. SIGMOD ’16, pages 215–226, 2016.

[18] C. Freedman, E. Ismert, and P.-A. Larson. Compilation in the
microsoft SQL server hekaton engine. IEEE Data Eng. Bull., 2014.

[19] G. Graefe. Volcano- an extensible and parallel query evaluation
system. IEEE Trans. on Knowl. and Data Eng., 6:120–135, 1994.

[20] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In
ICDE, pages 195–206, 2011.

[21] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient
query engines in a high-level language. PVLDB, 7(10):853–864, 2014.

[22] O. Kocberber, B. Falsafi, and B. Grot. Asynchronous memory access
chaining. PVLDB, 9(4):252–263, 2015.

[23] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching,
A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff,
D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke,
S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL engine for hadoop. In
CIDR 2015, Seventh Biennial Conference on Innovative Data Systems
Research, 2015.

[24] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code for holistic
query evaluation. In Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, pages 613–624. IEEE, 2010.

[25] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and
A. Kemper. Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 311–326, 2016.

[26] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven
parallelism: A numa-aware query evaluation framework for the
many-core age. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14,
pages 743–754, 2014.

[27] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive
data structures. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VII, pages 222–233, 1996.

[28] G. Moerkotte and T. Neumann. Accelerating queries with group-by
and join by groupjoin. PVLDB, 4(11):843–851, 2011.

[29] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a
compiler algorithm for prefetching. In Proceedings of the Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS V, pages 62–73, 1992.

[30] T. Neumann. Efficiently compiling efficient query plans for modern
hardware. PVLDB, 4(9):539–550, 2011.

[31] S. Pantela and S. Idreos. One loop does not fit all. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 2073–2074, 2015.

[32] D. Paroski. Code Generation: The Inner Sanctum of Database
Performance. http://highscalability.com/blog/2016/9/7/
code-generation-the-inner-sanctum-of-database-performance.
html, September 2016.

[33] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking simd
vectorization for in-memory databases. SIGMOD, pages 1493–1508,
2015.

[34] O. Polychroniou and K. A. Ross. Vectorized bloom filters for
advanced simd processors. DaMoN ’14, pages 6:1–6:6, 2014.

[35] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis of
hashing methods and its implications on query processing. PVLDB,
9(3):96–107, 2015.

[36] S. Schuh, X. Chen, and J. Dittrich. An experimental comparison of
thirteen relational equi-joins in main memory. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 1961–1976, 2016.

[37] J. Sompolski. Just-in-time Compilation in Vectorized Query Execution.
Master’s thesis, University of Warsaw, Aug 2011.

[38] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs.
compilation in query execution. In Proceedings of the Seventh
International Workshop on Data Management on New Hardware,
DaMoN ’11, pages 33–40, 2011.

[39] A. Suhan and T. Mostak. MapD: Massive Throughput Database
Queries with LLVM on GPUs.
http://devblogs.nvidia.com/parallelforall/mapd, June 2015.

[40] The Transaction Processing Council. TPC-H Benchmark (Revision
2.16.0). http://www.tpc.org/tpch/, June 2013.

[41] S. D. Viglas. Just-in-time compilation for sql query processing.
PVLDB, 6(11):1190–1191, 2013.

[42] J. Zhou and K. A. Ross. Implementing database operations using simd
instructions. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02, pages 145–156,
New York, NY, USA, 2002. ACM.

[43] M. Zukowski, N. Nes, and P. Boncz. Dsm vs. nsm: Cpu performance
tradeoffs in block-oriented query processing. DaMoN ’08, pages
47–54, 2008.

13

