
THE FAISS LIBRARY

Matthijs Douze
FAIR, Meta

Alexandr Guzhva
Zilliz

Chengqi Deng
Zhejiang University

Jeff Johnson
FAIR, Meta

Gergely Szilvasy
FAIR, Meta

Pierre-Emmanuel Mazaré
FAIR, Meta

Maria Lomeli
FAIR, Meta

Lucas Hosseini
Skip Labs

Hervé Jégou
Kyutai

Abstract

Vector databases manage large collections of embed-
ding vectors. As AI applications are growing rapidly,
so are the number of embeddings that need to be
stored and indexed. The Faiss library is dedicated to
vector similarity search, a core functionality of vector
databases. Faiss is a toolkit of indexing methods and
related primitives used to search, cluster, compress
and transform vectors. This paper first describes the
tradeoff space of vector search, then the design prin-
ciples of Faiss in terms of structure, approach to opti-
mization and interfacing. We benchmark key features
of the library and discuss a few selected applications
to highlight its broad applicability.

1 Introduction

The emergence of deep learning has induced a shift in
how complex data is stored and searched, noticeably
by the development of embeddings. Embeddings are
vector representations, typically produced by a neural
network, whose main objective is to map (embed)
the input media item into a vector space, where the
locality encodes the semantics of the input. Embed-
dings are extracted from various forms of media:
words [Mikolov et al., 2013, Bojanowski et al., 2017],
text [Devlin et al., 2018, Izacard et al., 2021], im-
ages [Caron et al., 2021, Pizzi et al., 2022], users
and items for recommendation [Paterek, 2007].
They can even encode object relations, for in-
stance multi-modal text-image or text-audio rela-
tions [Duquenne et al., 2023, Radford et al., 2021].

Embeddings are employed as an intermediate
representation for further processing, e.g. self-
supervised image embeddings can input to shal-
low supervised image classifiers [Caron et al., 2018,
Caron et al., 2021]. They are also leveraged as
a pretext task for self-supervision, e.g. in Sim-
CLR [Chen et al., 2020]. The purpose that we consider
in this paper is when embeddings are used directly
to compare media items. The embedding extractor
is designed such that the distance between embed-
dings reflects the similarity between their correspond-

ing media. As a result, neighborhood search in this
vector space offers a direct implementation of similar-
ity search between media items.

Embeddings are popular in industrial setting for
tasks where end-to-end learning would not be cost-
efficient. For example, a k nearest-neighbor classi-
fier is more efficient to upgrade than a classification
deep neural net. In that case, embeddings are par-
ticularly useful as a compact intermediate representa-
tion that can be re-used for several purposes. This ex-
plains why industrial database management systems
(DBMS) that offer a vector storage and search func-
tionality have gained adoption in the last years. These
DBMS are at the junction of traditional databases and
Approximate Nearest Neighbor Search (ANNS) algo-
rithms. Until recently, the latter were mostly consid-
ered for specific use-cases or in research.

From a practical point of view, there are multiple
advantages to maintain a clear separation of roles be-
tween the embedding extraction and the vector search
algorithm. Both are bound by an “embedding con-
tract” on the embedding distance:

• The embedding extractor, which is typically a
neural network in modern systems, is trained so
that distances between embeddings are aligned
with the task to perform.

• The vector index aims at performing neighbor
search among the embedding vectors as accu-
rately as possible w.r.t. exact search results given
the agreed distance metric.

Faiss is an industrial-grade library for ANNS. It is
designed to be used both from simple scripts and as
a building block of a DBMS. In contrast with other li-
braries that focus on a single indexing method, Faiss
is a toolbox that contains indexing methods that com-
monly involve a chain of components (preprocessing,
compression, non-exhaustive search, etc.). This is nec-
essary: depending on the usage constraints, the most
efficient indexing methods are different.

Let us also summarize what Faiss is not: Faiss does
not extract features – it only indexes embeddings that
have been extracted by a different mechanism; Faiss
is not a service – it only provides functions that are

1

ar
X

iv
:2

40
1.

08
28

1v
1

 [
cs

.L
G

]
 1

6
Ja

n
20

24

Junwang Zhao
Highlight

Junwang Zhao
Highlight

run as part of the calling process on the local machine;
Faiss is not a database – it does not provide concur-
rent write access, load balancing, sharding, consis-
tency. The scope of the library is intentionally limited
to focus on carefully implemented algorithms.

The basic structure of Faiss is the index. An index
can store a number of database vectors that are progres-
sively added to it. At search time, a query vector is sub-
mitted to the index. The index returns the database
vector that is closest to the query vector in terms of
Euclidean distance. There are many variants of this
basic functionality: instead of just the nearest neigh-
bor, k nearest neighbors can be returned; instead of a
fixed number of neighbors, only the vectors within a
certain range can be returned; several vectors can be
searched in parallel, in a batch mode; metrics other
than the Euclidean distance are supported; the accu-
racy of search can be traded for speed or memory. The
search can use either CPUs or GPUs.

The objective of this paper is to expose the de-
sign principles of Faiss. A similarity search library
has to strike a tradeoff between different constraints
(Section 3), which is addressed in Faiss with two
main tools: vector compression (Section 4) and non-
exhaustive search (Section 5). Faiss is engineered to
be flexible and usable from other tools (Section 7). We
also review a few applications of Faiss for trillion-
scale indexing, text retrieval, data mining, and con-
tent moderation (Section 8). Throughout, we will re-
fer with a specific style to functions or classes in the
Faiss codebase1 and documentation2.

2 Related work

Indexing methods. In the last decade, there has
been a steady stream of papers about indexing meth-
ods that were published together with their reference
implementations. In Faiss, we consider in particular
algorithms that cover a wide spectrum of use-cases.

One of the most popular approach in industry is to
employ Locality Sensitive Hashing as a way to com-
press embeddings into compact codes. In particu-
lar, the Cosine sketch [Charikar, 2002] produces bi-
nary vectors such that, in the corresponding Ham-
ming space, the Hamming distance is an estimator
of the cosine similarity between the original embed-
dings. The compactness of these sketches enables stor-
ing and therefore searching very large databases of
media content [Lv et al., 2004], without the require-
ment to store the original embeddings. We refer the
reader the early survey by [Wang et al., 2015] for re-
search on binary codes.

Since the work by [Jégou et al., 2010], ANN based
on quantization has emerged as a powerful alter-
native to binary codes [Wang et al., 2017]. We re-
fer the reader to the survey by [Matsui et al., 2018]
that discusses numerous research works related to
quantization-based compact codes.

1https://github.com/facebookresearch/faiss
2https://faiss.ai/

LSH is also often referring to indexing with mul-
tiple partitions, such as E2LSH [Datar et al., 2004].
We do no consider them because they are not
performing as well as learned partitions on real
data [Paulevé et al., 2010]. Early data-aware meth-
ods that proved successful on large datasets include
multiple partitions based on kd-tree or hierarchical k-
means in [Muja and Lowe, 2014]. They are often com-
bined with compressed-domain representation and
are especially appropriate for very large-scale set-
tings [Jegou et al., 2008, Jégou et al., 2010].

After the introduction of the NN-descent algo-
rithm [Dong et al., 2011], ANN algorithms based on
graphs have emerged as a viable alternative to meth-
ods based on space partitioning. In particular
HNSW, which is the most popular current indexing
method [Malkov and Yashunin, 2018] for medium-
sized dataset is implemented in HNSWlib.

Software packages. Most of the research works on
vector search were open-sourced, and some of these
evolved in relatively comprehensive software pack-
ages for vector search. FLANN includes several in-
dex types and a distributed implementation described
extensively in the paper [Muja and Lowe, 2014]. The
first implementation of product quantization relied
on the Yael library [Douze and Jégou, 2014], that al-
ready had a few of the Faiss principles: opti-
mized primitives for clustering methods (GMM and
k-means), scripting language interface (Matlab and
Python) and benchmarking operators. The NM-
Slib package, intended for text retrieval was the
first package to include HNSW [Boytsov et al., 2016]
and also offers several index types. The HNSWlib
library later became the reference implementation
of HNSW [Malkov and Yashunin, 2018]. Google’s
SCANN library is mainly a thoroughly optimized im-
plementation of IVFPQ [Jégou et al., 2010] on SIMD
and includes several index variants for various
database scales. SCANN was open-sourced together
with the paper [Guo et al., 2020], which does not de-
scribe what makes the library so fast: its engineer-
ing optimization. Diskann [Subramanya et al., 2019]
is Microsoft’s foundational graph-based vector search
library, initially built to exploit hybrid RAM/flash
memory, but that also offers a RAM-only ver-
sion called Vamana. It was later extended to
perform efficient updates [Singh et al., 2021], out-of-
distribution searches [Jaiswal et al., 2022] and filtered
searches [Gollapudi et al., 2023].

Faiss was open-sourced simultaneously with the re-
lease of the paper [Johnson et al., 2019] that describes
the GPU implementation of several index types. The
present paper complements this previous work by de-
scribing the library as a whole.

In parallel, numerous software libraries from the
database world were extended or developed to do
vector search. Milvus [Wang et al., 2021] uses its
Knowhere library, which relies on Faiss as one of its
core engines. Pinecone [Bruch et al., 2023] initially re-

2

https://github.com/facebookresearch/faiss
https://faiss.ai/
Junwang Zhao
Highlight

lied on Faiss. The engine has since been rewritten.
Weaviate [van Luijt and Verhagen, 2020] is a compos-
ite retrieval engine that includes vector search.

Benchmarks and competitions. The leading
benchmark for million-scale datasets is ANN-
benchmarks [Aumüller et al., 2020] that now
compares about 50 implementations of ANNS.
This benchmark was upgraded with the big-
ANN [Simhadri et al., 2022a] challenge, that includes
6 datasets with 1 billion vectors each. Faiss was
used as a baseline for the challenge and multiple
submissions derived from Faiss. The 2023’s edition of
the challenge is at a more modest scale (10M vectors)
but the tasks are more elaborate. For instance there is
a filtered track for which Faiss was a baseline method.

Datasets The datasets used to evaluate vector search
are typical for the tasks that vector search per-
forms. Early datasets are based on keypoint fea-
tures like SIFT [Lowe, 2004] used in image match-
ing. We use BIGANN [Jégou et al., 2011b], a
dataset of 128-dimensional SIFT features. Later,
when global image descriptors produced by neu-
ral nets became popular, the Deep1B dataset was
released [Babenko and Lempitsky, 2016], with 96-
dimensional image features extracted with Google
LeNet [Szegedy et al., 2015]. For this paper we intro-
duce a dataset of 768-dimensional Contriever text em-
beddings [Izacard et al., 2021] that are compared with
inner product similarity. The embeddings are com-
puted on English Wikipedia passages. The higher di-
mension of these embeddings is typical for contempo-
rary applications.

Each dataset has 10k query vectors, 20M to 350M
training vectors. We indicate the size of the database
explicitly, for example “Deep1M” means the database
contains the 1M first vectors of deep1B. The training,
database and query vectors are sampled randomly
from the same distribution, we don’t address out-
of-distribution data in this paper [Jaiswal et al., 2022,
Baranchuk et al., 2023].

3 Performance axes of a vector
search library

Vector search is a well-defined, unambiguous oper-
ation. In its simplest formulation, given a set of
database vectors {xi, i = 1..N} ⊂ Rd and a query vec-
tor q ∈ Rd, it computes

n = argmin
n=1..N

∥q − xn∥ (1)

This can be computed with a direct algorithm by iter-
ating over all database vectors: this is brute force search.
A slightly more general and complex operation is to
compute the k nearest neighbors of q:

(n1, ..., nk) = k − argmin
n=1..N

∥q − xn∥ (2)

This is what the search method of a Faiss index re-
turns. A related operation is to find all the elements
that are within some distance ε to the query:

R = {n = 1..N s.t. ∥q − xn∥ ≤ ε}, (3)

which is computed with the range search method.

Distance measures. In the equations above, we
leave the definition of the distance undefined. The
most commonly used distances in Faiss are the L2 dis-
tance, the cosine similarity and the inner product simi-
larity (for the latter two the argmin should be replaced
with an argmax). These simple measures have useful
analytical properties: for example, they are invariant
under d-dimensional rotations.

There are many relationships between the mea-
sures. They can be made equivalent by preprocess-
ing transformations on the query and/or the database
vectors. Table 1 summarizes the preprocessing trans-
formations that are applicable for various bridges.
Some were already identified [Bachrach et al., 2014,
Hong et al., 2019], others are new.

Note that vectors transformed in this
way have a very anisotropic distribu-
tion [Morozov and Babenko, 2018] and can be
“harder” to index. In particular, for product or scalar
quantization, the additional dimension incurred for
many transformations is not homogeneous with other
dimensions. See Section 4.2 for mitigations.

3.1 Brute force search

Implementing brute force search efficiently is not triv-
ial [Chern et al., 2022, Johnson et al., 2019]. It requires
(1) an efficient way of computing the distances and
(2) for k-nearest neighbor search, an efficient way of
keeping track of the k smallest distances.

Computing distances in Faiss is performed either by
direct distances computations, or, when query vectors
are provided in large enough batches, using a matrix
multiplication decomposition [Johnson et al., 2019,
equation 2]. The Faiss functions are exposed in knn
and knn gpu for CPU and GPU respectively.

Collecting the top-k smallest distances
is usually done via a binary heap on
CPU [Douze and Jégou, 2014, section 2.1] or a
sorting network on GPU [Johnson et al., 2019,
Ootomo et al., 2023]. For larger values of k, it is more
efficient to use a reservoir: an unordered result buffer
of size k′ > k that is resized to k when it overflows.

Brute-force search gives accurate results. However,
for large, high-dimensional datasets this approach be-
comes slow. In low dimensions, there are branch-and-
bound methods that yield exact search results. How-
ever, in large dimensions they provide no speedup
over brute force search [Weber et al., 1998].

In these cases, we have to resort to approximate
nearest neighbor search (ANNS).

3

Junwang Zhao
Highlight

Junwang Zhao
Highlight

index metric → L2 IP cos
wanted metric ↓

L2 identity x′ = [x;−α/2]
y′ = [y; ∥y∥2/α]

x′ = [x;−α/2; 0]
y′ = [βy;β∥y∥2/α;√

1− β2∥y∥2 − β2∥y∥4/α2]

IP
x′ = [x; 0]

y′ = [y;
√
α2 − ∥y∥2] identity

x′ = [x; 0]

y′ = [αy;
√

1− ∥αy∥2]

cos x′ = x/∥x∥
y′ = y/∥y∥

x′ = x/∥x∥
y′ = y/∥y∥ identity

Table 1: One wants to search for a query vector x among database vector y given a particular metric (rows). The table indicates how to
preprocess (x, y) 7−→ (x′, y′) so that an index with another metric (columns) returns the nearest neighbors for the source metric. Some
cases require adding 1 or 2 extra dimensions to the original vectors, as is denoted by the vector concatenation symbol [.; .]. The positive
scalar parameters α and β are arbitrary. It may be is necessary to calibrate them to avoid negative values under a square root.

3.2 Metrics for Approximate Nearest
Neighbor Search

With ANNS, the user accepts imperfect results, which
opens the door to a new solution design space. The
database may be preprocessed into an indexing struc-
ture, rather than just being stored as a plain matrix.

Accuracy metrics. In ANNS the accuracy is mea-
sured as a difference with the exact search results.
Note that this is an intermediate goal: the end-to-end
accuracy depends on (1) how well the distance metric
correlates with the item matching objective and (2) the
quality of ANNS, which is what we measure here.

This accuracy metric is compared to the ground-
truth results from Equation (1).

The accuracy for k-nearest neighbor search is gen-
erally evaluated as the “n-recall@m”, which is the
fraction of the n ground-truth nearest neighbors that
are in the m first search results. Most often n=1
or n=m (in which case the measure is a.k.a. “in-
tersection measure”). When n=m= 1, the recall
measure and intersection are the same, and the re-
call is called “accuracy”. Note, in some publica-
tions [Jégou et al., 2010], recall@n means 1-recall@n,
while in others [Simhadri et al., 2022b] it corresponds
to n-recall@n.

For range search, there are two thresholds: the
ground-truth threshold ε of Equation 3 and a sec-
ond threshold ε′ applied at search time. By sweep-
ing ε′ from small to large, the result list R̂ increases.
Comparing the search-time R̂ with the ground-truth
R yield a precision and recall, so the sweep produces
a precision-recall curve. The area under the PR-curve
is the mean average precision score of range search.

For vector codecs, the metric of choice is the mean
squared error (MSE) between the original vector and
the reconstructed vector. For an encoder C and a de-
coder D, the MSE is:

MSE = Ex

[
∥D(C(x))− x∥22

]
(4)

Resource metrics. The other axes of the tradeoff are
related to computing resources. During search, the
search time and memory usage are the main con-
straints, the experiments in this paper operate mainly

with these. The memory usage can be smaller than
that of the original vectors, if compression is used.

The index may need to store training data, which
incurs a constant memory overhead before any vector
is added to the index. The index can also add per-
vector memory overhead to the memory used to store
each vector. This is the case for graph indexes, that
need to store a graph for each node.

The index building time is also a resource con-
straint. It may be decomposed into a training time,
a fixed cost that needs to be paid regardless of the
number of vectors added to the index and the addi-
tion time per vector.

The memory usage is more complex to grasp for set-
tings with hybrid storage, for example RAM + flash +
disk or GPU memory + RAM. In that case, there is
usually a small amount of fast memory and a larger
amount of slower memory, so several access speeds
need to be taken into account.

In distributed settings or flash-backed storage,
the relevant metric is the number of I/O opera-
tions (IOPS). Every read operation fetches a whole
page (of e.g. 4 kiB). Therefore, random accesses to
scalar elements are particularly inefficient. It is
better to organize the data layout to minimize the
IOPs [Subramanya et al., 2019]. Another low-level
metric is the amount of extra memory needed to
pre-compute lookup tables used to speed up search,
which can be a limiting factor.

3.3 Tradeoffs

Most often only a subset of metrics matter. For ex-
ample, when a very large number of searches are per-
formed on a fixed index, index building time does
not matter. Or when the number of vectors is so small
that the raw database fits in RAM multiple times, then
memory usage does not matter. We call the metrics
that we care about the active constraints. Note that ac-
curacy is always an active constraint because it can be
traded off against every single other constraint. In ex-
treme cases where accuracy does not matter, an index
that returns random results would be sufficient (and
Faiss does actually provide an IndexRandom used in
some benchmarking tasks).

4

Junwang Zhao
Highlight

Junwang Zhao
Highlight

0.15 0.20 0.25 0.30 0.35 0.40
Accuracy: 1-recall@1

103

104

105

106
Sp

ee
d:

 q
ue

rie
s p

er
 se

co
nd

Tested settings
Pareto-optimal settings
Pareto front after 50 experiments

0 1000 2000 3000 4000 5000 6000
experiment count

0

50

100

150

200

250

300

350

400

re
su

lt
co

un
t

Tested settings
Kept settings

Figure 1: Example of exploration of a parameter space with 3 parameters (an IndexIVFPQ with polysemous codes and HNSW coarse
quantizer, running on the Deep100M dataset). The total number of configurations is 5808, but only 398 experiments are run. We also show
the set of operating points obtained with just 50 experiments.

In the following sections, we will most often con-
sider that the active constraints are speed, memory
usage and accuracy. This can be done, for example,
by fixing a memory budget and measuring the speed
and accuracy of several index types and hyperparam-
eter settings.

3.4 Exploring search-time settings

For a fixed index, there are often one or several search-
time hyper-parameters that shift the tradeoff between
speed and accuracy. This is for example the nprobe
hyperparameter for an IndexIVF, see Section 5. In
general, we define hyperparameters as scalar values
such that when the value is higher, the speed de-
creases and the accuracy increases. We can then keep
only the Pareto-optimal settings, defined as settings
that are the fastest for a given accuracy, or equiva-
lently that have the highest accuracy for a given time
budget [Sun et al., 2023a].

Exploring the Pareto-optimal frontier when there is
a single hyper-parameter consists in sweeping over its
values and measuring the corresponding speed and
accuracy. This exploration can be done with a certain
level of granularity.

When there are several hyperparameters, the Pareto
frontier can be recovered by exhaustively testing the
Cartesian product of these parameters. However, the
number of settings to test grows exponentially with
the number of parameters.

Pruning the parameter space. There is an interest-
ing optimization in this case, which enables efficient
pruning. We note a tuple of n hyper-parameters π =
(p1, ..., pn) ∈ P = P1 × ...× Pn, and ≤ a partial order-
ing on P : (p1, .., pn) ≤ (p′1, .., p

′
n) ⇔ ∀i, pi ≤ p′i. Let

S(π) and A(π) be the speed and accuracy obtained
with this tuple of parameters. P∗ ⊂ P is the set of
Pareto-optimal settings:

P∗ =
{
π ∈ P|∄π′ ∈ P s.t. (S(π′), A(π′)) > (S(π), A(π))

}
(5)

Since the individual parameters have a predictable,
monotonic effect on speed and accuracy, we have the
following implication:

π′ ≥ π ⇒
{

S(π′) ≤ S(π)
A(π′) ≥ A(π)

(6)

Thus, if a subset P̂ ⊂ P of settings is already evalu-
ated, the following upper bounds hold for a new set-
ting π ∈ P :

S(π) ≤ Ŝ(π) = Inf
π′∈P̂ s.t. π′≤π

S(π′) (7)

A(π) ≤ Â(π) = Inf
π′∈P̂ s.t. π′≥π

A(π′) (8)

If any previous evaluation Pareto-dominates these
bounds, the setting π does not need to be evaluated:

∃π′ ∈ P̂ s.t. (S(π′), A(π′)) > (Ŝ(π), Â(π)) ⇒ π /∈ P∗

(9)
In practice, we evaluate settings from P in a random

order. The pruning becomes more and more effective
throughout the process. It is also more effective when
the number of parameters is larger. Figure 1 shows
an example with |P| = 5808 combined parameter set-
tings. The pruning from Eq. 9 reduces this to 398 ex-
periments, out of which |P∗| = 87 are optimal. The
Faiss object OperatingPoints implements this logic.

3.5 Exploring the index space

Faiss includes a benchmarking framework that ex-
plores the index design space to find the parame-
ters that optimally trade off accuracy, memory us-
age and search time. The benchmark generates can-
didate index configurations to evaluate, sweeps both
construction-time and search-time parameters, and
measures these metrics. The accuracy metric is se-
lected as applicable, n-recall@m for k-nearest neigh-
bors, mean average precision for range search, and
mean squared error for vector codecs, and it can be
further customized.

5

No encoding PQ encoding scalar quantizer
Flat IndexFlat IndexPQ IndexScalarQuantizer
IVF IndexIVFFlat IndexIVFPQ IndexIVFScalarQuantizer

HNSW IndexHSNWFlat IndexHNSWPQ IndexHNSWScalarQuantizer

Table 2: A few combinations of pruning approaches and compression methods. In the cells: the corresponding index implementations.

Decoupling encoding and non-exhaustive search op-
tions. Beyond a certain scale, search time is deter-
mined by the number of distance computations be-
tween the query vector and database vectors. The
non-exhaustive search methods in Faiss are either
based on a clustering, or on a graph exploration, see
Section 5. Another limiting factor of vector search is
the memory usage per vector (RAM or disk). In or-
der to fit more vectors, they need to be compressed.
Faiss implements a range of compression options, see
Section 4.

Therefore, Faiss indexes are built as a combination
of pruning method and a compression method, see Ta-
ble 2. In the following sections, we explore the options
in these two directions.

To evaluate a large number of index configurations
efficiently, the benchmarking framework takes advan-
tage of this compositional nature of Faiss indices dur-
ing the index training and search. The training of vec-
tor transformations and k-means clustering for IVF
coarse quantizers are factored out and reused during
the training of compatible indices. Coarse quantizers
and IVF indices are first trained and evaluated sep-
arately, the parameter space is pruned as described
in the previous section, and only the combinations
of Pareto-optimal components are benchmarked to-
gether. It is implemented in bench fw.

3.6 Refining (IndexRefine)

It is possible to combine a fast and inaccurate in-
dexing method with a slower and more accurate
search [Jégou et al., 2011b, Subramanya et al., 2019,
Guo et al., 2020]. This is done by querying the fast
index to retrieve a shortlist of results. The more ac-
curate search then computes more accurate search re-
sults only for the shortlist. This requires the accurate
index to store the vectors in a way that allows efficient
random access to possibly-compressed database vec-
tors. Some implementations use a slower storage (e.g.
flash) for the second index [Subramanya et al., 2019,
Sun et al., 2023b].

For the first-level index, the relevant accuracy met-
ric is the recall at the rank that will be used for re-
ranking. The recall @ rank 1000 can thus sometimes
be a relevant metric, even if the end application does
not use the 1000th neighbor at all.

Several methods are also based on this refin-
ing principle but do not use two separate in-
dexes. Instead, they use two ways of interpret-
ing the same compressed vectors: a fast and in-
accurate decoding and a slower but more accu-
rate decoding [Douze et al., 2016, Douze et al., 2018,

Morozov and Babenko, 2019, Amara et al., 2022] are
based on this principle. The polysemous codes
method [Douze et al., 2016] is implemented in Faiss’s
IndexIVFPQ.

4 Compression levels

Faiss supports various vector codecs: these are meth-
ods to compress vectors so that they take up less mem-
ory. A compression method C : Rd → {1, ...,K}, a.k.a.
a quantizer, converts a continuous multi-dimensional
vector to an integer or equivalently a fixed size bit
string. The length of the corresponding bit string is
called the code size. The decoder D : {1, ...,K} → Rd

reconstructs an approximation of the vector from the
integer. Since the number of distinct integers of a cer-
tain size is finite, the decoder can only reconstruct a
finite number K of distinct vectors.

The search of Equation (1) becomes approximate:

n = argmin
n=1..N

∥q −D(C(xn))∥ = argmin
n=1..N

∥q −D(Cn)∥

(10)
Where the codes Cn = C(xn) are precomputed and
stored in the index. This is the asymmetric distance
computation (ADC) [Jégou et al., 2010]. The symmet-
ric distance computation (SDC) corresponds to the
case when the query vector is also compressed:

n = argmin
n=1..N

∥D(C(q))−D(Cn)∥ (11)

Most Faiss indexes perform ADC as it is more ac-
curate: there is no accuracy loss on the query vectors.
SDC is useful when there is also a storage constraint
on the queries or for indexing methods for which SDC
is faster to compute than ADC.

4.1 The vector codecs

The k-means vector quantizer (Kmeans) The ideal
vector quantizer minimizes the MSE between the orig-
inal and the decompressed vectors. This is formalized
in the Lloyd necessary conditions for the optimality of
a quantizer [Lloyd, 1982].

The k-means clustering algorithm can be seen as
a quantizer that directly applies the Lloyd optimal-
ity conditions [Amara et al., 2022]. The K centroids
of k-means are an explicit enumeration of all possi-
ble vectors that can be reconstructed. Thus the size of
the bit strings that the k-means quantizer produces is
⌈log2 K⌉ bits.

The k-means vector quantizer is very accurate but
the memory usage and encoding complexity grow

6

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

exponentially with the code size. Therefore, k-means
is impractical to use beyond 3-byte codes, correspond-
ing to 16M centroids.

Scalar quantizers Scalar quantizers encode each di-
mension of a vector independently.

A very classical and simple scalar quantizer is LSH
(IndexLSH), where each vector component is encoded
in a single bit by comparing it to a threshold. The
threshold can be set to 0 or trained. Faiss further
supports efficient search of binary vectors via the
IndexBinary objects, see Section 4.5.

The Faiss ScalarQuantizer also supports uniform
quantizers that encode a vector component into 8,
6 or 4 bits – referred to as SQ8, SQ6, SQ4. A per-
component scale and offset determine which values
are reconstructed. They can be set separately for each
dimension or uniformly on the whole vector. The
IndexRowwiseMinMax stores vectors with per-vector
normalizing coefficients. The ranges are trained be-
forehand on a set of representative vectors. The lower-
precision float16 representation is also considered as a
scalar quantizer, SQfp16.

Multi-codebook quantizers. Faiss contains several
multi-codebook quantization options. They are built
from M vector quantizers that can reconstruct K dis-
tinct values each. The codes produced by these meth-
ods are of the form (c1, ..., cM) ∈ {1, ...,K}M , i.e. each
code indexes one of the quantizers. The number of re-
constructed vectors is KM and the code size is thus
M⌈log2(K)⌉.

The product quantizer (ProductQuantizer, also
noted PQ) is a simple multi-codebook quantizer that
splits the input vector into M sub-vectors and quan-
tizes them separately [Jégou et al., 2010] with a k-
means quantizer. At reconstruction time, the individ-
ual reconstructions are concatenated to produce the fi-
nal code. In the following, we will use the notation
PQ6x10 for a product quantizer with 6 sub-vectors
each encoded in 10 bits (M = 6, K = 210).

Additive quantizers are a family of multi-codebook
quantizers where the reconstructions from sub-
quantizers are summed up together. Finding the opti-
mal encoding for a vector given the codebooks is NP-
hard, so practical additive quantizers are heuristics to
find near-optimal codes.

Faiss supports two types of additive quantiz-
ers. The residual quantizer (ResidualQuantizer)
proceeds sequentially, by encoding the differ-
ence (residual) of the vector to encode and the
one that is reconstructed by the previous sub-
quantizers [Chen et al., 2010]. The local search
quantizer (LocalSearchQuantizer) starts from a
sub-optimal encoding of the vector and locally ex-
plores neighbording codes in a simulated annealing
process [Martinez et al., 2016, Martinez et al., 2018].
We use notations LSQ6x10 and RQ6x10 to refer to
additive quantizers with 6 codebooks of size 210.

Additive quantizer

Product quantizer

Scalar quantizer

Binarization

Vector quantizer

Product - additive quantizer

Figure 2: The hierarchy of quantizers. Each quantizer can represent
the set of reproduction values of the enclosed quantizers.

Faiss also supports a combination of PQ and
residual quantizer, ProductResidualQuantizer. In
that case, the vector is split in sub-vectors that
are encoded independently with additive quantiz-
ers [Babenko and Lempitsky, 2015]. The codes from
the sub-quantizers are concatenated. We use the no-
tation PRQ2x6x10 to indicate that vectors are split in
2 and encoded independently with RQ6x10, yielding
a total of 12 codebooks of size 210.

Hierarchy of quantizers Although this is not by de-
sign, it turns out that there is a strict ordering be-
tween the quantizers described before. This means
that quantizer i+1 can have the same set of reproduc-
tion values as quantizer i: it is more flexible and more
data adaptive. The hierarchy of quantizers is shown
in Figure 2:

1. the binary representation with bits +1 and -1 can
be represented as a scalar quantizer with 1 bit per
component;

2. the scalar quantizer can be represented as a prod-
uct quantizer with 1 dimension per sub-vector
and uniform per-dimension quantizer;

3. the product quantizer can be represented as a
product-additive quantizer where the additive
quantizer has a single level;

4. the product additive quantizer is an addi-
tive quantizer where within each codebook all
components outside one sub-vector are set to
0 [Babenko and Lempitsky, 2014];

5. the additive quantizer (and any other quantizer)
can be represented as a vector quantizer where
the codebook entries are the explicit enumeration
of all possible reconstructions.

The implications of this hierarchy are (1) the de-
grees of freedom for the reproduction values of quan-
tizer i + 1 are larger than for i, so it is more accurate
(2) quantizer i+1 has a higher capacity so it consumes
more resources in terms of training time and storage
overhead than i. In practice, the product quantizer of-
ten offers a good tradeoff, which explains its adoption.

7

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32
MSE

101

102

en
co

di
ng

 ti
m

e
(s

 fo
r 1

M
 v

ec
to

rs
, 3

2
th

re
ad

s)

 1

 2

 4

 8

 16

 32

Deep1M encoded to 8 bytes per vector
(P)RQ
(P)RQ with LUT
(P)LSQ
(P)LSQ on GPU
10x6
5x12
6x10
8x8
2x2x12
2x3x10
2x4x8
2x5x6
3x2x10

0.80 0.85 0.90 0.95 1.00 1.05 1.10
MSE

102

103

en
co

di
ng

 ti
m

e
(s

 fo
r 1

M
 v

ec
to

rs
, 3

2
th

re
ad

s)

 1

 2

 4

 8

 16

 32

Contriever1M encoded to 64 bytes per vector
(P)RQ
(P)RQ with LUT
(P)LSQ
(P)LSQ on GPU
42x12
51x10
64x8
2x21x12
2x25x10
2x32x8
3x14x12
3x17x10
4x10x12
4x12x10

Figure 3: Comparison of additive quantizers in terms of encoding time vs. accuracy (MSE). Lower values are better for both. We consider
two different regimes: Deep1M (low-dimensional) to 8-bytes codes and Contriever1M (high dimensional) to 64-byte codes. For some RQ
variants, we indicate the beam size setting at which that tradeoff was obtained.

4.2 Vector preprocessing

To take advantage of some quantizers, it is beneficial
to apply transformations to the input vectors prior to
encoding them. Many of these transformations are d-
dimensional rotations, that do not change comparison
metrics like cosine, L2 and inner product.

Scalar quantizers assign the same number of bits
per vector component. However, for distance com-
parisons, if specific vector components have a higher
variance, they have more impact on the distances. In
other works, a variable number of bits are assigned
per component [Sandhawalia and Jégou, 2010]. How-
ever, it is simpler to apply a random rotation to
the input vectors, which in Faiss can be done with
a RandomRotationMatrix. The random rotation
spreads the variance over all the dimensions without
changing the measured distances.

An important transform is the Principal Compo-
nent Analysis (PCA), that reduces the number of di-
mensions d of the input vectors to a user-specified
d′. This operation (PCAMatrix) is the orthogonal lin-
ear mapping that best preserves the variance of the
input distribution. It is often beneficial to apply a
PCA to large input vectors before quantizing them as
k-means quantizers are more likely to “fall” in local
minima in high-dimensional spaces [Liu et al., 2015,
Jégou et al., 2011a].

The OPQ transformation [Ge et al., 2013] is a rota-
tion of the input space that decorrelates the distribu-
tion of each sub-vector of a product quantizer3. This
makes PQ more accurate in the case where the vari-
ance of the data is concentrated on a few components.
The Faiss implementation OPQMatrix combines OPQ
with a dimensionality reduction.

The ITQ transformation [Gong et al., 2012] simi-
larly rotates the input space prior to binarization
(ITQMatrix).

3In Faiss terms, OPQ and ITQ are preprocessing transforma-
tions. The actual quantization is performed by a subsequent prod-
uct quantizer or binarization step.

4.3 Faiss additive quantization options

We look in more detail into the additive quantizer
variants: the residual quantizer and local search quan-
tizer. They are more complex than most quantizers be-
cause the index building time has to be considered,
since the accuracy of a fixed-size encoding can always
be increased at the cost of an increased encoding time.

Additive quantizers rely on M codebooks T1, ...TM

of size K in dimension d. The decoding of code
C(x) = (c1, ..., cM) is

x′ = D(C(x)) = T1[c1] + ...+ TM [cM] (12)

Thus, decoding is unambiguous. However, there is no
practical way to do exact encoding, let alone training
the codebooks. Enumerating all possible encodings is
of exponential complexity in M .

The residual quantizer (RQ). RQ encoding is se-
quential. At stage m of the encoding of x, RQ picks
the entry that best reconstructs the residual of x w.r.t.
the previous encoding steps:

cm = argmin
j=1..K

∥∥∥∥∥
m−1∑
i=1

Ti[ci] + Tm[j]− x

∥∥∥∥∥
2

(13)

This greedy approach tends to get trapped in local
minima. As a mitigation, the encoder maintains a
beam of max beam size of possible codes and picks
the best code at stage M . This parameter adjusts the
tradeoff between encoding time and accuracy.

To speed up the encoding, the norm of Equation (13)
can optionally be decomposed into the sum of:

• ∥Tm[j]∥2 is precomputed and stored;

•
∥∥∥∑m−1

i=1 Ti[ci]− x
∥∥∥2 is the encoding error of the

previous step m− 1;

• −2⟨Tm[j], x⟩ is computed on entry to the encod-
ing (it is the only component whose computation
complexity depends on d);

8

Deep1M Contriever1M

8 16 32 64 128 256
bytes per code

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100
M

SE

LSQ5x12

RQ10x12

PRQ2x8x12

RQ21x12

PQ2x14,PQ32x12

RQ42x12

PRQ16x4x10

PRQ32x4x8

SQfp16

SQ
PQ
RQ
LSQ
PLSQ
PRQ
2-level PQ

8 16 32 64 128 256 512
bytes per code

10 1

100

M
SE

LSQ5x12
LSQ12x10

PRQ2x8x12
RQ21x12

RQ42x12
PRQ2x32x12

PRQ2x42x12
PQ128x12

PRQ32x8x8
SQ4

SQ
PQ
RQ
LSQ
PLSQ
PRQ
2-level PQ

Figure 4: Tradeoff of accuracy vs. code size for different codecs on the Deep1M and Contriever1M datasets. We show Pareto-optimal
variants with larger dots and indicate the quantizer in text for some of them. Note that contriever vectors can be encoded to MSE=2 ·10−4

in 768 bytes with SQ8 (that setting is widely out-of-range for the plot).

• 2
∑m−1

ℓ=1 ⟨Tm[j], Tℓ[cℓ]⟩ is also precomputed.

This decomposition is used when use beam LUT is set.
It is interesting only if d is large and when M is small
because the storage and compute requirements of the
last term grow quadratically with M .

The local search quantizer (LSQ). At encoding
time, LSQ starts from a suboptimal encoding of the
vector and proceeds with a simulated annealing op-
timization to refine the codes. In each iteration of
the optimization step, LSQ adds perturbations to
the codes and then uses Iterated Conditional Mode
(ICM) to optimize the new encoding. The number
of optimization steps is set with encode ils iters.
The LSQ codebooks are trained via an expectation-
maximization procedure (similar to k-means).

Compressed-domain search consists in computing
distances without decompressing the stored vectors.
It is acceptable to perform pre-computations on the
query vector q because it is assumed that the cost of
these pre-computations will be amortized over many
query-to-code distance comparisons.

Additive quantizer inner products can be computed
in the compressed domain:

⟨q, x′⟩ =
M∑

m=1

⟨Tm[cm], q⟩ =
M∑

m=1

LUTm[cm] (14)

The lookup tables LUTm are computed when a
query vector comes in, similar to product quantizer
search [Jégou et al., 2010].

In contrast with the product quantizer, this de-
composition does not work to compute L2 dis-
tances when the codebooks are not orthgonal.
As a workaround, Faiss uses the decomposi-
tion [Babenko and Lempitsky, 2014]

∥q − x′∥2 = ∥q∥2 + ∥x′∥2 − 2⟨q, x′⟩ (15)

Thus, the term ∥x′∥2 must be available at
search time. Depending on the setting of
AdditiveQuantizer.search type it can be appended
in the stored code (ST norm float32), possibly com-
pressed (ST norm qint8, ST norm qint4,...). It cal also
be computed on-the-fly (ST norm from LUT) with

∥x′∥2 = 2

M∑
m=1

m−1∑
ℓ=1

⟨Tm[cm], Tℓ[cℓ]⟩+
M∑

m=1

∥Tm[cm]∥2

(16)
Where the norms and dot products are stored in the
same lookup tables as the one used for beam search.
Therefore, it is a tradeoff between memory overhead
to store codes and search time overhead.

Figure 3 shows the tradeoff between encoding time
and MSE. For a given code size, it is more accurate
to use a smaller number of sub-quantizers M and a
higher K. GPU encoding for LSQ does not help sys-
tematically. The LUT-based encoding of RQ is in-
teresing for RQ/PRQ quantization when the beam
size is larger. For the 64-byte regime, we observe that
LSQ is not competitive with RQ. PLSQ and PRQ pro-
gressively become more competitive for larger mem-
ory budgets. They are also faster, since they operate
on smaller vectors.

4.4 Vector compression benchmark

Figure 4 shows the tradeoff between code size and
accuracy for many variants of the codecs. Addi-
tive quantizers are the best options for small code
sizes. For larger code sizes it is beneficial to inde-
pendently encode several sub-vectors with product-
additive quantizers. LSQ is more accurate than RQ for
small codes, but does not scale well to longer codes.
Note that product quantizers are a bits less accurate
than the additive quantizers but given how efficient
they are this remains an attractive option. The scalar
quantizers perform well for very long codes and are
even faster. The 2-level PQ options are what an IVFPQ
index uses as encoding: a first-level coarse quantizer

9

and a second level refinement of the residual (more
about this in Section 5.1).

4.5 Binary indexes

Binary quantization with symmetric distance com-
putations is a pattern that has been commonly
used [Wang et al., 2015, Cao et al., 2017]. In this setup,
distances are computed in the compressed domain as
Hamming distances. Equation (11) reduces to:

n = argmin
n=1..N

∥C(q)− Cn∥ (17)

where C(q), Cn ∈ {0, 1}d. Although binary quantizers
are crude approximations for continuous domain dis-
tances, the Hamming distances are integers in {0..d},
that are fast to compute, do not require any specific
context, and are easy to calibrate in practice.

The Faiss IndexBinary indexes support addition
and search directly from binary vectors. They offer
a compact representation and leverage optimized in-
structions for distance computations.

The simplest IndexBinaryFlat index performs ex-
haustive search. Three options are offered for non-
exhaustive search:

• IndexBinaryIVF is a binary counterpart for the
inverted-list IndexIVF index described in 5.1.

• IndexBinaryHNSW is a binary counterpart for the
hierarchical graph-based IndexHNSW index de-
scribed in 5.2.

• IndexBinaryHash uses prefix vectors as hashes
to cluster the database (rather than spheroids as
with inverted lists), and searches only the clusters
with closests prefixes.

Finally, a convenience IndexBinaryFromFloat in-
dex is provided that simply wraps an arbitrary index
and offers a binary vector interface for its operations.

5 Non-exhaustive search

Non-exhaustive search is the cornerstone of fast
search implementations for medium-sized datasets.
In that case, the aim of the indexing method is to
quickly focus on a subset of database vectors that are
most likely to contain the search results.

An early method to do this is Locality Sensitive
Hashing (LSH). It amounts to projecting the vectors
on a random direction [Datar et al., 2004]. The off-
sets on that direction are then discretized into buckets
where the database vectors are stored. At search time,
the buckets nearest to the query vector’s projection are
visited. In practice, several projection directions are
needed to make it accurate, at the cost of search time.
A fundamental drawback of this method is that it is
not data-adaptive, although some improvements are
possible [Paulevé et al., 2010].

An alternative way of pruning the search space is
to use tree-based indexing. In that case, the dataset is

stored in the leaves of a tree [Muja and Lowe, 2014].
When querying a vector, the search starts at the root
node. At each internal node, the search descends into
one of the child nodes depending on a decision rule.
The decision rule depends on how the tree was built:
for a KD-tree it is the position w.r.t. a hyperplane, for a
hierarchical k-means, it is the proximity to a centroid.

Both in the case of LSH and tree-based methods,
the hope is to extend classical database search struc-
tures to vector search, because they have a favorable
complexity (constant or logarithmic in N). However,
it turns out that these methods do not scale well for
dimensions above 10.

Faiss implements two non-exhaustive search ap-
proaches that operate at different memory vs. speed
tradeoffs: inverted file and graph-based.

5.1 Inverted files

IVF indexing is a technique that clusters the database
vectors at indexing time. This clustering uses a vec-
tor quantizer (the coarse quantizer) that outputs KIVF

distinct indices (Faiss’s nlist parameter). The coarse
quantizer’s KIVF reproduction values are called cen-
troids. The vectors of each cluster (possibly com-
pressed) are stored contiguously into inverted lists,
forming an inverted file (IVF). At search time, only a
subset of PIVF clusters are visited (a.k.a. nprobe). The
subset is formed by searching the PIVF nearest cen-
troids, as in Equation (2).

Setting the number of lists. The KIVF parameter is
central. In the simplest case, when PIVF is fixed, the
coarse quantizer is exhaustive, the inverted lists con-
tain uncompressed vectors, and the inverted lists are
all the same size, then the number of distance compu-
tations is

Ndistances = KIVF + PIVF ×N/KIVF (18)

which reaches a minimum when KIVF =
√
PIVFN .

This yields the usual recommendation to set PIVF pro-
portional to

√
N .

In practice, this is just a rough approximation be-
cause (1) the PIVF has to increase with the number
of lists in order to keep a fixed accuracy (2) often the
coarse quantizer is not exhaustive itself, so the quanti-
zation uses fewer than KIVF distance computations,
for example it is common to use a non-exhaustive
HNSW index to perform the coarse quantization.

Figure 5 shows the optimal settings of KIVF for
various database sizes. For a small KIVF = 4096,
the coarse quantization runtime is negligible and the
search time increases linearly with the database size.
For larger datasets it is beneficial to increase the KIVF.
As in equation (18), the ratio KIVF/

√
N is roughly 15

to 20. Note that this ratio depends on the data dis-
tribution and the target accuracy. Interestingly, in a
regime where KIVF is larger than the optimal setting
for N (e.g. KIVF = 218 and N =5M), the PIVF needed
to reach the target accuracy decreases with the dataset

10

1M 2M 5M 10M 20M 50M
database size

0.2

0.5

1

2

5

se
ar

ch
 ti

m
e

(s
 fo

r 1
0k

 q
ue

rie
s,

64
 th

re
ad

s)

 4.1
 5.8

 14.7
 14.7

 20.7
 20.7

 14.7

 29.3

 18.5

 37.1

target recall 0.9
KIVF = 4096
KIVF = 8192
KIVF = 16384
KIVF = 32768

KIVF = 65536
KIVF = 131072
KIVF = 262144
scaling model

Figure 5: Search time as a function of the database size N for Bi-
gANN1M with different KIVF settings. The PIVF is set so that the
1-recall@1 is 90%. The full lines indicate that the coarse quantizer is
exact, the dashed lines rely on a HNSW coarse quantizer. For some
setting we indicate the ratio KIVF/

√
N

size, and so does the search time. This is because
when KIVF is fixed and N increases, for a given query
vector, the nearest database vector is either the same
or a new one that is closer, so it is more likely to be
found in a quantization cluster nearer to the query.

With a faster non-exhaustive coarse quantizer (e.g.
HNSW) it is even more useful to increase KIVF for
larger databases, as the coarse quantization becomes
relatively cheap. At the limit, when KIVF = N , then
all the work is done by the coarse quantizer. However,
in that case the limiting factor becomes the memory
overhead of the coarse quantizer.

By fitting a model of the form t = t0N
α to the tim-

ings of the fastest index in Figure 5, we can derive a
scaling rule for the IVF indexes:

target recall@1 0.5 0.75 0.9 0.99
power α 0.29 0.30 0.34 0.45

Thus, with this model, the search time increases faster
for higher accuracy targets, but α < 0.5, so the run-
time dependence on the database size is below

√
N .

Encoding residuals. In general, it is more accurate
to compress the residuals of the database vectors w.r.t.
the centroids [Jégou et al., 2010, Equation (28)]. This is
because the norm of the residuals is lower than that of
the original vectors, or because residual encoding is
a way to take into account a-priori information from
the coarse quantizer. In Faiss, this is controlled via
the IndexIVF.by residual flag, which is set to true
by default.

Figure 6 shows that encoding residuals is beneficial
for shorter codes. For larger codes, the contribution
of the residual is less important. Indeed, as the orig-
inal data is 96-dimensional, it can be compressed to
64 bytes relatively accurately. Note that using higher
KIVF also improves the accuracy of the quantizer with
residual encoding. From a pure encoding point of
view, the additional bits of information brought by the

PQ
4

PQ
6

PQ
8

PQ
8x

10

PQ
12

PQ
12

x1
0

PQ
16

x1
0

PQ
24

PQ
24

x1
0

PQ
32

x1
0

PQ
48

PQ
48

x1
0

PQ
48

x1
2

4 8 16 32 64 128
code size (bytes)

0.0

0.2

0.4

0.6

0.8

re
ca

ll
@

 1
 fo

r n
di

s <
 3

00
0

KIVF = 1024, direct encoding
KIVF = 1024, encode residuals
KIVF = 16384, direct encoding
KIVF = 16384, encode residuals

Figure 6: Comparing IVF indexes with and without residual encod-
ing for KIVF ∈ {210, 214} on the Deep1M dataset (d=96 dimen-
sions), with different product quantization settings. We measure
the recall that can be achieved within 3000 distance comparisons.

coarse quantizer (log2(KIVF) = 10 or 14) improve the
accuracy more when used in this residual encoding
than if they would added to increase the size of a PQ.

Spherical clustering for inner product search Ef-
ficient indexing for maximum inner product search
(MIPS) faces multiple issues: the distribution of query
vectors is often different from the database vector
distribution, most notably in recommendation sys-
tems [Paterek, 2007]; the MIPS datasets are diverse,
an algorithm that obtains a good performance on
some dataset will perform badly on another. Be-
sides, [Morozov and Babenko, 2018] show that using
the preprocessing formulas in Section 3 is a subopti-
mal way of indexing for MIPS.

Several specialized clustering and indexing meth-
ods were developed for MIPS [Guo et al., 2020,
Morozov and Babenko, 2018]. Instead, Faiss imple-
ments a simple modification of k-means clustering,
spherical k-means [Dhillon and Modha, 2001], that
normalizes the k-means centroids at each iteration.

The MIPS issues appear strongly when vectors are
of very different norms (when the database vectors are
normalized, MIPS becomes equivalent to L2 search).
For IVF, this manifests itself with a high imbalance
factor, which is the relative variance of inverted list
sizes [Tavenard et al., 2011]. At search time, if the in-
verted lists are perfectly balanced (i.e. all have the
same length), this factor is 1. If they are unbalanced,
the number of distances computed for a given PIVF

increases with the imbalance factor.
The imbalance is mainly due to high-norm cen-

troids that attract the database vectors in their clus-
ters. To avoid this, we can normalize the centroids at
each iteration.

Figure 7 shows that for the contriever MIPS dataset,
the imbalance factor is quite high. It can be reduced
by using IP assignment instead of L2, and even more
by L2-normalizing the centroids at each k-means iter-

11

Junwang Zhao
Highlight

0.4 0.5 0.6 0.7 0.8 0.9 1.0
1-recall@1

102

103

104

QP
S

KIVF = 1024, default: imbalance=2.23
KIVF = 16384, default: imbalance=3.13
KIVF = 1024, IP assignment: imbalance=1.16
KIVF = 16384, IP assignment: imbalance=2.17
KIVF = 1024, spherical: imbalance=1.12
KIVF = 16384, spherical: imbalance=1.39

Figure 7: Precision vs. speed tradeoff for the MIPS contriever1M
dataset. The parameters are whether the coarse quantizer assigne-
ment is done using L2 distance (default) or MIPS and whether the k-
means clustering is the regular one or with normalization at each it-
eration (spherical, IP and L2 assignment are equivalent in that case).
The imbalance factors are indicated for each setting.

ation (spherical is set to true).

Big batch search A common use case for ANNS is
search with very large query batches. This appears
for applications such as large-scale data deduplica-
tion. In this case, rather than loading an entire index
in memory and processing queries one small batch
at a time, it can be more memory-efficient to load
only the quantizer, quantize the queries, and then it-
erate over the index by loading it one chunk at a
time. Big-batch search is implemented in the module
contrib.big batch search.

5.2 Graph based

Graph-based indexing consists in building a directed
graph whose nodes are the vectors to index. At search
time, the graph is explored by following the edges to-
wards the nodes that are closest to the query vector.
In practice, the search is not greedy but maintains a
priority queue with the most promising edges to ex-
plore. Thus, the tradeoff at search time is given by the
number of exploration steps: higher is more accurate
but slower.

A graph-based algorithm is a general framework
in fact. Tree-based search or IVF can be seen as
special cases of graphs. Graphs can be seen as a
way to precompute neighbors for the database vec-
tors, then match the query to one of the vertices
and follow the neighbors from there. However,
they can also be built to handle out-of-distribution
queries [Jaiswal et al., 2022].

Given the search algorithm, taking a pure k-nearest
neighbor graph is not optimal because the greedy
search is prone to finding local minima. Therefore, the
graph building heuristic consists in balancing edges
to nearest neighbors and edges that reach more dis-
tant nodes. Most graph methods fix the number of
outgoing edges per node, which adjusts the tradeoff

0.70 0.75 0.80 0.85 0.90 0.95 1.00
1-recall@1

104

105

106

Qu
er

ie
s p

er
 se

co
nd 64

128

256

512

1024

64

128

256

512

1024

2048

8 edges
16 edges
32 edges
64 edges

Figure 8: Comparison of graph-based indexing methods HNSW
(full lines) and NSG (dashes) to index Deep1M. We sweep the trade-
offs between speed and accuracy by varying the number of graph
traversal steps (indicated for some of the curves).

between search speed and memory usage. The mem-
ory usage per vector breaks down into (1) the possibly
compressed vector and (2) the outgoing edges for that
vector [Douze et al., 2018].

Faiss implements two graph-based algorithms:
HNSW and NSG, in the IndexHNSW and IndexNSG
classes, respectively.

HNSW The hierarchical navigable small world
graph [Malkov and Yashunin, 2018] is an elegant
search structure where some vertices (nodes), selected
randomly, are promoted to be hubs that are explored
first. One of the attractive properties of HNSW is that
it is built incrementally. As a consequence, vectors can
be added to it on-the-fly.

NSG The Navigating Spreading-out
Graph [Fu et al., 2017] is built from a k-nearest
neighbor graph that must be provided on input. At
building time, some short-range edges are replaced
with longer-range edges. The input k-nn graph can
be built with a brute force algorithm or with a special-
ized method such as NN-descent [Dong et al., 2011]
(NNDescent). Unlike HNSW, NSG does not rely on
multi-layer graph structures, but uses long connec-
tions to achieve fast navigation. In addition, NSG
starts from a fixed center point when searching.

Discussion Figure 8 compares the speed vs. ac-
curacy for the NSG and HNSW indexes. The main
build-time hyper-parameter of the two methods is the
number of edges per node, so we tested several set-
tings (for HNSW this is the number of edges on the
base level of the hierachical graph). The main search-
time parameter is the number of graph traversal steps
during search (parameter efSearch for HNSW and
search L for NSG), which we vary to plot each curve.
Increasing the number of edges improves the results
only to some extent: beyond 64 edges it degrades.

12

Junwang Zhao
Highlight

NSG obtains better tradeoffs in general, at the cost of
a longer build time. Building the input k-NN graph
with NN-descent for 1M vectors takes 37 s, and about
the same time with brute force search on a GPU (but
in that case the k-NN graph is exact). The NSG graph
is frozen after the first batch of vectors is added, there
is no easy way to add more vectors afterwards.

IVF vs. graph-based. An IVF index can be seen as
a special case of graph-based index, especially if a
small graph-based index is used as coarse quantizer.
In Faiss, graph-based indices are a good option for in-
dexes where there is no constraint on memory usage,
typically for indexes below 1M vectors. Beyond 10M
vectors, the construction time typically becomes the
limiting factor. For larger indexes, where compression
is required to even fit the database vectors in memory,
IVF indexes are the only option. However, as shown
in Section 5.1, the optimal number of centroids is so
large that a graph-based index should be used to per-
form the coarse quantization, and much of the search
time is spent in the coarse quantization.

6 Database operations

In all the experiments above, the indexes are built
in one go with all the vectors, while search oper-
ations are performed with one batch containing all
query vectors. In real settings, the index evolves over
time, vectors may be dynamically added or removed,
searches may have to take into account metadata, etc.
In this section we show how Faiss supports these
operations to some extent, mainly on IVF indexes.
When more fine-grained control is required, there are
specific APIs to interface with external storage (Sec-
tion 7.4).

6.1 Identifier-based operations

Faiss indexes support two types of identifiers: sequen-
tial ids are based on the order of additions in the in-
dex. On the other hand, the user can provide arbi-
trary 63-bit integer ids along with each vector. The
corresponding addition methods for the index are add
and add with ids. In addition, Faiss supports remov-
ing vectors (remove ids) and updating vector them
(update vectors) by passing the corresponding ids.

Unlike e.g. Usearch [Vardanian, 2022], Faiss does
not store arbitrary metadata with the vectors, only 63-
bit integer ids can be used (the sign bit is reserved for
invalid results).

Flat indexes. Sequential indexes (IndexFlatCodes)
store vectors as a flat array. They support only se-
quential ids. When arbitrary ids are needed, the index
can be embedded in a IndexIDMap, that translates se-
quence numbers to arbitrary ids using a int64 array.
This enables add with ids and returns the arbitrary
ids at search time. To also perform id-based opera-
tions, a more powerful wrapper class, IndexIDMap2,

uses a hash table that maps arbitrary ids back to the
sequential ids.

Since graph indexes rely on an embedded
IndexFlatCodes to store the actual vectors, they
should also be wrapped with the mapping classes.
Note however that HNSW does not support sup-
pression and mutation, and that NSG does not even
support adding vectors incrementally. Supporting
this requires heuristics to re-build the graph when
it is mutated, which are implemented in HNSWlib
and [Singh et al., 2021] but could be suboptimal
indexing-wise.

IVF indexes. The IVF indexing structure does sup-
ports user-provided ids natively at addition and
search time. However, id-based access may require
a sequential scan, since the entries are stored in an ar-
bitrary order in the inverted lists. Therefore, the IVF
index can optionally maintain a DirectMap, that maps
user-visible ids to the inverted list and the offset they
are stored in. The map can be an array, which is ap-
propriate for sequential ids, or a hash table, for ar-
bitrary 63-bit ids. Obviously, the direct map incurs
a memory overhead and an add-time computation
overhead, therefore it is disabled by default. When
the direct map is enabled, lookup, removal and up-
date are supported.

6.2 Filtered search

Vector filtering consists in returning only database
vectors based on some search-time criterion, other
vectors are ignored. Faiss has basic support for vector
filtering: the user can provide a predicate (IDSelector
callback), and if the predicate returns false on the vec-
tor id, the vector is ignored.

Therefore, if metadata is needed to filter the vec-
tors, the callback function needs to do an indirection
to the metadata table, which is inefficient. Another
approach is to exploit the unused bits of the identi-
fier. If n documents are indexed with sequential ids,
63− ⌈log2(N)⌉ bits are unused.

This is sufficient to store enumerated types (e.g. .
country codes, music genres, license types, etc.), dates
(as days since some origin), version numbers, etc.
However, it is insufficient for more complex metadata.
In the example use case below, we use the available
bits to implement a more complex filtering method.

Filtering with bag-of-word vectors. 4 Each query
and database vector has is associated with a few terms
from a fixed vocabulary of size v (for the queries there
are only 1 or 2 words). The filtering consists in con-
sidering only the database vectors that include all the
query terms. This metadata is given as a sparse matrix
Mmeta ∈ {0, 1}N×v .

The basic implementation of the filter uses query
vector q and the associated words w1, w2 ∈ {1...v}.

4This example is from the the BigANN’23 challenge, https://
big-ann-benchmarks.com/neurips23.html.

13

https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html

Before computing a distance to a vector with id i, it
fetches row i of Mmeta to verify that w1 and w2 are
in it. This predicate is relatively slow because (1) it
requires to access Mmeta, which causes cache misses
and (2) it performs an iterative binary search. Since
the callback is called in the tightest inner loop of the
search function, and since the IVF search tends to per-
form many vector comparisons, this has non negligi-
ble performance impact.

To speed up this test, we can use a nifty piece of
bit manipulation. In this example, N = 107, so we
use only ⌈log2 N⌉ = 24 bits of the ids, leaving 63 −
24 = 39 bits that are always 0. We associate to each
word j a 39-bit signature S[j], and the to each set of
words the binary “or” of these signatures. The query
is represented by sq = S[w1] ∨ S[w2]. Database entry
i with words Wi is represented by si = ∨w∈WiS[w].
Then we have the following implication: if {w1, w2} ⊂
Wi then all 1 bits of sq are also set to 1 in si:

{w1, w2} ⊂ Wi ⇒ ¬si ∧ sq = 0 (19)

which is equivalent to:

¬si ∧ sq ̸= 0 ⇒ {w1, w2} ̸⊂ Wi (20)

This binary test is very cheap to perform: a few ma-
chine instructions on data that is already in machine
registers. It can thus be used as a pre-filter to apply
the full membership test on candidates.

The remaining degree of freedom is how to choose
the binary signatures, because this rule is always
valid, but its filtering ability depends on the choice of
the signatures S. We experimented with iid Bernouilli
bits with varying p.

p= probability of 1 0.05 0.1 0.2 0.5
Filter hit rate 75.4% 82.1% 76.4% 42.0%

i.e. the best setting avoids to do the full check more
than 4/5th of the times.

Pre- or post-filtering. There are two possible ap-
proaches to filtered search: post-filtering, which is de-
scribed above, and pre-filtering, where only vectors
with appropriate metadata are considered in vector
search. The pre-filtering generates a subset of vectors
to compare with.

Therefore, the decision to use pre- or post-filtering
depends on whether the subset of vectors is large or
not. This can be estimated prior to the search depend-
ing on the filtering ability of the query metadata.

In the bag-of-words example, pre-filtering can ex-
ploit a term-based inverted file, which is the Mmeta

represented in compressed sparse column format. The
product of the frequencies of w1 and w2 is an estimate
of what fraction of vectors pre-filtering will perform.

7 Faiss engineering

Faiss started in a research environment. As a conse-
quence, it grew organically, one index at a time, as

Index implementations
IndexIVFPQ, IndexFlat, etc.

GPU index implementations
GpuIndexIVFPQ, …

CUDA library
BLAS library
(MKL, openblas)

Utilities and primitives
Heap, ProductQuantizer, Clustering …

SWIG wrapper (Python)
swigfaiss.swig → swigfaiss.py

Adaptor layer
__init__.py, class_enhancement.py

C wrapper

Python contrib library
(contrib.datasets, etc.)

Rust / C# code

C++ code
demos / tests

Python code
tests / benchs

Numpy library

Rust wrapper
C# wrapper,...

Faiss

C++/cuda

 cppcontrib library
(SADecodeKernels...)

Figure 9: Architecture of the Faiss library. Arrows indicate depen-
dencies. At the bottom are the library’s dependencies, at the top are
example software that depends on Faiss, most notably its extensive
test suite.

indexing research was making progress. In the fol-
lowing, we briefly mention the guiding principles that
kept the library coherent, how optimization is per-
formed and an example of how Faiss internals are ex-
posed so that it can be embedded in a vector database.

7.1 Code structure

The core of Faiss is implemented in C++. The guiding
principles are (1) the code should be as open as pos-
sible, so that users can access all the implementation
details of the indexes; (2) Faiss should be easy to em-
bed from external libraries; (3) the core library focuses
on vector search only.

Therefore, all fields of the classes are public (C++
struct). Faiss is a late adopter for C++ standards, so
that it can be used with relatively old compilers (cur-
rently C++17).

Faiss’s basic data types are concrete (not templates):
vectors are always represented as 32-bit floats that are
portable and provide a good tradeoff between size
and accuracy. Similarly, all vector ids are represented
with 64-bit integers. This is often larger than neces-
sary for sequential numbering but is widely used for
database identifiers.

7.2 High-level interface

Figure 9 shows the structure of the library. The C++
core library and the GPU add-on have as few depen-
dencies as possible: only a BLAS implementation and
CUDA itself.

In order to facilitate experimentation, the whole
library is wrapped for scripting languages such as
Python with numpy. To this end, SWIG5 exhaus-
tively generates wrappers for all C++ classes, methods
and variables. The associated Python layer also con-
tains benchmarking code, dataset definitions, driver
code. More and more functionality is embedded in

5https://www.swig.org/

14

the contrib package of Faiss. Faiss also provides a
pure C API, which is useful for producing bindings
for programming languages such as Rust or Java.

The Index is presented to the end user as a mono-
lithic object, even when it embeds other indexes
as quantizers, refinement indexes or sharded sub-
indexes. Therefore, an index can be duplicated
with clone index and serialized into as a single byte
stream using a single function, write index. It also
contains the necessary headers so that it can be read
by a generic function, read index.

Index objects can be instantiated explicitly in C++
or Python, but it is more common to build them
with the index factory function. This function
takes a string that describes the index structure
and its main parameters. For example, the string
PCA160,IVF20000_HNSW,PQ20x10,RFlat instan-
tiates an IVF index with KIVF = 20000, where the
coarse quantizer is a HNSW index; then the vectors
are represented with a PQ20x10 product quantizer.
The data is preprocessed with a PCA to 160 dimen-
sions, and the search results are re-ranked with a re-
finement index that performs exact distance computa-
tions. All the index parameters are set to reasonable
defaults, e.g. the PQ encodes the residual of the vec-
tors w.r.t. the coarse quantization centroids.

Faiss provides dedicated standalone vector codec
functions sa encode, sa decode and sa code size as
a part of Index API.

7.3 Optimization

Approach to optimization. Faiss aims at being fea-
ture complete first. A non-optimal version of all in-
dexes is implemented first. Code is optimized only
when it appears that runtime is important for a cer-
tain index. The non-optimized setting is used to con-
trol the correctness of the optimized version.

Often, only a subset of data sizes are optimized. For
example, for PQ indexes, only K = 28 and K = 24

and d/M ∈ {2, 4, 8, 16, 20} are fully optimized. For
IndexLSH search, only code sizes 4, 8, 16, 20 are opti-
mized. Fixing these sizes allows to write “kernels”, se-
quences of instructions without explicit loops or tests,
that aim to maximize arithmetic throughput.

When generic scalar CPU optimizations are ex-
hausted, Faiss also optimizes specifically for some
hardware platforms.

CPU vectorization. Modern CPUs support Single
Instruction, Multiple Data (SIMD) operations, specif-
ically AVX/AVX2 for x86 and NEON for ARM. Faiss
exploits those at three levels.

When operations are simple enough (e.g. element-
wise vector sum), the code is written in a way that the
compiler can vectorize the code by itself, which often
boils down to adding restrict keywords to signal
that arrays are not overlapping.

The second level leverages SIMD variables and in-
structions through C++ compiler extensions. Faiss

includes simdlib, a collection of classes intended as
a layer above the AVX and NEON instruction sets.
However, much of the SIMD is done specifically for
one instruction set – most often AVX – because it is
more efficient.

The third level of optimization is to adapt the
data layout and algorithms in order to speed up
their SIMD implementation. The 4-bit product
and additive quantizer implementations are imple-
mented in this way, inspired by the SCANN li-
brary [Guo et al., 2020]: the layout of the PQ codes
for several consecutive vectors is interleaved in mem-
ory so that a vector permutation can be used to
perform the LUT lookups of Equation (14) in par-
allel. This is implemented in the FastScan vari-
ants of PQ and AQ indexes (IndexPQFastScan,
IndexIVFResidualQuantizerFastScan, etc.).

GPU Faiss. Porting Faiss to the GPU is an involved
undertaking due to substantial architectural specifici-
ties. The implementation of GPU Faiss is detailed in
[Johnson et al., 2019], we summarize the GPU imple-
mentation challenges therein.

Modern multi-core CPUs are highly latency opti-
mized: they employ an extensive cache hierarchy,
branch prediction, speculative execution and out-of-
order code execution to improve serial program exe-
cution. In contrast, GPUs have a limited cache hier-
archy and omit many of these latency optimizations.
They instead possess a larger number of concurrent
threads of execution (Nvidia’s A100 GPU allows for
up to 6,912 warps, each roughly equivalent to a 32-
wide vector SIMD CPU thread of execution), a large
number of floating-point and integer arithmetic func-
tional units (A100 has up to 19.5 teraflops per sec-
ond of fp32 fused-multiply add throughput), and a
massive register set to allow for a high number of
long latency pending instructions in flight (A100 has
27 MiB of register memory). They are thus largely
throughput-optimized machines.

The algorithmic techniques used in vector search
can be grouped into three broad categories: dis-
tance computation of floating-point or binary vectors
(which may have been produced via dequantization
from a compressed form), table lookups (as seen in
PQ distance computations) or scanning (as seen when
traversing IVF lists), and irregular, sequential compu-
tations such as linked-list traversal (as used in graph-
based indices) or ranking the k closest vectors.

Distance computation is easy on GPUs and read-
ily exceeds CPU performance, as GPUs are optimized
for matrix-matrix multiplication such as that seen in
IndexFlat or IVFFlat. Table lookups and list scan-
ning can also be made performant on GPUs, as it is
possible to stage small tables (as seen in product quan-
tization) in shared memory (roughly a user-controlled
L1 cache) or register memory and perform lookups in
parallel across all warps.

Sequential table scanning in IVF indices requires
loading data from main (global) memory. While laten-

15

cies to access main memory are high, for table scan-
ning we know in advance what data we wish to ac-
cess, so the data movement from main memory into
registers can be pipelined or use double buffering, so
we can achieve close to peak possible performance.

Selecting the k closest vectors to a query vector by
ranking distances on the CPU is best implemented
with a min- or max-heap. On the GPU, the sequential
operations involved in heap operations would simi-
larly force the GPU into a latency-bound regime. This
is the largest challenge for GPU implementation of
vector search, as the time needed for the heap im-
plementation an order of magnitude greater than all
other arithmetic. To handle this, we developed an effi-
cient GPU k-selection algorithm [Johnson et al., 2019]
that allows for ranking candidate vectors in a single
pass, operating at a substantial fraction of peak pos-
sible performance per memory bandwidth limits. It
relies upon heavy usage of the high-speed, large reg-
ister memory on GPUs, and small-set bitonic sorting
via warp shuffles with buffering techniques.

Irregular computations such as walking graph
structures for graph-based indices like HNSW tend
to remain in the latency-bound (due to the sequen-
tial traversal) rather than arithmetic throughput or
memory bandwidth-bound regimes. Here, GPUs are
at a disadvantage as compared to CPUs, and emerg-
ing techniques such as CAGRA [Ootomo et al., 2023]
are required to parallelize otherwise sequential oper-
ations with graph traversal.

GPU Faiss implements brute-force GpuIndexFlat
as well as the IVF indices GpuIndexIVFFlat,
GpuIndexIVFScalarQuantizer and GpuIndexIVFPQ,
which are the most useful for large-scale indexing.
The coarse quantizer for the IVF indices can be on
either CPU or GPU. The GPU index objects have
the same interface as their CPU counterparts and
the functions index cpu to gpu / index gpu to cpu
convert between them. Multiple GPUs are also
supported. GPU indexes can take inputs and outputs
in GPU or CPU memory as input and output, and
Python interface can handle Pytorch tensors.

Advanced options for Faiss components and indices
Many Faiss components expose internal parameters
to fine-tune the tradeoff between metrics: number of
iterations of k-means, batch sizes for brute-force dis-
tance computations, etc. Default parameter values
were chosen to work reasonably well in most cases.

Multi-threading Faiss relies on OpenMP to handle
multi-threading. By default, Faiss switches to multi-
threading processing if it is beneficial, for example,
at training and batch addition time. Faiss multi-
threading behavior may be controlled with standard
OpenMP environment variables and functions, such
as omp set num threads.

When searching a single vector, Faiss does not
spawn multiple threads. However, when batched
queries are provided, Faiss processes them in par-

allel, exploiting the effectiveness of the CPU cache
and batched linear algebra operations. This is faster
than calling search from multiple threads. Therefore,
queries should be submitted by batches if possible.

7.4 Interfacing with external storage

Faiss indexes are based on simple storage classes,
mainly std::vector to make copy-construction eas-
ier. The default implementation of IndexIVF is based
on this storage. However, to give vector database
developers more control over the storage of inverted
lists, Faiss provides two lower-level APIs.

Arbitrary inverted lists. The IVF index uses an
abstract InvertedLists object as its storage. The
object exposes routines to read one inverted list,
add entries to it and remove entries. The default
ArrayInvertedLists uses in-memory storage. Al-
ternatively, OnDiskInvertedLists provides memory-
mapped storage.

More complex implementations can access a key-
value storage either by storing the entire inverted list
as a value, or by utilizing key prefix scan operations
like the one supported by RocksDB to treat multiple
keys prefixed by the same identifier as one inverted
list. To this end, the InvertedLists implementation
exposes an InvertedListsIterator and fetches the
codes and ids from the underlying key-value store,
which usually exposes a similar iterable interface.
Adding, updating and removing codes can be dele-
gated to the underlying key-value store. We provide
an implementation for RocksDB in rocksdb ivf.

Scanner objects. With the abstraction above, the
scanning loop is still controlled by Faiss. If the call-
ing code needs to control the looping code, then the
Faiss IVF index provides an InvertedListScanner
object. The scanner’s state includes the current
query vector and current inverted list. It provides a
distance to code method that, given a code, com-
putes the distance from the query to the decom-
pressed vector. At a slightly higher level, it loops over
a set of codes and updates a provided result buffer.

This abstraction is useful when the inverted lists
are not stored sequentially or fragmented into sub-
lists because of metadata filtering [Huang et al., 2020].
Faiss is used only to perform the coarse quantization
and the vector encoding.

8 Faiss applications

Faiss is used in many configurations. Hundreds of
vector search applications rely on it, both within Meta
and externally. Below we present a few use cases that
showcase either an extreme scale or an application
with particular impact.

16

Junwang Zhao
Highlight

8.1 Trillion scale index

For this example, Faiss is used to index 1.5 trillion vec-
tors in 144 dimensions. The indexing needs to be ac-
curate, therefore the compression of the vectors is lim-
ited to 54 bytes with a PCA to 72 dimensions and 6-bit
scalar quantizer (PCAR72,SQ6).

A HNSW coarse quantizer with 10M centroids is
used for the IndexIVFScalarQuantizer, trained with
a simple distributed GPU k-means (implemented in
faiss.clustering).

After the training is finished, the index is built in 3
phases:

1. shard over ids: add the input vectors in 2000
shards independently, producing 2000 indexes
(that fit in RAM);

2. shard over lists: build the 100 indexes corre-
sponding each to a subset of 100k inverted lists.
This is done on 100 different machines, each ac-
cessing the 2000 sharded indices, and writing the
results directly to a shared disk partition;

3. load the shards: memory-map all 100 indices on
a central machine as 100 OnDiskInvertedLists (a
memory map of 83TiB).

The central machine that processes queries per-
forms the coarse quantization and loads the inverted
lists from the distributed disk partition.

The limiting factor is the network bandwidth of the
central machine. Therefore, it is more efficient to dis-
tribute the search on 20 intermediate servers to spread
the load. This brings the search time down to roughly
1 s per query.

This index is built on vanilla Faiss in pure Python,
on commodity CPU servers with hard disk drives and
a regular IP network.

8.2 Text retrieval

Faiss is commonly used for natural language process-
ing tasks. In particular, ANNS is relevant for informa-
tion retrieval [Thakur et al., 2021, Petroni et al., 2021],
with applications such as fact checking, entity linking,
slot filling or open-domain question answering: these
often rely on retrieving relevant content across a large-
scale corpus. To that end, embedding models have
been optimized for text retrieval [Izacard et al., 2021,
Lin et al., 2023a].

Finally, [Izacard et al., 2023], [Lin et al., 2023b],
[Shi et al., 2023b] and [Khandelwal et al., 2020] con-
sist of language models that have been trained to
integrate textual retrieval in order to improve their
accuracy, factuality or compute efficiency.

8.3 Data mining

Another recurrent application of ANNS and Faiss is
in the mining and curation of large datasets. In par-
ticular, Faiss has been used to mine bilingual texts
across very large text datasets retrieved from the web

[Schwenk and Douze, 2017, Barrault et al., 2023], or to
organize a language model’s training corpus in order
to group together series of documents covering simi-
lar topics [Shi et al., 2023a].

In the image domain, [Oquab et al., 2023] leverages
Faiss to remove duplicates from a dataset containing
1.3B images. It then relies on efficient indexing in
order to mine a curated dataset whose distribution
matches the distribution of a target dataset.

8.4 Content Moderation

One of the major applications of Faiss is the de-
tection and remediation of harmful content at scale.
Human labelled examples of policy violating im-
ages and videos are embedded with models such
as SSCD [Pizzi et al., 2022] and stored in a Faiss in-
dex. To decide if a new image or video would vio-
late some policies, a multi-stage classification pipeline
first embeds the content and searches the Faiss in-
dex for similar labelled examples, typically utilizing
range queries. The results are aggregated and pro-
cessed through additional machine classification or
human verification. Since the impact of mistakes is
high, good representations should discriminate per-
ceptually similar and different content, and accurate
similarity search is required even at billions to trillion-
scale. The former problem motivated the Image
and Video Similarity Challenges [Douze et al., 2021,
Pizzi et al., 2023].

9 Conclusion

In this work, we presented the task of efficient approx-
imate nearest-neighbor vector search, and exposed
how Faiss addresses the most common practitioners’
problems in that space. Indeed, Faiss contains a wide
set of methods that, once combined, achieve varying
tradeoffs in terms of training time, throughput, mem-
ory usage and accuracy. Most of the use cases and
experiments mentioned in this paper are presented
in more detail and with corresponding code in Faiss’
wiki pages.

References

[Amara et al., 2022] Amara, K., Douze, M., Sablay-
rolles, A., and Jégou, H. (2022). Nearest neighbor
search with compact codes: A decoder perspective.
In ICMR.

[Aumüller et al., 2020] Aumüller, M., Bernhardsson,
E., and Faithfull, A. (2020). Ann-benchmarks: A
benchmarking tool for approximate nearest neigh-
bor algorithms. Information Systems, 87:101374.

[Babenko and Lempitsky, 2014] Babenko, A. and
Lempitsky, V. (2014). Additive quantization for
extreme vector compression. In Conference on
Computer Vision and Pattern Recognition.

17

[Babenko and Lempitsky, 2015] Babenko, A. and
Lempitsky, V. (2015). Tree quantization for
large-scale similarity search and classification.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4240–4248.

[Babenko and Lempitsky, 2016] Babenko, A. and
Lempitsky, V. (2016). Efficient indexing of billion-
scale datasets of deep descriptors. In Conference on
Computer Vision and Pattern Recognition.

[Bachrach et al., 2014] Bachrach, Y., Finkelstein, Y.,
Gilad-Bachrach, R., Katzir, L., Koenigstein, N.,
Nice, N., and Paquet, U. (2014). Speeding up the
xbox recommender system using a euclidean trans-
formation for inner-product spaces. In Proceedings
of the 8th ACM Conference on Recommender systems,
pages 257–264.

[Baranchuk et al., 2023] Baranchuk, D., Douze, M.,
Upadhyay, Y., and Yalniz, I. Z. (2023). Dedrift: Ro-
bust similarity search under content drift. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 11026–11035.

[Barrault et al., 2023] Barrault, L., Chung, Y.-A.,
Meglioli, M. C., Dale, D., Dong, N., Duquenne,
P.-A., Elsahar, H., Gong, H., Heffernan, K., Hoff-
man, J., et al. (2023). Seamlessm4t-massively
multilingual & multimodal machine translation.
arXiv preprint arXiv:2308.11596.

[Bojanowski et al., 2017] Bojanowski, P., Grave, E.,
Joulin, A., and Mikolov, T. (2017). Enriching word
vectors with subword information. Transactions of
the association for computational linguistics, 5:135–146.

[Boytsov et al., 2016] Boytsov, L., Novak, D., Malkov,
Y., and Nyberg, E. (2016). Off the beaten path: Let’s
replace term-based retrieval with k-nn search. In
Proceedings of the 25th ACM international on confer-
ence on information and knowledge management, pages
1099–1108.

[Bruch et al., 2023] Bruch, S., Nardini, F. M., Ing-
ber, A., and Liberty, E. (2023). An approxi-
mate algorithm for maximum inner product search
over streaming sparse vectors. arXiv preprint
arXiv:2301.10622.

[Cao et al., 2017] Cao, Z., Long, M., Wang, J., and Yu,
P. S. (2017). Hashnet: Deep learning to hash by
continuation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

[Caron et al., 2018] Caron, M., Bojanowski, P., Joulin,
A., and Douze, M. (2018). Deep clustering for unsu-
pervised learning of visual features. In Proceedings
of the European conference on computer vision (ECCV),
pages 132–149.

[Caron et al., 2021] Caron, M., Touvron, H., Misra, I.,
Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A.

(2021). Emerging properties in self-supervised vi-
sion transformers. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 9650–
9660.

[Charikar, 2002] Charikar, M. (2002). Similarity esti-
mation techniques from rounding algorithms. In
Proc. ACM symp. Theory of computing.

[Chen et al., 2020] Chen, T., Kornblith, S., Norouzi,
M., and Hinton, G. (2020). A simple framework
for contrastive learning of visual representations.
In Proceedings of the 37th International Conference on
Machine Learning, Proceedings of Machine Learning
Research, pages 1597–1607. PMLR.

[Chen et al., 2010] Chen, Y., Guan, T., and Wang, C.
(2010). Approximate nearest neighbor search by
residual vector quantization. Sensors, 10(12):11259–
11273.

[Chern et al., 2022] Chern, F., Hechtman, B., Davis,
A., Guo, R., Majnemer, D., and Kumar, S. (2022).
Tpu-knn: K nearest neighbor search at peak flop/s.
Advances in Neural Information Processing Systems,
35:15489–15501.

[Datar et al., 2004] Datar, M., Immorlica, N., Indyk, P.,
and Mirrokni, V. S. (2004). Locality-sensitive hash-
ing scheme based on p-stable distributions. In Pro-
ceedings of the twentieth annual symposium on Compu-
tational geometry, pages 253–262.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K.,
and Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

[Dhillon and Modha, 2001] Dhillon, I. S. and Modha,
D. S. (2001). Concept decompositions for large
sparse text data using clustering. Machine learning,
42:143–175.

[Dong et al., 2011] Dong, W., Moses, C., and Li, K.
(2011). Efficient k-nearest neighbor graph construc-
tion for generic similarity measures. In Proceedings
of the 20th international conference on World wide web,
pages 577–586.

[Douze and Jégou, 2014] Douze, M. and Jégou, H.
(2014). The yael library. In Proceedings of the 22nd
ACM international conference on Multimedia, pages
687–690.

[Douze et al., 2016] Douze, M., Jégou, H., and Per-
ronnin, F. (2016). Polysemous codes. In European
Conference on Computer Vision.

[Douze et al., 2018] Douze, M., Sablayrolles, A., and
Jégou, H. (2018). Link and code: Fast indexing with
graphs and compact regression codes. In Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, pages 3646–3654.

18

[Douze et al., 2021] Douze, M., Tolias, G., Pizzi, E.,
Papakipos, Z., Chanussot, L., Radenovic, F.,
Jenicek, T., Maximov, M., Leal-Taixé, L., Elezi, I.,
et al. (2021). The 2021 image similarity dataset and
challenge. arXiv preprint arXiv:2106.09672.

[Duquenne et al., 2023] Duquenne, P.-A., Schwenk,
H., and Sagot, B. (2023). Sentence-level multimodal
and language-agnostic representations. arXiv
preprint arXiv:2308.11466.

[Fu et al., 2017] Fu, C., Xiang, C., Wang, C., and Cai,
D. (2017). Fast approximate nearest neighbor search
with the navigating spreading-out graph. arXiv
preprint arXiv:1707.00143.

[Ge et al., 2013] Ge, T., He, K., Ke, Q., and Sun, J.
(2013). Optimized product quantization for ap-
proximate nearest neighbor search. In Conference on
Computer Vision and Pattern Recognition.

[Gollapudi et al., 2023] Gollapudi, S., Karia, N.,
Sivashankar, V., Krishnaswamy, R., Begwani,
N., Raz, S., Lin, Y., Zhang, Y., Mahapatro, N.,
Srinivasan, P., Singh, A., and Simhadri, H. V.
(2023). Filtered-diskann: Graph algorithms for
approximate nearest neighbor search with filters.
In Proceedings of the ACM Web Conference 2023.

[Gong et al., 2012] Gong, Y., Lazebnik, S., Gordo, A.,
and Perronnin, F. (2012). Iterative quantization:
A procrustean approach to learning binary codes
for large-scale image retrieval. IEEE Trans. Pattern
Analysis and Machine Intelligence.

[Guo et al., 2020] Guo, R., Sun, P., Lindgren, E., Geng,
Q., Simcha, D., Chern, F., and Kumar, S. (2020).
Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on
Machine Learning. PMLR.

[Hong et al., 2019] Hong, W., Tang, X., Meng, J., and
Yuan, J. (2019). Asymmetric mapping quantization
for nearest neighbor search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(7):1783–
1790.

[Huang et al., 2020] Huang, J.-T., Sharma, A., Sun, S.,
Xia, L., Zhang, D., Pronin, P., Padmanabhan, J.,
Ottaviano, G., and Yang, L. (2020). Embedding-
based retrieval in facebook search. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2553–
2561.

[Izacard et al., 2021] Izacard, G., Caron, M., Hosseini,
L., Riedel, S., Bojanowski, P., Joulin, A., and Grave,
E. (2021). Unsupervised dense information re-
trieval with contrastive learning.

[Izacard et al., 2023] Izacard, G., Lewis, P., Lomeli,
M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-
Yu, J., Joulin, A., Riedel, S., and Grave, E. (2023).
Atlas: Few-shot learning with retrieval augmented

language models. Journal of Machine Learning Re-
search, 24(251):1–43.

[Jaiswal et al., 2022] Jaiswal, S., Krishnaswamy, R.,
Garg, A., Simhadri, H. V., and Agrawal, S. (2022).
Ood-diskann: Efficient and scalable graph anns for
out-of-distribution queries.

[Jegou et al., 2008] Jegou, H., Douze, M., and Schmid,
C. (2008). Hamming embedding and weak geomet-
ric consistency for large scale image search. In Com-
puter Vision–ECCV 2008: 10th European Conference
on Computer Vision, Marseille, France, October 12-18,
2008, Proceedings, Part I 10, pages 304–317. Springer.

[Jégou et al., 2010] Jégou, H., Douze, M., and Schmid,
C. (2010). Product quantization for nearest neigh-
bor search. IEEE Trans. Pattern Analysis and Machine
Intelligence.

[Jégou et al., 2011a] Jégou, H., Perronnin, F., Douze,
M., Sánchez, J., Pérez, P., and Schmid, C. (2011a).
Aggregating local image descriptors into compact
codes. IEEE transactions on pattern analysis and ma-
chine intelligence, 34(9):1704–1716.

[Jégou et al., 2011b] Jégou, H., Tavenard, R., Douze,
M., and Amsaleg, L. (2011b). Searching in one bil-
lion vectors: re-rank with source coding. In Inter-
national Conference on Acoustics, Speech, and Signal
Processing.

[Johnson et al., 2019] Johnson, J., Douze, M., and
Jégou, H. (2019). Billion-scale similarity search with
GPUs. IEEE Trans. on Big Data.

[Khandelwal et al., 2020] Khandelwal, U., Levy, O.,
Jurafsky, D., Zettlemoyer, L., and Lewis, M. (2020).
Generalization through memorization: Nearest
neighbor language models.

[Lin et al., 2023a] Lin, S.-C., Asai, A., Li, M., Oguz,
B., Lin, J., Mehdad, Y., tau Yih, W., and Chen, X.
(2023a). How to train your dragon: Diverse aug-
mentation towards generalizable dense retrieval.

[Lin et al., 2023b] Lin, X. V., Chen, X., Chen, M., Shi,
W., Lomeli, M., James, R., Rodriguez, P., Kahn, J.,
Szilvasy, G., Lewis, M., Zettlemoyer, L., and Yih, S.
(2023b). Ra-dit: Retrieval-augmented dual instruc-
tion tuning. ArXiv, abs/2310.01352.

[Liu et al., 2015] Liu, S., Lu, H., and Shao, J. (2015).
Improved residual vector quantization for high-
dimensional approximate nearest neighbor search.
arXiv preprint arXiv:1509.05195.

[Lloyd, 1982] Lloyd, S. (1982). Least squares quan-
tization in PCM. IEEE Transactions on Information
Theory.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image
features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2).

19

[Lv et al., 2004] Lv, Q., Charikar, M., and Li, K. (2004).
Image similarity search with compact data struc-
tures. In Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge man-
agement, pages 208–217.

[Malkov and Yashunin, 2018] Malkov, Y. A. and
Yashunin, D. A. (2018). Efficient and robust
approximate nearest neighbor search using hi-
erarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4):824–836.

[Martinez et al., 2016] Martinez, J., Clement, J., Hoos,
H. H., and Little, J. J. (2016). Revisiting additive
quantization. In European Conference on Computer
Vision.

[Martinez et al., 2018] Martinez, J., Zakhmi, S., Hoos,
H. H., and Little, J. J. (2018). LSQ++: lower running
time and higher recall in multi-codebook quantiza-
tion. In European Conference on Computer Vision.

[Matsui et al., 2018] Matsui, Y., Uchida, Y., Jégou, H.,
and Satoh, S. (2018). A survey of product quan-
tization. ITE Transactions on Media Technology and
Applications.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado,
G., and Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint
arXiv:1301.3781.

[Morozov and Babenko, 2018] Morozov, S. and
Babenko, A. (2018). Non-metric similarity graphs
for maximum inner product search. Advances in
Neural Information Processing Systems, 31.

[Morozov and Babenko, 2019] Morozov, S. and
Babenko, A. (2019). Unsupervised neural quanti-
zation for compressed-domain similarity search. In
International Conference on Computer Vision.

[Muja and Lowe, 2014] Muja, M. and Lowe, D. G.
(2014). Scalable nearest neighbor algorithms for
high dimensional data. IEEE transactions on pattern
analysis and machine intelligence, 36(11):2227–2240.

[Ootomo et al., 2023] Ootomo, H., Naruse, A., Nolet,
C., Wang, R., Feher, T., and Wang, Y. (2023). Ca-
gra: Highly parallel graph construction and ap-
proximate nearest neighbor search for gpus.

[Oquab et al., 2023] Oquab, M., Darcet, T.,
Moutakanni, T., Vo, H. V., Szafraniec, M., Khalidov,
V., Fernandez, P., Haziza, D., Massa, F., El-Nouby,
A., Howes, R., Huang, P.-Y., Xu, H., Sharma, V., Li,
S.-W., Galuba, W., Rabbat, M., Assran, M., Ballas,
N., Synnaeve, G., Misra, I., Jegou, H., Mairal, J.,
Labatut, P., Joulin, A., and Bojanowski, P. (2023).
DINOv2: Learning robust visual features without
supervision.

[Paterek, 2007] Paterek, A. (2007). Improving regular-
ized singular value decomposition for collaborative
filtering. In Proceedings of KDD cup and workshop.

[Paulevé et al., 2010] Paulevé, L., Jégou, H., and Am-
saleg, L. (2010). Locality sensitive hashing: A com-
parison of hash function types and querying mech-
anisms. Pattern recognition letters, 31(11):1348–1358.

[Petroni et al., 2021] Petroni, F., Piktus, A., Fan, A.,
Lewis, P., Yazdani, M., De Cao, N., Thorne, J., Jer-
nite, Y., Karpukhin, V., Maillard, J., Plachouras,
V., Rocktäschel, T., and Riedel, S. (2021). KILT:
a benchmark for knowledge intensive language
tasks. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Online. Association for Computational Linguistics.

[Pizzi et al., 2023] Pizzi, E., Kordopatis-Zilos, G., Pa-
tel, H., Postelnicu, G., Ravindra, S. N., Gupta, A.,
Papadopoulos, S., Tolias, G., and Douze, M. (2023).
The 2023 video similarity dataset and challenge.
arXiv preprint arXiv:2306.09489.

[Pizzi et al., 2022] Pizzi, E., Roy, S. D., Ravindra, S. N.,
Goyal, P., and Douze, M. (2022). A self-supervised
descriptor for image copy detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14532–14542.

[Radford et al., 2021] Radford, A., Kim, J. W., Hallacy,
C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al. (2021). Learn-
ing transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR.

[Sandhawalia and Jégou, 2010] Sandhawalia, H. and
Jégou, H. (2010). Searching with expectations. In
International Conference on Acoustics, Speech, and Sig-
nal Processing.

[Schwenk and Douze, 2017] Schwenk, H. and Douze,
M. (2017). Learning joint multilingual sentence
representations with neural machine translation.
In Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 157–167, Vancouver,
Canada. Association for Computational Linguis-
tics.

[Shi et al., 2023a] Shi, W., Min, S., Lomeli, M., Zhou,
C., Li, M., Lin, V., Smith, N. A., Zettlemoyer, L., Yih,
S., and Lewis, M. (2023a). In-context pretraining:
Language modeling beyond document boundaries.
ArXiv, abs/2310.10638.

[Shi et al., 2023b] Shi, W., Min, S., Yasunaga, M., Seo,
M., James, R., Lewis, M., Zettlemoyer, L., and
tau Yih, W. (2023b). Replug: Retrieval-augmented
black-box language models.

[Simhadri et al., 2022a] Simhadri, H. V., Williams, G.,
Aumüller, M., Douze, M., Babenko, A., Baranchuk,
D., Chen, Q., Hosseini, L., Krishnaswamny, R.,
Srinivasa, G., et al. (2022a). Results of the
neurips’21 challenge on billion-scale approximate

20

nearest neighbor search. In NeurIPS 2021 Com-
petitions and Demonstrations Track, pages 177–189.
PMLR.

[Simhadri et al., 2022b] Simhadri, H. V., Williams, G.,
Aumüller, M., Douze, M., Babenko, A., Baranchuk,
D., Chen, Q., Hosseini, L., Krishnaswamny, R.,
Srinivasa, G., Subramanya, S. J., and Wang, J.
(2022b). Results of the neurips’21 challenge on
billion-scale approximate nearest neighbor search.
In Proceedings of the NeurIPS 2021 Competitions and
Demonstrations Track, volume 176 of Proceedings of
Machine Learning Research, pages 177–189. PMLR.

[Singh et al., 2021] Singh, A., Subramanya, S. J., Kr-
ishnaswamy, R., and Simhadri, H. V. (2021).
Freshdiskann: A fast and accurate graph-based ann
index for streaming similarity search.

[Subramanya et al., 2019] Subramanya, S. J.,
Kadekodi, R., Krishaswamy, R., and Simhadri,
H. V. (2019). Diskann: Fast accurate billion-point
nearest neighbor search on a single node. In
Neurips.

[Sun et al., 2023a] Sun, P., Guo, R., and Kumar, S.
(2023a). Automating nearest neighbor search con-
figuration with constrained optimization. arXiv
preprint arXiv:2301.01702.

[Sun et al., 2023b] Sun, P., Simcha, D., Dopson, D.,
Guo, R., and Kumar, S. (2023b). Soar: Improved
quantization for approximate nearest neighbor
search. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Ser-
manet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1–9.

[Tavenard et al., 2011] Tavenard, R., Jégou, H., and
Amsaleg, L. (2011). Balancing clusters to reduce re-
sponse time variability in large scale image search.
In 2011 9th International Workshop on Content-Based
Multimedia Indexing (CBMI), pages 19–24. IEEE.

[Thakur et al., 2021] Thakur, N., Reimers, N., Rücklé,
A., Srivastava, A., and Gurevych, I. (2021). BEIR:
A heterogeneous benchmark for zero-shot evalua-
tion of information retrieval models. In Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

[van Luijt and Verhagen, 2020] van Luijt, B. and Ver-
hagen, M. (2020). Bringing semantic knowledge
graph technology to your data. IEEE Software,
37(2):89–94.

[Vardanian, 2022] Vardanian, A. (2022). USearch by
Unum Cloud.

[Wang et al., 2015] Wang, J., Liu, W., Kumar, S., and
Chang, S.-F. (2015). Learning to hash for indexing
big data - a survey. Proc. of the IEEE.

[Wang et al., 2021] Wang, J., Yi, X., Guo, R., Jin, H.,
Xu, P., Li, S., Wang, X., Guo, X., Li, C., Xu, X., et al.
(2021). Milvus: A purpose-built vector data man-
agement system. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, pages 2614–
2627.

[Wang et al., 2017] Wang, J., Zhang, T., Sebe, N., Shen,
H. T., et al. (2017). A survey on learning to hash.
IEEE transactions on pattern analysis and machine in-
telligence, 40(4):769–790.

[Weber et al., 1998] Weber, R., Schek, H.-J., and Blott,
S. (1998). A quantitative analysis and perfor-
mance study for similarity-search methods in high-
dimensional spaces. In VLDB, volume 98, pages
194–205.

21

	Introduction
	Related work
	Performance axes of a vector search library
	Brute force search
	Metrics for Approximate Nearest Neighbor Search
	Tradeoffs
	Exploring search-time settings
	Exploring the index space
	Refining (blueIndexRefine)

	Compression levels
	The vector codecs
	Vector preprocessing
	Faiss additive quantization options
	Vector compression benchmark
	Binary indexes

	Non-exhaustive search
	Inverted files
	Graph based

	Database operations
	Identifier-based operations
	Filtered search

	Faiss engineering
	Code structure
	High-level interface
	Optimization
	Interfacing with external storage

	Faiss applications
	Trillion scale index
	Text retrieval
	Data mining
	Content Moderation

	Conclusion

