
Citus: Distributed PostgreSQL for Data-Intensive Applications
Umur Cubukcu

umur.cubukcu@microsoft.com
Microsoft Corporation

Ozgun Erdogan
ozgun.erdogan@microsoft.com

Microsoft Corporation

Sumedh Pathak
sumedh.pathak@microsoft.com

Microsoft Corporation

Sudhakar Sannakkayala
sudhakar.sannakkayala@microsoft.com

Microsoft Corporation

Marco Slot
marco.slot@microsoft.com
Microsoft Corporation

ABSTRACT
Citus is an open source distributed database engine for PostgreSQL
that is implemented as an extension. Citus gives users the ability
to distribute data, queries, and transactions in PostgreSQL across a
cluster of PostgreSQL servers to handle the needs of data-intensive
applications. The development of Citus has largely been driven by
conversations with companies looking to scale PostgreSQL beyond
a single server and their workload requirements. This paper de-
scribes the requirements of four common workload patterns and
how Citus addresses those requirements. It also shares benchmark
results demonstrating the performance and scalability of Citus in
each of the workload patterns and describes how Microsoft uses
Citus to address one of its most challenging data problems.
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1 INTRODUCTION
PostgreSQL is one of the most popular open source database man-
agement systems [19]. It is highly versatile and used across different
industries and areas as diverse as particle physics [23] and geospa-
tial databases [18]. One of the defining characteristics of PostgreSQL
is its extensibility [24], which enables developers to add new data-
base functionality without forking from the original project. Many
companies have leveraged the rich functionality and ecosystem of
PostgreSQL to build advanced, successful applications. This in turn
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has created significant demand for PostgreSQL to scale beyond a
single server.

Over the past decade, our team has developed an open source
PostgreSQL extension (plug-in) called Citus [3], which turns Post-
greSQL into a distributed database management system (DDBMS).
The goal of Citus is to address the scalability needs within the Post-
greSQL ecosystem. At an early stage, we started offering Citus as a
product, which drove us to talk to over a thousand companies that
were looking to scale out PostgreSQL. From these conversations,
we learned that the need for scale often goes hand in hand with
complex application logic that relies on many different relational
database capabilities and on performant implementations of those
capabilities. In addition, applications rely on a broad ecosystem of
tools and extensions.

Traditionally, new DDBMSs that aimed to offer compatibility
with an existing relational database system have followed one of
three approaches: (i) Build the database engine from scratch and
write a layer to provide over-the-wire SQL compatibility, (ii) Fork
an open source database systems and build new features on top of
it, or (iii) Provide new features through a layer that sits between
the application and database, as middleware. For each of these
approaches, the cost of keeping up with the ongoing developments
in the core project over the decades-long lifecycle of a database
management system is substantial, and often insurmountable. Most
projects lag by many years in terms of compatibility with new
PostgreSQL features, tools, and extensions.

Citus is the first distributed database that delivers its function-
ality through the PostgreSQL extension APIs. The extension APIs
provide sufficient control over the behavior of PostgreSQL to inte-
grate a sharding layer, a distributed query planner and executor,
and distributed transactions in a way that is transparent to the
application. Being an extension allows Citus to maintain compat-
ibility with the latest PostgreSQL features and tools at negligible
engineering cost. Moreover, Citus distributes data across regular
PostgreSQL servers and sends queries over the regular PostgreSQL
protocol. This means that Citus can utilize all the data access and
storage capabilities offered by the underlying PostgreSQL servers,
including advanced capabilities such as JSONB, lateral joins, GiST
indexes, array types and other extensions.

Building a distributed PostgreSQL engine that is 100% compatible
with a single server and scales in all scenarios without performance
regressions is perhaps impossible, but also unnecessary. Not ev-
ery application that benefits from PostgreSQL also benefits from
scaling out. We found that the PostgreSQL applications that bene-
fit from scaling out largely fall into 4 workload patterns, namely:
Multi-tenant / SaaS, real-time analytics, high-performance CRUD,
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Scale requirements MT RA HC DW
Typical query latency 10ms 100ms 1ms 10s+
Typical query throughput 10k/s 1k/s 100k/s 10/s
Typical data size 1TB 10TB 1TB 10TB

Table 1: Scale requirements of workload patterns for dis-
tributed relational databases

and data warehousing. Each workload pattern requires a different
combination of capabilities from the database. The requirements
of these workload patterns have largely driven the development of
Citus.

This paper shares what we learned from building and deploy-
ing Citus over the years. As such, the paper brings three main
contributions. First, we describe the four workload patterns that
we observed in customer conversations and their requirements in
terms of scale and distributed database capabilities. Second, we
describe the PostgreSQL extension APIs and how Citus uses them
to implement a comprehensive distributed database system. Finally,
the Citus architecture shows how we addressed the requirements
of a broad range of data-intensive applications within a single dis-
tributed database system.

The remainder of this paper is organized as follows:

• Section 2 distills the high-level requirements of four Post-
greSQL workload patterns that benefit from scaling out.

• Section 3 describes how Citus implements and scales dis-
tributed query planning and execution, distributed transac-
tions, and other database operations.

• Section 4 presents benchmark results demonstrating that
Citus can scale PostgreSQL in each of the four workload
patterns.

• Section 5 shows how Citus is used in a data-intensive real-
time analytics application at Microsoft.

• Section 6 describes related work in distributed relational
database management systems.

• Section 7 concludes the paper and shares some of our future
work.

2 WORKLOAD REQUIREMENTS
When talking to companies looking to scale out PostgreSQL about
potential Citus adoption, we observed that almost all workloads we
encountered followed four patterns: Multi-tenant (MT), real-time
analytics (RA), high-performance CRUD (HC), and data warehous-
ing (DW).

Table 1 gives an overview of the approximate scale require-
ments in each workload pattern. It is worth noting that the latency,
throughput, and data size requirements vary significantly, which
in practice means that each workload pattern requires a different
combination of distributed database capabilities to achieve its no-
tion of high performance at scale. We describe the four workload
patterns and capabilities requested for each workload (in italics)
in the remainder of this Section and give an overview in Table 2.
In the Citus architecture section, we will further describe these
capabilities and how Citus implements them.

Feature requirements MT RA HC DW
Distributed tables Yes Yes Yes Yes
Co-located distributed tables Yes Yes Yes Yes
Reference tables Yes Yes Yes Yes
Local tables Some Some
Distributed transactions Yes Yes Yes Yes
Distributed schema changes Yes Yes Yes Yes
Query routing Yes Yes Yes
Parallel, distributed SELECT Yes Yes
Parallel, distributed DML Yes
Co-located distributed joins Yes Yes Yes
Non-co-located distributed joins Yes
Columnar storage Some Yes
Parallel bulk loading Yes Yes
Connection scaling Yes

Table 2: Workload patterns and required distributed rela-
tional database capabilities.

channels

users

messages organization

in-channel

sent-by

part-of

to-channel
part-of

Figure 1: Data model for a simple multi-tenant messaging
application with blue and orange representing different ten-
ants
There are relatively complex relationships within the data model that are
expressed through foreign keys and joins, but not across tenants. Hence

multi-tenant applications can scale along the tenant dimension.

2.1 Multi-tenant
Multi-tenant applications serve many relatively independent ten-
ants from a single backend deployment. A typical example is Software-
as-a-Service (SaaS). Such applications often have complex OLTP
workloads with many relationships, though tenants are relatively
independent within the data model, as shown in the example in
Figure 1. One of the benefits of the SaaS model that has helped
make it successful is that the cost of adoption (i.e. adding a new
tenant) is low for both user and application developer, which can
lead to rapid growth. One of the challenges in scaling a multi-tenant
workload is that the working set is relatively large due to the large
number of independent tenants.

A traditional approach to scaling a relational database for a
multi-tenant application is manual sharding. The data for each ten-
ant is placed into its own database or schema (namespace). The
application then needs to keep track of where each database or
schema is placed, build infrastructure for moving data around, syn-
chronize data and schema changes across potentially thousands of
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databases, and use external systems to do analytics across tenants.
This approach only scales up to the level of investment that the
application developer is willing to make in building a distributed
database management plane.

The alternative approach is to use a shared schema with tenant
ID columns. To scale out this approach for multi-tenant applications
in PostgreSQL, we identified several distributed database capabil-
ities. These capabilities are essential to meet both the functional
requirements of complex SaaS applications (including complex SQL,
foreign keys, constraints, indexes) and the scale requirements (low
query latency). Tables that contain tenant-specific data should all
have a tenant ID column, such that they can be distributed and
co-located by tenant ID. Co-location enforces that the same tenant
ID is always on the same server, such that joins and foreign keys
on the tenant ID can be performed locally. The database system
should then be able to route arbitrarily complex SQL queries that
filter by tenant ID to the appropriate server with minimal overhead
to linearly scale query throughput. Attempts by the distributed
query planner to analyze and break up the query will typically
result in significant regressions from single server PostgreSQL. Ref-
erence tables that are replicated across servers are needed for (local)
joins and foreign keys with tables that are shared across tenants.
Applications may also perform analytics (e.g. parallel queries that
do co-located distributed joins on the tenant ID) and transactions
(incl. distributed schema changes) across all tenants.

In addition to distributed database capabilities, we also hear
questions from customers that are specific to multi-tenant work-
loads. First, customers may need the flexibility to customize data for
certain tenants. For these customers, we recommend adding new
fields using the JSONB data type, which can be efficiently indexed
through GIN or expression indexes. Second, customers may need
control over tenant placement to avoid issues with noisy neighbors.
For this, Citus provides features to view hotspots, to isolate a tenant
onto its own server, and to provide fine-grained control over tenant
placement [22].

Citus implements the combination of these capabilities required
for multi-tenant workloads. As such, Citus provides a significantly
simpler alternative to scaling out than the database-per-tenant
approach.

2.2 Real-time Analytics
Real-time analytics applications provide interactive analytics or
search on large streams of data with only minor delay. The main
data stream typically consists of event data or time series data de-
scribing telemetry from devices or software. Use cases may include
system monitoring, anomaly detection (e.g. fraud detection), be-
havioral analytics (e.g. funnel analysis, segmentation), geospatial
analytics, and others. A common real-time analytics application
is a multi-user analytics dashboard that visualizes aggregations of
the data through charts. The database needs to be able to sustain a
high write throughput to keep up with a stream of events, while
the application issues hundreds of analytical queries per second.
Queries should have sub second response times to be able to show
results interactively, regardless of the data volume. Since the query
set is known upfront, indexes, materialized views, and other data
transformations (e.g. rollups) can be used to minimize response

events rollup1

rollup2Pre-aggregationIngestion

Queries

Figure 2: A simple real-time analytics pipeline
Data is ingested into a raw data table and then incrementally

pre-aggregated into one or more rollups. The application may query both
the rollups and the raw event data.

times. The database needs to be able to update these incrementally
to quickly reflect new data in the application. An example of a
typical real-time analytics pipeline is shown in Figure 2.

PostgreSQL has many powerful capabilities for building real-
time analytics applications. Its heap storage format and COPY com-
mand allow very fast data ingestion, while MVCC allows analytical
queries to run concurrently with writes. PostgreSQL also has a ver-
satile set of data types and index types, including comprehensive
support for arrays, JSON, and custom types. The only shortcoming
of PostgreSQL for real-time analytics applications is that the data
volume can easily exceed the capacity of a single server and most
operations are single-threaded.

To scale real-time analytics workloads, the database systemneeds
to be able to distribute tables across servers and support parallel bulk
loading to keep up with the data volume. Parallel, distributed DML,
in particular INSERT..SELECT, is needed to be able to incrementally
pre-aggregate large volumes of incoming data into rollup tables.
Co-location between the source table and the rollup table enables
very fast INSERT..SELECT. Queries from the dashboard use query
routing or parallel, distributed SELECT on the event data or the
rollup tables to keep response times low. Co-located distributed joins
are needed for advanced analytics (e.g. funnel queries).

Citus supports the capabilities required for building large-scale
real-time analytics dashboards on PostgreSQL. Section 5 gives an ex-
ample of a petabyte-scale real-time analytics use case at Microsoft.

2.3 High-performance CRUD
High-performance CRUD workloads involve many objects / docu-
ments that are modified in a relatively independent manner. The
application primarily accesses the data through simple CRUD (cre-
ate, read, update, delete) operations on a key, but may also issue
more complex queries across objects. The objects typically follow
an unstructured data format like JSON.

PostgreSQL is a popular choice for this type of workload because
of its sophisticated JSON support. A large PostgreSQL server can
handle hundreds of thousands of writes and millions of reads per
second. Scalability problems can arise when the working set is
large or when making incremental changes to large objects at a
high rate. The PostgreSQL MVCC model requires writing a new
copy and later reclaiming the space (auto-vacuuming), which can
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cause performance degradation if auto-vacuuming cannot keep
up. Another limitation of PostgreSQL is that it can only handle a
limited number of (idle) connections, because of the process-per-
connection architecture and the relatively high memory overhead
of a process.

To scale high performance CRUD workloads, tables need to be
distributed by key. CRUD operations can then be routed to a shard
with very low planning overhead and use the primary key index
within the shard, enabling high throughput and low latency. A sig-
nificant benefit of sharding PostgreSQL tables in high performance
CRUD workloads is that, apart from the ability to use more hard-
ware, auto-vacuuming is parallelized across many cores. Reference
tables are not strictly required, but can make objects significantly
more compact through normalization, which is beneficial at scale.
Parallel, distributed SELECT and DML are useful for performing
scans and analytics across a large number of objects. To scale the
number of connections, any server needs to be able to process dis-
tributed queries.

Citus meets all the requirements for high performance CRUD
workloads, but still has some inherent limitations around connec-
tion scalability. We are working with the community to improve
on connection scalability in PostgreSQL itself [20].

2.4 Data warehousing
Data warehousing applications combine data from different sources
into a single database system to generate ad-hoc analytical reports.
The application typically does not have low latency or high through-
put requirements, but queries may need to scan very large amounts
of data. The database needs to support very fast scans and be able to
find efficient query plans for handwritten SQL involving arbitrary
joins.

PostgreSQL generally lacks the scanning performance and par-
allelism to perform very large scans within a reasonable amount of
time. On the other hand, its performance features, comprehensive
SQL support, and ecosystem still make it an attractive option for
analytics.

To scale data warehouse applications, scans need to be sped up
through parallel, distributed SELECT and columnar storage. Dis-
tribution columns should be chosen to maximize the number of
co-located distributed joins, but the database needs to support ef-
ficient non-co-located joins as well by reshuffling or broadcasting
data over the network. The query optimizer needs to decide on a
join order that minimizes network traffic.

At the time of writing, Citus meets most of the requirements
for data warehouse applications, but has several limitations around
non-co-located joins (e.g. correlated subqueries are unsupported),
which limits its applicability in some data warehousing workloads.

2.5 Other workloads
Some workloads have not been a focus area of Citus, primarily
because we rarely observed them among potential customers.

There are various workload patterns that PostgreSQL could ad-
dress given its extensibility, but the ecosystem is centered around
other database systems and tools. Examples include streaming ana-
lytics, Extract-Transform-Load (ETL), machine learning, and text
search. We believe PostgreSQL can be successful in these areas, but

it will take broader movements within developer communities to
make PostgreSQL an important part of those ecosystems.

We also observed that complex, single-tenant OLTP workloads
are less likely to run into the large working set problem that occur
in multi-tenant OLTP workloads. Moreover, scaling out a complex,
single-tenant OLTP application often lowers overall throughput,
because network latency lowers per-connection throughput and
results in locks being held for longer. This in turn lowers achievable
concurrency.

Overall, the observations about the workload patterns described
in this section have significantly influenced the Citus architecture.

3 CITUS ARCHITECTURE
In a Citus cluster, all servers run PostgreSQL with the Citus exten-
sion plus any number of other extensions installed. Citus uses the
PostgreSQL extension APIs to change the behavior of the database
in two ways: First, Citus replicates database objects such as custom
types and functions to all servers. Second, Citus adds two new ta-
ble types that can be used to take advantage of additional servers.
The remainder of this section describes how Citus implements and
scales the most important operations for Citus tables.

3.1 PostgreSQL extension APIs
A PostgreSQL extension consists of two parts: a set of SQL objects
(e.g. metadata tables, functions, types) and a shared library that is
loaded into PostgreSQL. All database modules within PostgreSQL
are extensible, except for the parser. The main reason is that the
parser code is generated at build time, while the extension infras-
tructure loads the shared library at run time. Keeping the parser
non-extensible also forces syntactic interoperability between ex-
tensions.

Once a PostgreSQL extension is loaded, it can alter the behavior
of PostgreSQL by setting certain hooks. Citus uses the following
hooks:

User-defined functions (UDFs) are callable from SQL queries
as part of a transaction and are primarily used to manipulate the
Citus metadata and implement remote procedure calls.

Planner and executor hooks are global function pointers that
allow an extension to provide an alternative query plan and exe-
cution method. After PostgreSQL parses a query, Citus checks if
the query involves a Citus table. If so, Citus generates a plan tree
that contains a CustomScan node, which encapsulates a distributed
query plan.

CustomScan is an execution node in a PostgreSQL query plan
that holds custom state and returns tuples via custom function
pointers. The Citus CustomScan calls the distributed query executor,
which sends queries to other servers and collects the results before
returning them to the PostgreSQL executor.

Transaction callbacks are called at critical points in the life-
cycle of a transaction (e.g. pre-commit, post-commit, abort). Citus
uses these to implement distributed transactions.

Utility hook is called after parsing any command that does not
go through the regular query planner. Citus uses this hook primarily
to apply DDL and COPY commands that affect Citus tables.

Background workers run user-supplied code in separate pro-
cesses. Citus uses this API to run a maintenance daemon. This
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Figure 3: Example Citus deployment, showing the coordina-
tor and two worker nodes.

daemon performs distributed deadlock detection, 2PC prepared
transaction recovery, and cleanup.

Through these hooks, Citus can intercept any interaction be-
tween the client and the PostgreSQL engine that involves Citus
tables. Citus can then replace or augment PostgreSQL’s behavior.

3.2 Citus architecture diagram
Citus deployments typically have 1 coordinator and 0-n worker
nodes, as shown in the Figure 3. The coordinator stores themetadata
(catalogs) of the distributed tables and clients typically connect
to the coordinator. A PostgreSQL server implicitly becomes the
coordinator when the user adds a worker node via a Citus UDF.
Worker nodes store the shards that contain the actual data. When
the cluster is small, the coordinator itself can also be used as a
worker node, so the smallest possible Citus cluster is a single server.

The benefit of using a single coordinator as the entry point is
that PostgreSQL libraries and tools can interact with a Citus cluster
as if it was a regular PostgreSQL server. Since the overhead of
distributed queries is small compared to query execution, a large
coordinator node can handle hundreds of thousands of transactions
per second or ingest millions of rows per second via PostgreSQL’s
COPY command.

3.2.1 Scaling the coordinator node. The coordinator can become
a scaling bottleneck in some cases, for example, when serving
demanding high performance CRUD workloads. To resolve this
bottleneck, Citus can distribute the distributed table metadata and
all changes to it to all the nodes. In this case, each worker node
assumes the role of coordinator for all distributed queries and trans-
actions it receives. Clients should use a load balancing mechanism
to divide connections over the workers. Since DDL commands mod-
ify distributed metadata, the application should continue to connect
to the coordinator when issuing DDL commands. Since the volume
of DDL commands is low, the coordinator no longer becomes a
bottleneck.

Today, we recommend this more complex mode only when cus-
tomers are familiar with PostgreSQL and have an actual scaling

bottleneck. When each node can coordinate and also serve queries,
each connection to the Citus cluster creates one or more connec-
tions within the cluster. Citus caches connections for higher per-
formance, and this could lead to a connection scaling bottleneck
within the cluster. We typically mitigate this issue by setting up
connection pooling between the instances, via PgBouncer [10]. We
are working to improve on connection scaling behavior in future
versions of Citus and PostgreSQL itself [20].

3.3 Citus table types
Citus introduces two types of tables to PostgreSQL: Distributed
tables and reference tables, without taking away the concept of
regular ("local") PostgreSQL tables. Citus tables are initially cre-
ated as regular PostgreSQL tables, and then they are converted by
calling Citus-specific functions. After conversion, Citus intercepts
all commands involving Citus tables in the relevant PostgreSQL
hooks.

3.3.1 Distributed tables. Distributed tables are hash-partitioned
along a distribution column into multiple logical shards with each
shard containing a contiguous range of hash values. The advantage
of hash-partitioning is that it enables co-location and reasonably
well-balanced data without the need for frequent resharding. Range-
partitioning is also available for some advanced use cases.

The create_distributed_table UDF converts a regular table to a
distributed table by creating the shards on the workers and adding
to the Citus metadata.
CREATE TABLE my_table (. . . );
SELECT create_distributed_table('my_table',

'distribution_column');

Shards are placed on worker nodes in a round-robin fashion. A
single worker node can contain multiple logical shards, such that
the cluster can be rebalanced by moving individual shards between
worker nodes.

3.3.2 Co-location. Citus ensures that the same range of (hash)
values is always on the same worker node among distributed tables
that are co-located. Relational operations (e.g., joins, foreign keys)
that involve the distribution column of two or more co-located
distributed tables can be performed without any network traffic by
operating on pairs of co-located shards.

When creating a second distributed table, co-location can be
specified using the colocate_with option:
CREATE TABLE other_table (. . . );
SELECT create_distributed_table('other_table',

'distribution_column', colocate_with := 'my_table');

If no colocate_with option is specified, Citus automatically co-
locates distributed tables based on the data types of the distribution
columns. We found this to be helpful for users unfamiliar with
distributed database concepts.

3.3.3 Reference tables. Reference tables are replicated to all nodes
in a Citus cluster, including the coordinator. Joins between dis-
tributed tables and reference tables are implemented by joining
each shard of the distributed table with the local replica of the
reference table. Similarly, foreign keys from distributed tables to
reference tables are enforced locally by creating regular foreign
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keys between each of the shards of the distributed table and the
local replica of the reference table.

Users create reference tables by calling create_reference_table:
CREATE TABLE dimensions (. . . );
SELECT create_reference_table('dimensions');

After conversion, writes to the reference table are replicated to
all nodes and reads are answered directly by the coordinator or via
load-balancing across worker nodes.

3.4 Data rebalancing
Most Citus clusters grow in data size and query volume. Certain
worker nodes may also receive more load than others due to data
distribution and query patterns. To enable an even distribution,
Citus provides a shard rebalancer. By default, the rebalancer moves
shards until it reaches an even number of shards across worker
nodes. Alternatively, users can choose to rebalance based on data
size or create a custom policy by defining cost, capacity, and con-
straint functions in SQL [7].

Most rebalance operations start with the customer changing their
cluster size. The rebalancer then picks one shard and any shards
that are co-located with it; and starts a shard move operation. To
move shards, Citus creates a replica of the shards on a different node
using PostgreSQL’s logical replication. With logical replication, the
shards in transit can continue to receive read and write queries.
When the shard replicas have caught up with their source, Citus
obtains write locks on the shards, waits for replication to complete,
and updates distributed table metadata. From that point on, any
new queries go to the new worker node. The last few steps typically
only take a few seconds, hence there is minimal write downtime.

3.5 Distributed query planner
When a SQL query references a Citus table, the distributed query
planner produces a PostgreSQL query plan that contains a Custom-
Scan node, which contains the distributed query plan. A distributed
query plan consists of a set of tasks (queries on shards) to run on
the workers, and optionally a set of subplans whose results need to
be broadcast or re-partitioned, such that their results can be read
by subsequent tasks.

Citus needs to handle a wide range of workloads that require
different query planning strategies to scale. Simple CRUD queries
benefit from minimal planning overhead. Complex data warehous-
ing queries on the other hand benefit from advanced query opti-
mizations, which incur higher planning overhead. Over time, Citus
evolved to have planners for different classes of queries. Figure 4
gives a basic example for each planner. We further describe those
planners below.

Fast path planner handles simple CRUD queries on a single
table with a single distribution column value. The planner extracts
the distribution column value directly from a filter in the query
and determines the shard that matches the value. The planner
then rewrites the table name to the shard name to construct the
query to run on the worker, which can be done with minimal CPU
overhead. Hence, the fast path planner supports high throughput
CRUD workloads.

Router planner handles arbitrarily complex queries that can be
scoped to one set of co-located shards. The router planner checks
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Figure 4: Citus planning examples: (A) Fast path planner
showing single shard access, (B) Router planner showing sin-
gle shard co-located- and reference table joins, (C) Logical
pushdown planner showingmulti-shard co-located- and ref-
erence table joins, (D) Logical join order planner showing
one table being re-partitioned into intermediate results to
perform a non-co-located join.

or infers whether all distributed tables have the same distribution
column filter. If so, the table names in the query are rewritten to the
names of the co-located shards that match the distribution column
value. The router planner implicitly supports all SQL features that
PostgreSQL supports since it will simply delegate the full query
to another PostgreSQL server. Hence, the router planner enables
multi-tenant SaaS applications to use all SQL features with minimal
overhead.

Logical planner handles queries across shards by construct-
ing a multi-relational algebra tree [15]. Multi-relational algebra
formalizes two distributed execution primitives that are not avail-
able in PostgreSQL, to collect and repartition data. This difference
influences the separation between router and logical planner.

The goal of the logical planner is to push as much of the compu-
tation to the worker nodes as possible before merging the results
on the coordinator. We further distinguish between two logical
planning strategies:

(1) Logical pushdown planner detects whether the join tree
can be fully pushed down. This requires that all distributed ta-
bles have co-located joins between them and that subqueries
do not require a global merge step (e.g. a GROUP BY must
include the distribution column). If so, the planner can be
largely agnostic to the SQL constructs being used within the
join tree, since they are fully delegated to the worker nodes,
and the distributed query plan becomes trivially parallel.

(2) Logical join order planner determines the optimal exe-
cution order for join trees involving non-co-located joins.
It evaluates all possible join orders between distributed ta-
bles and subqueries using co-located joins, broadcast joins,
and re-partition joins, and chooses the order that minimizes
the network traffic. Broadcast joins and re-partition joins
result in subplans with filters and projections pushed into
the subplan.
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Figure 5: Call flow for the execution of a a simple analytical
query that was planned by the logical pushdown planner.

For each query, Citus iterates over the four planners, from lowest
to highest overhead. If a particular planner can plan the query, Citus
uses it. This approach works well for two reasons: First, there is
an order of magnitude difference between each workload’s latency
expectations as described in Table 1. Second, this difference also
applies to each planner’s overhead. As an example, a complex data
warehousing query could take minutes to complete. In that case,
the user does not mind paying a few milliseconds of overhead for
the fast path, router, and pushdown planner.

3.6 Distributed query executor
A PostgreSQL query plan is structured as a tree of execution nodes
that each have a function to return a tuple. Plans generated by the
distributed query planner contain a CustomScan node that calls
into the distributed query executor. In case the plan was gener-
ated via the fast path or router planner, the entire plan is a single
CustomScan node since the execution is fully delegated to a single
worker node. Plans generated by the logical planner may require a
merge step (e.g. aggregation across shards). In that that case, there
will be additional execution nodes above the CustomScan, which
are handled by the regular PostgreSQL executor.

When the PostgreSQL executor calls into the CustomScan, Citus
first executes subplans (if any) and then hands the execution to
a component called the "adaptive executor". Figure 5 shows an
example of the call flow for a simple analytical query.

3.6.1 Adaptive executor. The design of the adaptive executor is
driven by the need to support a mixture of workloads and by the
process-per-connection architecture of PostgreSQL. Some query
plans will have a single task that needs to be routed to the right
worker node with minimal overhead, while other query plans have
many tasks that Citus runs in parallel by opening multiple connec-
tions per worker node. We found parallelizing queries via multiple
connections to be more versatile and performant than the built-in
parallel query capability in PostgreSQL that uses a fixed set of pro-
cesses. The downside of opening multiple connections is the cost
of connection establishment and overhead of extra processes, in
particular when many distributed queries run concurrently.

The adaptive executor manages the parallelism vs. low latency
trade-off using a technique we call “slow start”. At the start of the
query, the executor can use one connection to each worker (n=1).
Every 10ms, the number of new connections that can be opened
increases by one (n=n+1). If there are t pending tasks for a worker
node that are not assigned to a specific connection, the executor

increases the connection pool of that worker node by min(n,t) new
connections. The reasoning behind slow start is that a simple in-
memory index lookup typically takes less than a millisecond, so
all tasks on a worker are typically executed before opening any
additional connections. On the other hand, analytical queries often
take hundreds of milliseconds or more, and the delayed connection
establishment will barely be noticeable in the overall runtime.

While slow start increases the number of connections when
tasks take a long time to complete, sometimes tasks take a long time
because there are already many concurrent connections issuing
queries to the worker node. Therefore, the executor also keeps track
of the total number of connections to each worker node in shared
memory to prevent it from exceeding a shared connection limit.
When the counter reaches the limit, opening additional connections
is avoided such that the overall number of outgoing connections
remains at or below the limit. The implementation converges to
a state where the available connection slots on the worker nodes
are fairly distributed between the processes executing distributed
queries on the coordinator.

When multiple connections per worker node are used, each
connection will access a different subset of shards, and hold uncom-
mitted writes and locks in case of a multi-statement transaction. For
every connection, Citus therefore tracks which shards have been
accessed to ensure that the same connection will be used for any
subsequent access to the same set of co-located shards in the same
transaction. When starting the execution of a statement, tasks are
assigned to a connection if there was a prior access to the shards
accessed within the transaction, and otherwise they are assigned
to the general pool for the worker node. When a connection is
ready, the executor first takes an assigned task from its queue, and
otherwise takes a task from the general pool.

By combining slow start, the shared connection limit, and the
task assignment algorithm, the adaptive executor can handle a
variety of workload patterns, even when they run concurrently on a
single database cluster, and support complex interactive transaction
blocks without sacrificing parallelism.

3.7 Distributed transactions
Distributed transactions in Citus comprise a transaction on the
coordinator, initiated by the client, and one or more transactions
on worker nodes, initiated by the executor. For transactions that
only involve a single worker node, Citus delegates responsibility
to the worker node. For transactions that involve multiple nodes,
Citus uses two-phase commit (2PC) for atomicity and implements
distributed deadlock detection.

3.7.1 Single-node transactions. The simplest type of transaction
Citus supports is a single statement transaction that goes to a single
node (e.g. CRUD operations). In that case, there is no overhead to
using a distributed table other than the extra round trip between
coordinator and worker. When handling a multi-statement transac-
tion in which all statements are routed to the same worker node
(e.g. operations on a single tenant in a multi-tenant app), the coor-
dinator simply sends commit/abort commands to that worker node
from the commit/abort transaction callbacks. The worker node, by
definition, provides the same transactional guarantees as a single
PostgreSQL server.
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3.7.2 Two-phase commit protocol. For transactions that write to
multiple nodes, the executor opens transaction blocks on theworker
nodes and performs a 2PC across them at commit time. PostgreSQL
implements commands to prepare the state of a transaction in a
way that preserves locks and survives restarts and recovery. This
enables later committing or aborting the prepared transaction. Citus
uses those commands to implement a full 2PC protocol.

When the transaction on the coordinator is about to commit,
the pre-commit callback sends a “prepare transaction” over all
connections to worker nodes with open transaction blocks. If suc-
cessful, the coordinator writes a commit record for each prepared
transaction to the Citus metadata and then the local transaction
commits, which ensures the commit records are durably stored. In
the post-commit and abort callbacks, the prepared transactions are
committed or aborted on a best-effort basis.

When one or more prepared transactions fail to commit or abort,
the commit record in the Citus metadata is used to determine the
outcome of the transaction. A background daemon periodically
compares the list of pending prepared transactions on each worker
to the local commit records. If a commit record is present (read:
visible) for a prepared transaction, the coordinator committed hence
the prepared transaction must also commit. Conversely, if no record
is present for a transaction that has ended, the prepared transaction
must abort. When there are multiple coordinators, each coordinator
performs 2PC recovery for the transactions it initiated. Since both
commit records and prepared transactions are stored in the write-
ahead log (which may be replicated, see Section 3.9), this approach
is robust to failure of any of the nodes involved.

3.7.3 Distributed deadlocks. A challenge in multi-node transac-
tions is the potential for distributed deadlocks, in particular between
multi-statement transactions. To overcome this challenge, deadlock
prevention or deadlock detection methods can be used. Deadlock
prevention techniques such as wound-wait require a percentage
of transactions to restart. PostgreSQL has an interactive proto-
col, which means results might be returned to the client before a
restart occurs and the client is not expected to retry transactions.
Hence, wound-wait is unsuitable for Citus. To maintain PostgreSQL
compatibility, Citus therefore implements distributed deadlock de-
tection, which aborts transactions when they get into an actual
deadlock.

PostgreSQL already provides deadlock detection on a single node.
Citus extends on this logic with a background daemon running on
the coordinator node. This daemon detects distributed deadlocks by
polling all worker nodes for the edges in their lock graph (process a
waits for process b) every 2 seconds, and then merging all processes
in the graph that participate in the same distributed transaction. If
the resulting graph contains a cycle, then a cancellation is sent to
the process belonging to the youngest distributed transaction in
the cycle to abort the transaction.

Unless there is an actual deadlock, only a small number of trans-
actions will be waiting for a lock in typical (distributed) database
workloads, hence the overhead of distributed deadlock detection
is small. When distributed deadlocks happen frequently, users are
recommended to change the statement order in their transactions.

3.7.4 Multi-node transaction trade-offs. Multi-node transactions
in Citus provide atomicity, consistency, and durability guarantees,

but do not provide distributed snapshot isolation guarantees. A
concurrent multi-node query could obtain a local MVCC snapshot
before commit on one node, and after commit on another. Address-
ing this would require changes to PostgreSQL to make the snapshot
manager extensible. In practice, we did not find a strong need for
distributed snapshot isolation in the four workload patterns, and
customers did not express a need for it yet. Most transactions in
multi-tenant and CRUD applications are scoped to a single node,
meaning they get isolation guarantees on that node. Analytical
applications do not have strong dependencies between transactions
and are hence more tolerant to relaxed guarantees.

Distributed snapshot isolation can be important in certain hy-
brid scenarios. However, existing distributed snapshot isolation
techniques have a significant performance cost due to the need
for additional network round trips or waiting for the clock, which
increases response times and lowers achievable throughput. In the
context of the synchronous PostgreSQL protocol, throughput is
ultimately capped by #connections / response time. Since making a
very large number of database connections is often impractical from
the application perspective, low response time is the only way to
achieve high throughput. Hence, we would likely make distributed
snapshot isolation optional if we implement it in the future.

3.8 Specialized scaling logic
Apart from SELECT and DML commands that are handled via the
distributed query planner and executor, there are several other
important PostgreSQL capabilities for which Citus implements
specialized scaling logic.

DDL commands in PostgreSQL are transactional, online oper-
ations. Citus preserves this property by taking the same locks as
PostgreSQL and propagating the DDL commands to shards via the
executor in a parallel, distributed transaction.

COPY commands append a CSV-formatted stream of data to a
table. In PostgreSQL, this happens in a single thread, which also
needs to update indexes and checks constraints. In case of Citus,
the coordinator opens COPY commands for each of the shards and
streams rows to the shards asynchronously, which means writes
are partially parallelized across cores even with a single client.

INSERT..SELECT between distributed tables use one of 3 strate-
gies: If the SELECT requires a merge step on the coordinator, the
command is internally executed as a distributed SELECT and a
COPY into the destination table. If there is no merge step, but the
source and destination tables are not co-located, the INSERT..SELECT
performs distributed re-partitioning of the SELECT result before in-
serting into the destination table. Otherwise, the INSERT..SELECT
is performed directly on the co-located shards in parallel.

Stored procedures can be delegated to a worker node based on
a distribution argument and a co-located distributed table to avoid
network round trips between coordinator and worker nodes. The
worker node can then perform most operations locally without net-
work round trips, but it can also perform a distributed transaction
across worker nodes when necessary.

3.9 High Availability and backups
High availability (HA) and backups for distributed database systems
are complex topics that need to be looked at holistically from the
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Workload Benchmark
Multi-tenant HammerDB TPC-C-based
Real-time analytics Custom microbenchmarks
High-performance CRUD YCSB
Data warehouse Queries from TPC-H

Table 3: Benchmarks used for different workload patterns

perspective of the user and the platform that runs the database. As
this paper is primarily focused on the Citus extension, we only give
a brief overview of the typical HA and backup approach for Citus
clusters and leave further details to future papers.

HA in Citus is handled primarily at the server level using existing
PostgreSQL replication. In an HA setup, each node in the cluster
has one or more hot standby nodes and replicates its write-ahead
log (WAL) using synchronous, asynchronous or quorum replication.
When a node fails, the cluster orchestrator promotes a standby and
updates the Citus metadata, DNS record, or virtual IP. The whole
failover process takes 20-30 seconds, during which distributed trans-
actions involving the node roll back. The orchestrator is typically
part of the control plane in a managed service, but on-premises
users can use the pg_auto_failover extension [9] to serve the same
function.

Backups are also handled primarily at the server level by cre-
ating periodic disk snapshots or copies of the database directory
and continuously archiving the WAL to remote storage in each
server. Citus supports periodically creating a consistent restore
point, which is a record in the WAL of each node. The restore point
is created while blocking writes to the commit records table(s) on
the coordinator(s), which prevents in-flight 2PC commits while
creating the restore point. Restoring all servers to the same restore
point guarantees that all multi-node transactions are either fully
committed or aborted in the restored cluster, or can be completed
by the coordinator through 2PC recovery on startup.

4 BENCHMARKS
This section presents benchmark results that compare the perfor-
mance of Citus with one PostgreSQL server. With Citus, our goal
has been to turn PostgreSQL into a distributed database. This goal
included providing compatibility with PostgreSQL features and
its ecosystem of libraries and tools. As such, when customers ap-
proached us, their primary performance baseline was single node
PostgreSQL. The benchmarks here reflect that performance base-
line for target workloads described in Section 2. Table 3 summarizes
the relationship between workload patterns and benchmarks.

Each benchmark compares: PostgreSQL–A single PostgreSQL
server, Citus 0+1–a single PostgreSQL server that uses Citus to
shard data locally (coordinator also acts as worker), Citus 4+1–a
Citus cluster with a coordinator and 4 worker nodes, and Citus
8+1–a Citus cluster with a coordinator and 8 worker nodes. All
servers wereMicrosoft Azure virtual machines with 16 vcpus, 64 GB
of memory, and network-attached disks with 7500 IOPS, running
PostgreSQL 13 and Citus 9.5 with default settings. Benchmarks
were run from a separate driver node.

Each benchmark is structured such that a single server cannot
keep all the data in memory, but Citus 4+1 can, which demonstrates

Citus 8+1
Citus 4+1
Citus 0+1

PostgreSQL

0 200000 400000
381,911

214,043
15,419
15,923

Throughput in NOPM

avg. p95
368 ms 766 ms
382 ms 802 ms
39 ms 108 ms
21 ms 59 ms

Figure 6: HammerDB TPC-C results with 250 vusers and
500 warehouses (~100GB) in "new order" transactions per
minute (NOPM) and response times in milliseconds.

the often dramatic effect of scaling out memory along with CPU
and I/O capacity. Citus 8+1 demonstrates the effect of scaling out
only CPU and I/O capacity compared to Citus 4+1.

4.1 Multi-tenant benchmarks
To simulate a multi-tenant workload, we used the HammerDB [6]
TPC-C-based workload, which is an OLTP benchmark that models
an order processing system for warehouses derived from TPC-C [1].
The benchmark effectively models a multi-tenant OLTP workload
in which warehouses are the tenants. Most tables have a warehouse
ID column and most transactions only affect a single warehouse
ID, which allows the workload to scale. Around ~7% of transactions
span across multiple warehouses and are likely to be multi-node
transactions in Citus.

We configured HammerDB 3.3 with 500 warehouses (~100GB
of data), 250 virtual users (connections), a 1ms sleep time between
transactions, and a 1 hour runtime, and ran it against each set up.
In case of Citus, we converted the items table to a reference table
and the remaining tables to co-located distributed tables with the
warehouse ID column as the distribution column. Additionally, we
configured Citus to delegate stored procedure calls to worker nodes
based on the warehouse ID argument.

The New Orders Per Minute (NOPM) results obtained from run-
ning HammerDB against each set up are shown in Figure 6. On
single server PostgreSQL and Citus 0+1 the data set does not fit in
memory, which means that the amount of I/O is relatively high and
bottlenecked on a single disk. Citus does not provide immediate
performance benefits for OLTP workloads on the same hardware,
hence Citus 0+1 is slightly slower than single server PostgreSQL
due to (small) distributed query planning overhead. The main ben-
efit of using Citus for OLTP workloads is that it can scale beyond a
single server to ensure the working set fits in memory and sufficient
I/O and CPU is available.

Throughput on Citus 4+1 is around 13 times higher than through-
put on a single PostgreSQL server with only 5 times more hardware
because the cluster can keep all data in memory. Hence, Citus 4+1
performs less I/O and becomes CPU bottlenecked. From 4 to 8 nodes,
Citus shows slightly sublinear scalability. This is expected for the
TPC-C-based workload due to the ~7% of transactions that span
across nodes. The response time of these transactions is dominated
by network round-trips for individual statements sent between
nodes, which remains the same as the cluster scales out.

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2498



Citus 8+1
Citus 4+1
Citus 0+1

PostgreSQL

0 100 200 300
46
47

95
268

(a) Load time in seconds
0 1 2
0.07
0.17
0.32

2.23

(b) Query time in seconds
0 2000 4000
136
390

1,673
3,033

(c) Transformation time in seconds

Figure 7: Real-time analyticsmicrobenchmarks using ~100GB of GitHubArchive data:
(a) Single session COPY, (b) Dashboard query using GIN index, (c) Data transformation
using INSERT..SELECT
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Figure 8: Data warehousing bench-
mark using queries from TPC-H at
scale factor 100 (~135GB)
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Figure 9: Distributed transactions benchmark comparing
two updates on using the same distribution key vs. differ-
ent keys across two tables.

4.1.1 Distributed transaction performance. Multi-tenant applica-
tionsmostly have single-tenant transactions, but theremay be cross-
tenant transactions such as the ones simulated by HammerDB. To
get a more accurate measure of the overhead of 2PC, we created a
synthetic benchmark using two tables of 50GB generated by the
pgbench tool that comes with PostgreSQL. We then distributed and
co-located these tables by key, and defined a simple multi-statement
transaction:
UPDATE a1 SET v = v + :d WHERE key = :key1;
UPDATE a2 SET v = v - :d WHERE key = :key2;

We ran the transactions using pgbench for 1 hour with 250
connections. In one set of runs we used the same random value for
both keys, such that these are two co-located updates. In another
set of runs we used a different random value, which results in a
2PC when the keys are on different nodes. The results are displayed
in Figure 9. The figure shows 2PC incurs a 20-30% performance
penalty, but scales with the number of worker nodes.

4.2 Real-time analytics benchmark
There is not a standard real-time analytics benchmark, so we ran
several microbenchmarks for the individual commands involved
in real-time analytics. We used publicly available data from the
GitHub archive [4] in JSON format and loaded data for January
2020 into a table defined as follows:
CREATE TABLE github_events (
event_id text default md5(random()::text) primary key,

data jsonb);
SELECT create_distributed_table('github_events',
'event_id'); -- Citus only

CREATE INDEX text_search_idx ON github_events
USING GIN ((jsonb_path_query_array(data,
'$.payload.commits[*].message')::text) gin_trgm_ops);

We used the pg_trgrm extension (included in PostgreSQL) to
index the commit messages within the JSON data. The index makes
queries for a substring in a commit message much faster, at the
cost of increased write overhead. We created the index both on
PostgreSQL and on the Citus clusters.

Our first microbenchmark measures ingestion performance in
the presence of large indexes. We appended the first day of February
2020 (4.4GB of JSON data) using the COPY command. The average
load times over 5 runs are shown in Figure 7(a). In this case, Citus
0+1 gives a speed up over PostgreSQL due to the partial parallelism
described in Section 3.8. The Citus cluster with 4 worker nodes
can speed up the COPY further due to the greater number of cores
and I/O capacity. After that, the single COPY command becomes
bottlenecked on a single core on the coordinator, hence increasing
to 8 worker nodes does not provide additional speed up. To resolve
this bottleneck, customers ingest data by running concurrent COPY
commands.

Our second microbenchmark is a query that might be run by
a dashboard: Compute the number of commits that contain the
phrase "postgres" per day.
SELECT (data->>'created_at')::date,

sum(jsonb_array_length(data->'payload'->'commits'))
FROM github_events
WHERE jsonb_path_query_array(data,

'$.payload.commits[*].message')::text
ILIKE '%postgres%' GROUP BY 1 ORDER BY 1 ASC;

The average runtime of the dashboard query over 5 runs, ex-
cluding the first to mitigate the variability caused by cache misses,
is shown in Figure 7(b). The query only reads from memory and
is largely bottlenecked on CPU, hence the greater parallelism pro-
vided by Citus enables the query to run faster, even on a single
server.

Finally, real-time analytics often involves INSERT..SELECT queries
to transform or pre-aggregate the data. For our third microbench-
mark, we defined a data transformation step that extract commits
from the GitHub push events. Average runtime over five runs is
show in Figure 7(c). The parallelization significantly speeds up the
INSERT..SELECT with a 96% reduction in runtime on Citus 8+1
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Figure 10: YCSBWorkload A results on 100M rows (~100GB)
and response times for updates.

compared to a single PostgreSQL server, showing the ability of
Citus to scale complex transactional data transformations.

4.3 High performance CRUD benchmark
The Yahoo Cloud Serving Benchmark (YCSB) [16] is designed to
test high performance CRUDworkloads on NoSQL databases. YCSB
also has a JDBC driver that supports PostgreSQL. We ran workload
A (50% reads, 50% updates) from YCSB on a table of 100M rows
(~100GB) using 256 threads with uniform request distribution.

For this benchmark, the coordinator’s CPU usage becomes a
scaling bottleneck. Hence, we ran the benchmarkwith every worker
node acting as coordinator and configured YCSB to load balance
across all nodes. The results appear in Figure 10. The workload
is largely I/O bound, hence throughput scales linearly with the
higher I/O capacity when adding worker nodes. Single server Citus
performs slightly worse than PostgreSQL due to the additional
overhead of distributed query planning. On bigger clusters, the
speed up is roughly proportional to the amount of I/O capacity
with a small additional speed up due to data fitting in memory.

4.4 Data warehousing benchmark
A standard benchmark for data warehouses is TPC-H [2]. Queries
in TPC-H do not have selective filters and therefore scan most of the
data. Answering a TPC-H query quickly requires fast scanning and
processing, which Citus achieves mainly through distributed paral-
lelism and keeping more data in memory. At the time of writing, 4
of the 22 queries in TPC-H are not yet supported.

We used HammerDB to generate a TPC-H schema with scale
factor 100 (~135GB) and distributed and co-located the lineitem
and orders table by order key, and converted the smaller tables to
reference tables to enable local joins. We then ran the 18 queries
supported by Citus over a single session on each set-up. Figure 8
shows the number of queries per hour based on the completion
time of the full set of queries over a single session.

Citus can achieve significant speeds up compared to PostgreSQL
by efficiently utilizing all available cores. The fact that TPC-H
queries scan all the data and the tables do not fully fit in memory,
also means the single server is I/O bottlenecked while the Citus
cluster is only CPU bottlenecked, which results in a two orders
of magnitude speedup on the 8 node cluster compared to a single
PostgreSQL server.

5 CITUS CASE STUDY: VENICEDB
Citus is used in many large-scale production systems that rely on a
broad array of PostgreSQL and Citus capabilities to get the most out
of their hardware. A good example of this is the VeniceDB project
at Microsoft.

Microsoft uses Citus to analyze Windows measure data, which
is derived from the telemetry coming in from hundreds of millions
of Windows devices. Metrics are displayed on a real-time analyt-
ics dashboard called “Release Quality View” (RQV), which helps
Windows engineering teams to assess the quality of the customer
experience for each Windows release at the device grain. The RQV
dashboard is a critical tool for Windows engineers, program man-
agers, and executives, with hundreds of users per day.

The data store underlying RQV, code named VeniceDB, is pow-
ered by two >1000 core Citus clusters running on Microsoft Azure,
which store over a petabyte of data. While many different dis-
tributed databases and data processing systems were evaluated for
VeniceDB, only Citus could address the specific combination of re-
quirements associated with the petabyte-scale VeniceDB workload,
including:

• Sub second response times (p95) for >6M queries per day
• Ingest ~10TB of new measure data per day
• Show new measure data in RQV within 20 minutes
• Nested subqueries with high cardinality group by
• Advanced secondary indexes (e.g. partial indexes, GiST in-
dexes) to efficiently find reports along various dimensions

• Advanced data types (e.g. arrays, HyperLogLog) to imple-
ment sophisticated analytical algorithms in SQL

• Row count reduction through incremental aggregation
• Atomic updates across nodes to cleanse bad data

In the Citus clusters, raw data is stored in the measures table,
which is distributed by device ID and partitioned by time on disk
using the built-in partitioning capability in PostgreSQL. The COPY
command is used to parallelize the ingestion of incoming JSON data
into the distributed table. Distributed INSERT..SELECT commands
are used to perform device-level pre-aggregation of incoming data
into several reports tables with various indexes. The reports tables
are also distributed on device ID and co-located with the measures
table such that Citus can fully parallelize the INSERT..SELECT.

Many of the queries from the RQV dashboard are of the form:
SELECT ..., avg(device_avg)
FROM (

SELECT deviceid, ..., avg(metric) as device_avg
FROM reports WHERE ...
GROUP BY deviceid, <time period> , <other dimensions>

) AS subq
GROUP BY <time period>, <other dimensions>;

These queries filter by several dimensions (e.g. measure, time
range, Windows build) to find a substantial subset of the data. The
nested subquery first aggregates reports by device ID, which is
needed to weigh overall averages by device rather than by the
number of reports. There can be tens of millions of devices per
query, whichmakes the GROUPBY deviceid challenging to compute
efficiently. Since the subquery groups by the distribution column,
the logical pushdown planner in Citus recognizes that it can push
down the full subquery to all worker nodes to parallelize it. The
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worker nodes then use index-only scans to read the data in device
ID order and minimize the disk I/O and memory footprint of the
GROUP BY. Finally, Citus distributes the outer aggregation step by
calculating partial aggregates on the worker nodes and merging the
partial aggregates on the coordinator to produce the final result.

At each step, VeniceDB uses a combination of advanced Post-
greSQL and Citus capabilities to achieve maximum efficiency and
scale on a single system.

6 RELATEDWORK
Citus has architectural similarities with various other distributed
database systems, but most systems focus only on a single workload
pattern. In addition, Citus is unique in that it is a distributed RDBMS
implemented as an extension of an existing RDBMS, which gives
many benefits in terms of robustness, versatility, and compatibility
with the open source ecosystem around PostgreSQL.

Vitess [12] is a sharding solution for MySQL. Like Citus, Vitess
scales out an existing open source relational database. Unlike Ci-
tus, it is not an extension and therefore must be deployed sepa-
rately from the database servers and requires additional application
changes. Vitess is primarily optimized for multi-tenant and high
performance CRUD workloads and has built-in connection pool-
ing for scaling the number of connections. It has limited support
for queries and transactions across shards, which makes it less
applicable in other workload patterns.

Greenplum [5] and Redshift [21] are PostgreSQL-based data
warehouses that are hence optimized for handling complex SQL
queries that analyze large amounts of data with low concurrency.
As a result, both systems today provide better per-core performance
than Citus for long analytical queries. Greenplum and Redshift also
use columnar storage for fast scans and implement joins by shuffling
data over the network. Citus supports those primitives as well, but
the Citus implementation is not as well-optimized yet. On the other
hand, Citus can handle a mixture of transactional and analytical
workloads, and can take advantage of the latest PostgreSQL features
and extensions.

Aurora [27] can scale out the storage for a single PostgreSQL
server for demanding OLTP workloads and fast recovery. Citus has
a shared nothing architecture, which means storage scale out and
fast recovery is achieved by dividing data across many database
servers. The downside of a shared-nothing architecture is that
the application needs to make additional data modelling decisions
(choosing distributed tables), so it is not a drop-in replacement for
applications built on a single server RDBMS. The advantages of a
shared-nothing architecture over shared storage are the ability to
combine the compute power of all servers and use advanced query
parallelism. Also, Citus can be deployed in any environment.

Spanner [17], CockroachDB [25] and Yugabyte [13] have been
developed with a focus on serializability for multi-node transac-
tions. CockroachDB and Yugabyte support the PostgreSQL protocol
as well, though significant functional limitations compared to Post-
greSQL remain. A notable architectural difference between these
systems and Citus is that they provide distributed snapshot isola-
tion and use wound-wait rather than deadlock detection. In sections
3.7.4 and 3.7.3 we discussed the downsides of these techniques in
the context of PostgreSQL compatibility and why we did not use

them for Citus. One of the benefits of distributed snapshot isola-
tion is that it avoids data modelling constraints. Citus users need
to use co-location and reference tables to scope transactions to a
single node in order to get full ACID guarantees. On the other hand,
these techniques also enable efficient joins and foreign keys and we
therefore find them to be essential for scaling complex relational
database workloads.

TimescaleDB [11] is a PostgreSQL extension that optimizes Post-
greSQL for time series data. It uses similar hooks as Citus to intro-
duce the concept of a hypertable, which is automatically partitioned
by time. Partitioning tables by time is useful for limiting index sizes
to maintain high write performance for time series workloads, and
for partition pruning which speeds up queries by time range. Citus
and TimescaleDB are currently incompatible due to conflicting us-
ages of PostgreSQL hooks, but Citus does work with pg_partman
[8] which is a simpler time partitioning extension. Many real-time
analytics applications that use Citus also use pg_partman on top of
distributed tables, in which case the individual shards are locally
partitioned to get both the benefits of distributed tables and time
partitioning.

7 CONCLUSIONS AND FUTUREWORK
Citus is a distributed database engine for PostgreSQL that addresses
the need for scalability in the PostgreSQL ecosystem. As an exten-
sion, Citus maintains long-term compatibility with the PostgreSQL
project, including new features and tools. Rather than focusing on a
particular workload, we designed Citus as a multi-purpose database
system that can handle a broad variety of PostgreSQL workloads
that need to scale beyond a single server. That way, users get the
simplicity and flexibility of using a widely adopted, open source
relational database system, at scale.

Much of our future work is around implementing support for
any remaining PostgreSQL features that are not fully supported
on distributed tables. These include non-co-located correlated sub-
queries, recursive CTEs, and logical replication between different
table types. Increasingly, we are also seeing users with hybrid data
models that keep small tables on a single server and then distribute
only large tables. Automated data model optimization for these
scenarios is another important area of future work. Finally, Citus is
increasingly being used in more specialized workload patterns such
as MobilityDB [14] and Kyrix-S [26]. There are many potential dis-
tributed query optimizations that can be implemented specifically
for those workloads. We will explore making Citus itself extensible
to iterate on those optimizations faster.
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