
Greenplum: A Hybrid Database for Transactional and Analytical
Workloads

Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang, Jinbao Chen,
Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen Lin, Ashwin Agrawal,

Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu, Jesse Zhang, Venkatesh Raghavan
VMware

ABSTRACT
Demand for enterprise data warehouse solutions to support real-
time Online Transaction Processing (OLTP) queries as well as long-
runningOnline Analytical Processing (OLAP)workloads is growing.
Greenplum database is traditionally known as an OLAP data ware-
house system with limited ability to process OLTP workloads. In
this paper, we augment Greenplum into a hybrid system to serve
both OLTP and OLAP workloads. The challenge we address here is
to achieve this goal while maintaining the ACID properties with
minimal performance overhead. In this effort, we identify the engi-
neering and performance bottlenecks such as the under-performing
restrictive locking and the two-phase commit protocol. Next we
solve the resource contention issues between transactional and
analytical queries. We propose a global deadlock detector to in-
crease the concurrency of query processing. When transactions
that update data are guaranteed to reside on exactly one segment we
introduce one-phase commit to speed up query processing. Our re-
source group model introduces the capability to separate OLAP and
OLTP workloads into more suitable query processing mode. Our
experimental evaluation on the TPC-B and CH-benCHmark bench-
marks demonstrates the effectiveness of our approach in boosting
the OLTP performance without sacrificing the OLAP performance.

CCS CONCEPTS
• Information systems→Relational parallel and distributed
DBMSs.

KEYWORDS
Database; Hybrid Transactional and Analytical Process

ACM Reference Format:
Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou
Wang, Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra
Wang, Wen Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li,
Feng Guo, Jiang Wu, Jesse Zhang, Venkatesh Raghavan. 2021. Greenplum: A
Hybrid Database for Transactional and Analytical Workloads. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3457562

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457562

1 INTRODUCTION
Greenplum is an established large scale data-warehouse system
with both enterprise and open-source deployments. The massively
parallel processing (MPP) architecture of Greenplum splits the data
into disjoint parts that are stored across individual worker segments.
This is similar to the large scale data-warehouse systems such as
Oracle Exadata [5], Teradata [1, 7], and Vertica [13], including
DWaaS systems such as AWS Redshift [10], AnalyticDB [28], and
BigQuery [25]. These data warehouse systems are able to efficiently
manage and query petabytes of data in a distributed fashion. In
contrast, distributed relational databases such as CockroachDB
[24], and Amazon RDS [2] have focused their efforts on providing
a scalable solution for storing terabytes of data and fast processing
of transactional queries.

Greenplum users interact with the system through a coordinator
node, and the underlying distributed architecture is transparent to
the users. For a given query, the coordinator optimizes it for parallel
processing and dispatches the generated plan to the segments. Each
segment executes the plan in parallel, and when needed shuffles
tuples among segments. This approach achieves significant speedup
for long running analytical queries. Results are gathered by the
coordinator and are then relayed to clients. DML operations can be
used to modify data hosted in the worker segments. Atomicity is
ensured via a two-phase commit protocol. Concurrent transactions
are isolated from each other using distributed snapshots. Greenplum
supports append-optimized column-oriented tables with a variety
of compression algorithms. These tables are well suited for bulk
write and read operations which are typical in OLAP workloads.

Figure 1: A Typical Enterprise Data Processing Workflow

Figure 1 shows a typical data processing workflow which in-
volves operational databases managing hot (most valuable) transac-
tional data for a short period of time. This data is then periodically
transformed, using Extract Transform and Load (ETL) tools, and
loaded into a datawarehouse for further analysis. There is a growing

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2530

https://doi.org/10.1145/3448016.3457562
https://doi.org/10.1145/3448016.3457562


desire to reduce the complexity of maintaining disparate systems
[20]. In this vein, users would prefer to have a single system that
can cater to both OLAP and OLTP workloads. In other words, such
a system needs to be highly responsive for point queries as well
as scalable for long running analytical queries. This desire is well
established in literature and termed as a hybrid transactional and
analytical processing (HTAP) system [11, 20, 21, 26].

To meet the need for Greenplum’s enterprise users we propose
augmenting Greenplum into an HTAP system. In this work, we
focus on the following areas, namely, 1) improving the data loading
into a parallel system with ACID guarantees, 2) reducing response
time for servicing point queries prevalent in OLTP workloads, and
3) Resource Group, which is able to isolate the resource among
different kinds of workloads or user groups.

Greenplum was designed with OLAP queries as the first class
citizen while OLTP workloads were not the primary focus. The
two-phase commit poses a performance penalty for transactions
that update only a few tuples. The heavy locking imposed by the co-
ordinator, intended to prevent distributed deadlocks, proves overly
restrictive. This penalty disproportionately affects short running
queries. As illustrated in Figure 2, the locking takes more than 25%
query running time on a 10-second sample with a small number of
connections. When the amount of concurrences exceeds 100, the
locking time becomes unacceptable.

 0

 5

 10

 15

 20

 25

 30

 35

 40

30 40 50 60 70 80 90 100

%
 o

f 
to

ta
l

# of connections

Time Consumption(% of Total 10 Seconds Sample)

Runing Time Consumption of Locking

Figure 2: Example of Greenplum locking benchmark

Our key contributions in augmenting Greenplum into an HTAP
systems can be summarized as follows:

• We identify challenges in transforming an OLAP database
system into an HTAP database system.

• We propose a global deadlock detector to reduce the lock-
ing overhead and increase the OLTP response time without
sacrificing performance for OLAP workloads.

• We speedup transactions that are guaranteed to update only
data resident on an exactly one segment by switching to a
one-phase commit protocol.

• We develop a new resource isolation component to man-
age OLTP and OLAP workloads, which can avoid resource
conflicts in high concurrence scenarios.

• We conduct a comprehensive performance evaluation on
multiple benchmark data sets. The results demonstrate that

the HTAP version of Greenplum performs on-par with tradi-
tional OLTP databases while still offering the capacity of real
time computing on highly concurrent and mixed workloads.

Organisation. In Section 2 we review of related work followed
by a detailed description of Greenplum’s MPP architecture and
concepts in Section 3. Section 4 details the design and implemen-
tation of the global deadlock detection. Section 5 demonstrates
distributed transaction management in Greenplum and the related
optimization to improve OLTP performance. Section 6 presents our
methodology to alleviate the performance degradation caused by
resource competition in a high concurrent, mix workload environ-
ment. Lastly, in Section 7 we present our experimental methodology
and analysis.

2 RELATEDWORK
Hybrid transactional and analytical processing (HTAP) sys-
tem. An HTAP system [6, 11, 27] brings several benefits compared
with an OLAP or OLTP system. First, HTAP can reduce the waiting
time of new data analysis tasks significantly, as there is no ETL
transferring delay. It makes real-time data analysis achievable with-
out extra components or external systems. Second, HTAP systems
can also reduce the overall business cost in terms of hardware and
administration. There are many widely-used commercial OLTP
DBMS [24, 26, 27] that have been shifting to HTAP-like DBMS.
However, the support for OLTP workloads in commercial OLAP
DBMS is still untouched. As the concept of HTAP is becoming popu-
lar, more database systems try to support HTAP capabilities. Özcan
et al. [20] have dissected HTAP databases into two categories: sin-
gle systems for OLTP & OLAP and separate OLTP & OLAP systems.
In the rest of this section, we will discuss the different evolution
paths of HTAP databases.

FromOLTP toHTAPDatabasesOLTP databases are designed
to support transactional processing with high concurrency and low
latency. Oracle Exadata [5] is designed to run OLTP workloads
simultaneously with analytical processing. Exadata introduces a
smart scale-out storage, RDMA and infiniBand networking, and
NVMe flash to improve the HTAP performance. Recently, it sup-
ports features like column-level checksum with in-memory column
cache and smart OLTP caching, which reduce the impact of flash
disk failure or replacement. Amazon Aurora [26] is a cloud OLTP
database for AWS. It follows the idea that logs are the database,
and it offloads the heavy log processing to the storage layer. To
support OLAP workloads, Aurora features parallel queries so that
it can push down and distribute the computational work of a single
query across thousands of CPUs to its storage layer. Parallelization
of query operations can speed up analytical queries by up to two
orders of magnitude.

From NewSQL Databases to HTAP Databases Since the suc-
cess of Google Spanner [9], NewSQL databases with high scalability
and strong ACID guarantees have emerged to overcome the limi-
tation of NoSQL databases with high scalability and strong ACID
guarantees. Earlier implementation of NewSQL databases, such as
CockroachDB [24], TiDB [11], and F1 [21], focused on supporting
geo-distributed OLTP workloads, based on consensus protocol like
Paxos [15] or Raft [19]. Recently, several NewSQL databases de-
clared themselves as HTAP ones. TiDB introduced TiFlush [11]

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2531



to handle OLAP workloads on different hardware resources. It ex-
tends Raft to replicate data into Raft “learner” asynchronously, and
columnizes the data on the fly to serve OLAP workloads. Simi-
larly, traditional OLAP databases (e.g., Vertica [14]) also use write-
optimized stores (WOS) to handle insertion, update, and deletion
queries. Then WOS are converted into read-optimized stores (ROS)
asynchronously to handle OLAP workloads. F1 Lighting [27] of-
fers “HTAP as a service”. In Google, Lighting is used to replicate
data from OLTP databases such as Spanner and F1 DB, and con-
vert those data into column format for OLAP workloads. Unlike
TiFlush, Lighting provides strong snapshot consistency with the
source OLTP databases.

Greenplum shows another pathway to evolve into an HTAP
database. It adds OLTP capability to a traditional OLAP database,
and also supports a fine-grained resource isolation. The next section
describes the architecture of Greenplum in detail.

3 GREENPLUM’S MPP ARCHITECTURE
To support the storage and high-performance analysis of petabytes
of data, several problems are challenging to overcome when using
a single host database:

• Data Scalability: the total amount of data is too large to store
in a single host.

• Compute Scalability: the ability to handle concurrency is
limited by the compute resources of a single host, e.g., CPUs,
memory, and IO.

• High Availability: if the single host is unavailable, so is the
whole database system.

Greenplum builds a database cluster to address the above men-
tioned limitations based on an MPP architecture. A running Green-
plum cluster consists of multiple running worker segments which
can be viewed as an enhanced PostgreSQL. Figure 3 shows the
whole architecture.

Interconnect

Client

Figure 3: Greenplum’s Architecture

Next, we introduce several important modules and the design
of Greenplum’s MPP Architecture. These concepts are crucial to
understand the HTAP improvement of Greenplum.

3.1 Roles and Responsibility of Segments
A Greenplum cluster consists of many segments across many hosts.
There is only one segment called the coordinator segment in the

whole database system. The others are called segments for short.
The coordinator segment is directly connected to user clients. The
coordinator receives commands or queries from them, generates
a distributed query plan, spawns distributed processes according
to the plan, dispatches it to each process, gathers the results, and
finally sends back to the clients. Segments serve as the primary
storage of user data and execute a specific part of the distributed
plan from coordinator. To achieve high availability, some segments
are configured as mirrors (or standbys for the coordinator). Mirrors
(and standbys) will not participate in computing directly. Instead,
they receive WAL logs from their corresponding primary segments
continuously and replay the logs on the fly.

Greenplum follows a shared-nothing architecture. The coordina-
tor and segments have their own shared memory and data directory.
Coordinator communicates with segments only through networks.

3.2 Distributed Plan and Distributed Executor
Typically, for a distributed relation, each segment only stores a
small portion of the whole data. When joining two relations, we
often need to check if two tuples from different segments match
the join condition. This means that Greenplum must move data
among segments to make sure that all possible matching tuples are
in the same segment. Greenplum introduces a new plan node called
Motion to implement such data movement.

Motion plan node uses networks to send and receive data from
different segments (hosts). Motion plan nodes naturally cut the
plan into pieces, each piece below or above the Motion is called a
slice in Greenplum. Each slice is executed by a group of distributed
processes, and the group of processes is called gang.

With the proposed Motion plan node and gang mentioned above,
Greenplum’s query plan and the executor both becomes distributed.
The plan will be dispatched to each process, and based on its local
context and state, each process executes its own slice of the plan
to finish the query execution. The described execution is the Sin-
gle Program Multiple Data technique: we dispatch the same plan
to groups of processes across the cluster and different processes
spawned by different segments have their own local context, states,
and data.

We use an example to illustrate the above concepts. Figure 4
(top part) shows a distributed plan that is compiled from a join
SQL query. On the bottom part of Figure 4, it shows the execution
progress of this plan in a cluster with two segments. The top slice is
executed by a single process on the coordinator, and other slices are
executed on segments. One slice scans the table and then sends the
tuples out using redistributed motion. Another slice that performs
hash join will receive tuples from the motion node, scan the student
table, build a hash table, compute the hash join, and finally send
tuples out to the top slice.

3.3 Distributed Transaction Management
In a Greenplum cluster, each segment runs an enhanced PostgreSQL
instance, and a transaction commits or aborts in each segment syn-
chronously. To ensure ACID properties, Greenplum uses distributed
snapshots and a two-phase commit protocol. Performance of dis-
tributed transaction management is critical to augment Greenplum
as a viable HTAP system. The details will be discussed in Section 5.

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2532



Figure 4: Greenplum’s distributed plan and executor

3.4 Hybrid Storage and Optimizer
Greenplum supports PostgreSQL native heap tables, which is a
row oriented storage having fixed sized blocks and a buffer cache
shared by query executing processes running on a segment to
facilitate concurrent read and write operations. Two new table
types are introduced in Greenplum: append-optimized row oriented
storage (AO-row) and append-optimized column oriented storage
(AO-column). AO tables favour bulk I/O over random access making
them more suitable for analytic workloads. In AO-column tables,
each column is allotted a separate file. This design further reduces
I/O for queries that select only a few columns from a wide table.
AO tables can be compressed with a variety of algorithms such
as zstd, quicklz and zlib. In an AO-column table, each column can
be compressed using a specific algorithm, including run-length-
encoding (RLE) with delta compression. The query execution engine
in Greenplum is agnostic to table storage type. AO-row, AO-column
and heap tables can be joined in the same query.

A table can be partitioned by user-specified key and partition
strategy (list or range). This is implemented by creating a hierarchy
of tables underneath a root table, with only the leaf tables containing
user data. A partitioning feature with similar design was adopted
later by upstream PostgreSQL. Each partition within a hierarchy

can be a heap, AO-row, AO-column or an external table. External
tables are used to read/write data that is stored outside Greenplum,
e.g. in Amazon S3.

Per column compression (zstd, gzip, 

quicklz, RLE with delta) and block size 

can be specified.

Suitable for frequent updates and deletes. 

Use indexes for drill through queries.

TABLE ‘SALES’

Jun

Column-orientedHEAP (row-oriented)

Oct Year -1 Year -2

External HDFS, S3 ...

Less accessed, archived data. 

Supported formats include CSV, 

Binary, Avro, Parquet, etc.

Nov DecJul Aug Sep

Figure 5: Polymorphic partitioning strategy based on date

Figure 5 shows a SALES table partitioned by sale date with each
partition defined by a date range. Recent partitions are created
as native heap tables (Jun-Aug). AO-column storage is used for
slightly older sales data (Sep-Dec) while prior years’ sales data is
archived in external tables. Queries can be made against SALES
table or its individual partitions without being aware of the table’s
storage. This strategy is similar to the hot and cold classification of
data in [16].

Like storage, query optimization in Greenplum is flexible too.
Query optimization is workload dependent. Analytical workloads
are composed of ad-hoc and complex queries involving many joins
and aggregates. Query performance is mainly determined by the
efficiency of the query plan. The Orca [23] query optimizer in Green-
plum is a cost-based optimizer designed for analytical workloads.
On the other hand, transactional workloads are composed of short
queries, which are sensitive to query planning latency. It requires
optimizer to be fast when generating a simple plan. Greenplum’s
MPP-aware version of the PostgreSQL optimizer is suitable for such
transactional workloads. Users are able to choose between the two
optimizers at the query, session or database level. Flexibility to
choose the most appropriate optimizer helps Greenplum handle
HTAP workloads more efficiently.

4 OBJECT LOCK OPTIMIZATION
This section focuses on the object lock optimization, the cornerstone
of Greenplum’s remarkable OLTP performance. The core idea is
to solve the global deadlock issue in a distributed environment
by a detector algorithm. Surveys of earlier work on the deadlock
problem in a distributed system are given in [12, 22]. The surveys
do not contain concrete examples that the readers can easily try
in their local environment. We show many detailed examples with
reproducible SQL statements in this section. We also propose some
novel ideas like the greedy rule and the labels in the wait-for edges
which make the algorithm easy to implement and prove.

This section contains several step-by-step cases that readers can
try in their local environment. All relations in these cases contain
two integer columns (c1, c2) and are distributed on three segments
with c1 as the distributed key.

4.1 Locks in Greenplum
Locks are widely used in database to prevent race conditions at
different levels of granularity. There are three different kinds of

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2533



locks designed for different use cases in Greenplum: spin locks,
LWlocks and Object locks. Spin locks and LWlocks are used to
protect the critical regionwhen reading or writing sharedmemories,
and by following some rules (e.g. to acquire locks in the same
order) we can get rid of deadlocks involving these two kinds of
locks. Object locks directly impact the concurrency of processes
when operating on database objects such as relations, tuples, or
transactions. We will focus on object locks in this section.

Table 1: Lock modes, conflict table and typical statements

Lock mode Level Conflict lock level Typical statements

AccessShareLock 1 8 Pure select
RowShareLock 2 7,8 Select for update
RowExclusiveLock 3 5,6,7,8 Insert
ShareUpdateExclusiveLock 4 4,5,6,7,8 Vaccum (not full)
ShareLock 5 3,4,6,7,8 Create index
ShareRowExclusiveLock 6 3,4,5,6,7,8 Collation create
ExclusiveLock 7 2,3,4,5,6,7,8 Concurrent refresh matview
AccessExclusiveLock 8 1,2,3,4,5,6,7,8 Alter table

Some objects such as relations, can be concurrently manipulated
by transactions. When accessing such an object, locks should be
held in a correct mode to protect the object. Greenplum adopts two-
phase locking: locks are held in the first phase, and released when
transactions are committed or aborted. Inherited from PostgreSQL,
there are eight different levels of lock modes in Greenplum. Higher
levels of lock modes enable stricter granularity of concurrency con-
trol. All the lock modes, their conflict modes and the corresponding
typical statements are shown in Table 1. As an MPP-based database,
the locking logic and algorithm are different with the PostgreSQL.
The PostgreSQL lock logic does not detect or resolve the global
deadlock use case frequently encountered in an MPP database like
Greenplum. More specifically, we have to increase the lock level of
DML operation to make sure that the transaction is running serially
to avoid such issues. In the previous version of Greenplum which
is based on PostgreSQL locking mechanism, it leads to very poor
performance in multi-transactions as only one transaction updates
or deletes on the same relation could be processed at one time.

For example, most alter table statements will change the catalog
and affect optimizer to generate a plan, so these alter table state-
ments are not allowed to be concurrently running with any other
statements operating on the same relation. From Table 1, we can
see that alter table statements will hold AccessExclusive lock on the
relation. AccessExclusive is the highest lock level and it conflicts
with all lock levels.

4.2 Global Deadlock Issue
In a distributed system such as Greenplum, lock level of INSERT,
DELETE and UPDATE DML statements is very important when
handling global deadlocks. The locking behavior of these DML
statements is as follows:

• First, during the parse-analyze stage, the transaction locks
the target relation in some mode.

• Second, during the execution, the transaction writes its iden-
tifier into the tuple. This is just a way of locking tuple using
the transaction lock.

In a single-segment database, such as PostgreSQL, the first stage
often locks the target relation in RowExclusive mode, so that they

can run concurrently. Only if two transactions happen to write
(UPDATE or DELETE) the same tuple, one will wait on the tuple’s
transaction lock until the other one is committed or aborted. The
lock dependencies are stored in the shared memory of each seg-
ment instance. If a deadlock happens, it is easy to scan the lock
information in shared memory to break it.

Figure 6: Global Deadlock Case 1: UPDATE across segments

This approach is insufficient in a Greenplum’s distributed archi-
tecture. Even if each segment in Greenplum cluster is an enhanced
PostgreSQL instance with the local deadlock handler, it cannot
avoid a global deadlock if the waiting behavior happens across
different segments. This problem is illustrated in Figure 6 and is
described in time order as follows. The order number below is
consistent with the order number in the Figure 6.

(1) Transaction A updates a tuple that is stored in segment 0,
holding a transaction lock on segment 0.

(2) Transaction B updates a tuple that is stored in segment 1,
holding a transaction lock on segment 1. Until now, every-
thing works well, no waiting event happens.

(3) Transaction B then updates the same tuple that just has been
updated by transaction A on segment 0, because transaction
A has not committed or aborted yet, transaction B has to
wait. Transaction A is working normally and waiting for the
next statement.

(4) Transaction A updates the tuple on segment 1 that is locked
by transaction B, therefore it also has to wait.

(5) Now, on segment 0, transaction B is waiting for transaction
A; on segment 1, transaction A is waiting for transaction
B. Neither of them can go one step further and every Post-
greSQL instance has no local deadlock. This results in a
global deadlock.

Figure 7 shows a more complicated case, where all segments
including the coordinator involve a global deadlock. The order
number below is consistent with the order number in the Figure 7.

(1) Transaction A locks the tuple in relation t1 with 𝑐1 = 2 on
segment 0 by the UPDATE statement.

(2) Transaction B locks the tuple in relation t1 with 𝑐1 = 1 on
segment 1 by the UPDATE statement.

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2534



Figure 7: Global Deadlock Case 2: complex case involving
coordinator as well as segments

(3) Transaction C locks relation t2 on coordinator and all seg-
ments by the LOCK statement.

(4) Transaction C attempts to acquire the lock of tuple in relation
t1 with 𝑐1 = 2 on segment 0, which is already locked by
transaction A, so transaction C waits.

(5) Transaction A tries to lock the tuple in relation t1 with 𝑐1 = 1
on segment 1, which is already locked by transaction B, so
transaction A waits.

(6) Transaction D locks the tuple in relation t1 with 𝑐1 = 3 on
segment 0 by UPDATE statement.

(7) Transaction D continues to try to lock the relation t2 on coor-
dinator by LOCK statement, it will wait because transaction
C holds the lock on t2.

(8) Transaction B continues to try to lock the tuple in relation
t1 with 𝑐1 = 3 on segment 0 which is locked by transaction
D and it also waits.

(9) Now, on segment 1, transaction A is waiting for transaction
B; on segment 0, transaction B is waiting for transaction D;
on coordinator, transaction D is waiting for transaction C;
on segment 0, transaction C is waiting for transaction A;
thereby, a global deadlock happens.

In Greenplum 5 and all previous versions, during the parse-
analyze stage in coordinator, the target relation is locked using the
exclusive mode, thus transactions performing UPDATE or DELETE
are actually running serially and transaction lock waiting cannot
happen on segments, which avoids global deadlocks. However,
this method leads to poor OLTP performance, because it is not
allowed to write the same relation concurrently, even if the two
transactions actually update different tuples. We do not consider
network deadlock in this section because it is not a problem for
OLTP workloads. More discussion on network deadlock can be
found in [17].

4.3 Global Deadlock Detection Algorithm
To address the global deadlock issue, we propose a detection mecha-
nism as part of Greenplum 6. The Global Deadlock Detect algorithm
(GDD for short) has the following working flow:

• Greenplum launches a daemon on the coordinator segment
• The daemon periodically collects wait-for graphs on each
segment

• The daemon checks if a global deadlock happens
• The daemon breaks the global deadlock using predefined
policies such as terminating the youngest transaction

The global deadlock detection algorithm is required to be sound
and complete. If it reports a global deadlock, then the database must
have a global deadlock actually. We will present the proof of the
soundness and completeness after introducing the algorithm.

The GDD daemon collects each segment’s local wait-for graph
(including the coordinator’s) and builds a global wait-for graph. It is
a set of local wait-for directed graphs, where each vertex represents
a transaction, and the edge is starting from the waiting transaction
to the holding transaction. For each vertex which represents a
transaction, the number of its outgoing edges is the out-degree of
the vertex, and the number of its incoming edges is the in-degree
of the vertex. The local degree of a vertex is the value counting
only in a single segment’s wait-for graph. The global degree of
a vertex is the value summing all local degrees of all segments.
We use 𝑑𝑒𝑔 (𝐺) (𝑉 ) to denote the global out-degree of the vertex V,
𝑑𝑒𝑔𝑖 (𝑉 ) to denote the local out-degree of vertex V in segment 𝑖 . For
example, in Figure 7, 𝑑𝑒𝑔 (𝐺) (𝐶) = 1 since there is one edge from
C to D in segment 0, and 𝑑𝑒𝑔−1 (𝐶) = 0 since there is no outgoing
edge from C in segment -1.

It needs to be emphasized that the waiting information collected
from each segment is asynchronous, and when analyzing the infor-
mation in the coordinator, the delay cannot be ignored. The most
important idea in the GDD algorithm is the greedy rules. The algo-
rithm keeps removing waiting edges that might continue running
later. When no more waiting edges can be removed, if there are
any remaining waiting edges, then global deadlock might happen.
In that case, the detector daemon will lock all processes in the co-
ordinator to check that all the remaining edges are still valid. If
some transactions have been finished (either aborted or commit-
ted), GDD daemon just simply discards all the information, invokes
sleep, and continues the global deadlock detection job in the next
run. Note that the period to run the job is a configurable parameter
for Greenplum to suit a variety of business requirements.

There are two different notations of waiting edges in the global
wait-for graph:

• Solid edge: thewaiting disappears only after the lock-holding
transaction ends (either being committed or aborted). A typi-
cal case is when a relation lock on the target table in UPDATE
or DELETE statements. The lock can only be released at the
end of the transaction ends. Such an edge can be removed
onlywhen the holding transaction is not blocked everywhere
because based on the greedy rule we can suppose the hold
transaction will be over and release all locks it holds.

• Dotted edge: denotes a lock-holding transaction can release
the lock even without ending the transaction. For example,
a tuple lock that is held just before modifying the content of
a tuple during the execution of a low level delete or update
operation. Such an edge can be removed only when the
holding transaction is not blocked by others in the specific
segment. This is based on the greedy rule we can suppose

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2535



the hold transaction will release the locks that blocks the
waiting transaction without committing or aborting.

Algorithm 1: Global deadlock detect algorithm
build global wait-for graph G;
while True do

/* remove vertices with no outgoing edges */

for 𝑣 ∈ 𝑉𝑒𝑟𝑡𝑒𝑥 (G) do
if 𝑔𝑙𝑜𝑏𝑎𝑙_𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣) == 0 then

remove all edges directly point to 𝑣
end

end
/* remove edges in local wait-for graph */

for 𝑙𝑜𝑐𝑎𝑙_𝑔𝑟𝑎𝑝ℎ ∈ G do
for 𝑣 ∈ 𝑉𝑒𝑟𝑡𝑒𝑥 (𝑙𝑜𝑐𝑎𝑙_𝑔𝑟𝑎𝑝ℎ) do

if 𝑙𝑜𝑐𝑎𝑙_𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣) == 0 then
remove all dotted edges directly point to 𝑣

end
end

end
if no removals happen then

break
end

end
if there remains edges ∧ all transactions exists then

report global deadlock happens
end

The complete GDD algorithm is shown in Algorithm 1. In each
loop, it first removes all vertices with zero global out degree, then
scans each local wait-for graph to remove all dotted edges that are
pointing to a vertex with zero local out-degree. GDD is a greedy
algorithm, in other words if it is possible to let the lock-holding
transaction continues executing, we always assume that they will
eventually release all the locks they are holding.

GDD in action. We use the GDD algorithm to analyze several
practical cases. For the deadlock case presented in Figure 6, from
the wait-for graph, there is no vertex with zero global out-degree,
so the first round removes no edges, and in each segment there is
no dotted edges, no edges can be removed in the second round. The
wait-for graph is the final state and it contains a global cycle, which
means global dead lock happens.

Figure 8 is another case. The statements are described in time
order as below and the order number is consistent with the order
number in the Figure 8:

(1) Transaction A locks the tuple in relation t1 with 𝑐1 = 3 on
segment 0 by the UPDATE statement.

(2) Transaction C locks the tuple in relation t1 with 𝑐1 = 1 on
segment 1 by the UPDATE statement.

(3) Transaction B tries to lock the tuple in relation t1 with 𝑐1 = 1
or 𝑐1 = 3, it will be blocked by transaction A on segment 0
and by transaction C on segment 1.

(4) Transaction A tries to lock the tuple in relation t1 with 𝑐1 = 1
on segment 1, it will be blocked by a tuple lock held by
transaction B on segment 1.

The GDD algorithm execution progress for the scenario de-
scribed in Figure 8 is shown in Figure 9 and explained as below:

(1) We find 𝑑𝑒𝑔 (𝐺) (𝐶) = 0 in Figure 9.a (the original wait-for
graph), based on the GDD algorithm we can remove vertex
C and all the edges to C. After this step we get Figure 9.b.

Figure 8: Non-deadlock Case: dotted edges on segments

𝑑𝑒𝑔(𝐺)(𝐶) = 0
remove C

𝑑𝑒𝑔1(𝐵) = 0
remove A ----> B

𝑑𝑒𝑔(𝐺)(A) = 0
remove A

Original wait-for graph

(a)

Seg 0

Seg 1

CA B

AB

(b)

Seg 0

Seg 1

A B

AB

(c)

Seg 0

Seg 1

AB

(d)

Seg 0

Seg 1

Figure 9

Figure 9: The Execution of GDD algorithms on Figure 8

(2) No vertex satisfies 𝑑𝑒𝑔 (𝐺) (𝑣) = 0, then in Figure 9.b we
check local out-degree and find 𝑑𝑒𝑔1 (𝐵) = 0, based the
GDD algorithm we can remove all the dotted edges to B on
segment 1. After this step we get Figure 9.c.

(3) Next we find 𝑑𝑒𝑔 (𝐺) (𝐴) = 0 in 9.c for vertex A and all edges
to A can be removed resulting in Figure 9.d.

(4) No edges are left finally so the GDD algorithm will report
no deadlock for this case.

Additional examples can be found in [17].
Correctness. GDD relies on the final state properties stated

below:
(1) No edges can be removed further, the graph cannot change

any more.
(2) All the transactions in the graph still exist.
Combining property 1 and property 2, we can conclude that the

final waiting edges are up to date. Based on the edge removing
policy, if the final wait-for graph contains cycles, then a global
deadlock happens. If a global deadlock happens, by definition, the
global wait-for graph must contain a cycle and no transactions in
the graph can execute one step further. The GDD algorithm can
not remove any of these edges and will report a global deadlock.
Thus we prove that the GDD algorithm is complete.

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2536



Overhead.With GDD enabled, the UPDATE and INSERT’s lock
level is downgraded compared to the previous version of Greenplum.
Thus transactions that update or delete the same relation can run
in parallel. The GDD daemon only periodically executes a simple
call to fetch wait-for graphs from segments so it does not consume
much resource in the cluster.

5 DISTRIBUTED TRANSACTION
MANAGEMENT

Transactions in Greenplum are created on coordinator and dis-
patched to participating segments. The coordinator assigns dis-
tributed transaction identifier, a monotonically increasing integer,
to each transaction. Segments assign local transaction identifier
to each distributed transaction that is received from the coordi-
nator. A segment uses native PostgreSQL transaction mechanism
to generate local transaction identifiers. Distributed transaction
identifier uniquely identifies a transaction at global level. A local
transaction identifier can uniquely identify a transaction within
a segment. Segments also generate local snapshots using native
PostgreSQL mechanism for snapshots. The coordinator is dele-
gated global level responsibilities - create distributed transactions,
distributed snapshots and coordinate two phase commit protocol
among participating segments. A distributed snapshot consists of a
list of in-progress distributed transaction identifiers and the largest
(at the time of snapshot creation) committed distributed transac-
tion identifier. This setup enables Greenplum to execute distributed
transactions in an isolated yet consistent manner.

5.1 Distributed Transaction Isolation
PostgreSQL uses multi version concurrency control (MVCC) to
let concurrent transactions proceed without blocking by creating
multiple versions of a tuple instead of updating it in-place. Each
version is stamped with the creating transaction’s identifier.

Greenplum extends this concept by adding distributed snapshots
to achieve transaction isolation in a distributed setting. Tuple visi-
bility is determined by combining local and distributed snapshot
information. Next, let us consider a DML operation on tuples in a
segment. In a given transaction when we modify a tuple we create
a new version of this tuple and stamp it with the local transaction
identifier. For each tuple, we also maintain the mapping between
local transaction identifier and its corresponding distributed trans-
action identifier that last created or modified it. During a scan
operation, we extract the distributed transaction identifier of a
tuple from this mapping. Using this distributed transaction identi-
fier in conjunction with the distributed snapshot (provided by the
coordinator) the scan operator determines the tuple visibility.

The overhead incurred by the mapping of local to distributed
transaction identifiers is significant. To reduce this overhead we
only maintain the mapping up to the oldest distributed transaction
that can be seen as running by any distributed snapshot. Segments
use this logic to frequently truncate the mapping meta-data. In
absence of the mapping, a segment uses the conjunction of local
transaction identifier and local snapshot to determine tuple visibil-
ity.

Coordinator Segment

Query 1

Result 1

Query N

Result N

......

Prepare

Prepared

Commit

Commit OK

Coordinator Segment

Query 1

Result 1

Query N

Result N

......

Commit

Commit OK

(a) Two phase commit (b) One phase commit

Figure 10: Two & one phase commit in Greenplum

5.2 One-Phase Commit Protocol
The coordinator uses two phase commit to ensure that a transaction
is either committed or aborted on all segments. The coordinator cre-
ates a backend process to handle a client connection. The backend
process initiates two-phase commit protocol among participating
segments, upon receiving commit request from client. The protocol
itself and the overhead incurred by it are well studied in literature.
Any optimization in two phase commit not only makes the commit
process shorter but also causes locks to be released quicker, leading
to improved concurrency. One-phase commit is an optimization for
transactions that update data on exactly one segment. The benefit
of one-phase commit is illustrated in Figure 10. The coordinator can
determine whether a write operation happens only on one segment.
If so, the coordinator skips the PREPARE phase and dispatches the
commit command to the participating segment. One-phase commit
saves one network round-trip of PREPARE message and file system
sync operations for (1) PREPARE on segments and (2) COMMIT on
coordinator.

Let us see how data consistency is unaffected by one-phase
commit optimization. One-phase commit transactions are assigned
distributed transaction identifiers and distributed snapshot by the
coordinator. On the participating segment, tuple versions created
by a one-phase commit transaction are stamped with the local
transaction identifier. The segment remembers the mapping be-
tween the local and the distributed transaction identifiers, same as
two-phase commit transactions. A one-phase commit transaction
appears in-progress to concurrently created distributed snapshots
until the coordinator receives the "Commit Ok" acknowledgement
from the participating segment. After this point, the one-phase
commit transaction will appear as committed to newly created dis-
tributed snapshots. In short, one-phase commit optimization uses
the samemechanism tomaintain database consistency as two-phase
commit transactions. Thus, one-phase commit is an efficient alter-
native for singleton insert, update and delete operations commonly
seen in OLTP workloads.

CREATE TABLE t (c1 int, c2 int) DISTRIBUTED BY (c1);
INSERT INTO t (c1, c2) SELECT 1, generate_series(1,10);

In the above example, all the 10 tuples have the value 1 for the
distribution key column c1. All the tuples are therefore routed to

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2537



the segment to which the value 1 is hashed, making it a candidate
for one-phase commit optimization.

5.3 Other Optimizations

Coordinator Segment

Query 1

Result 1

Query N

Result + Prepared

......

Commit

Commit OK

Coordinator Segment

Query 1

Result 1

Query N + Commit 

Result N + Commit OK

......

(a) Two phase commit (b) One phase commit

Figure 11: Future Optimization in Greenplum

There are several ongoing OLTP related engineering efforts to
further improve the performance of one-phase and two-phase trans-
action commit protocols on Greenplum. For two-phase commits,
we expect that the execution segments/coordinator perform/exe-
cute PREPARE without notifications from the coordinator when
the execution segments/coordinator have already known they are
executing the final query in the transaction (see Figure 11.a). For
example, if the transaction has a single INSERT query, the segment
does the INSERT operation and immediately does PREPARE with-
out the notification from the coordinator. Similar optimizations
could be applied to the one-phase commit protocol (see Figure 11.b).
If we know a query would be written on a single execution segment
node, we could dispatch the query to the execution segment and
let it perform a COMMIT directly. This saves a round of network
ping-pong compared with the previous protocol.

6 RESOURCE ISOLATION
How to alleviate the performance degradation caused by resource
competition in a highly concurrent, mixed workload environment
is a challenging problem. In this section, we will discuss how Green-
plum isolates and schedules resources, such as CPU and memory,
for HTAP workloads.

It is reported that analytical workloads have heavy impact on
transactional workloads when they are running concurrently [18].
Typically, analytical workloads will consume a large number of
CPUs, memory, and IO bandwidth, which will preempt the re-
source for transactional workloads and cause transactional queries
to be delayed. To reduce the interference, Greenplum introduces
Resource Group to isolate the resource among different kinds of
workloads or user groups. Currently, resource group supports to
isolate compute and memory resources with different technology.

CPU isolation is implemented based on the control group (cgroup)
technology [4]. Cgroup is a Linux kernel feature that limits and
isolates the resource usage of a collection of processes. From the
perspective of cgroup tree structure, a resource group is imple-
mented as an interior node and all the processes belong to this
resource group are the children of it. To prioritize the CPU usage,
there are two kinds of configurations can be set for each resource
group and for all the processes in this group. One is the cpu.shares,

which controls the percentage of CPU usage or priority. The other
is the cpuset.cpus, which specifies the CPU cores can be used by
this resource group. The former one is a soft control: if there is no
concurrent workload, a processes in a resource group can utilize
more CPU resources than the specified limit. The latter one is a
hard control, which limits the number of CPU cores a process can
use at most in a resource group.

In Greenplum, memory isolation is implemented based on the
memory management module Vmemtracker. Vmemtracker is re-
sponsible for tracking all memory usages in the Greenplum database
kernel. Greenplum utilizes this feature to control memory usage
among different resource groups. Unlike CPUs, memory is a hard
resource in the sense that, once allocated, cannot be reclaimed im-
mediately. When the memory usage of a resource group exceeds its
limitation, queries in this group will be cancelled. But in real-world
workload, it is not easy to control the memory usage explicitly, for
example, it’s hard to get the explicit memory usage of a hash table.
To make the memory resource enforcement more robust, resource
group introduces three layers to manage the memory usage. The
first layer is enforced on slot memory, which controls the mem-
ory usage of a single query in a group. The calculation formula
of slot memory is the group non-shared memory divided by the
number of concurrency. The second layer is enforced on group
shared memory, which can be used by the queries in the same re-
source group when they overuse the slot memory. Group shared
memory could be set by parameter MEMORY_SHARED_QUOTA for each
resource group. The last layer is global shared memory, which is
the last defender of memory usage among different groups. The
query cancel mechanism will not be triggered until all of the three
layers cannot constrain the memory usage of the current running
queries in the database.

Resource groups can be created using the following syntax:

CREATE RESOURCE GROUP olap_group WITH (CONCURRENCY=10,
MEMORY_LIMIT=35, MEMORY_SHARED_QUOTA=20,
CPU_RATE_LIMIT=20);

CREATE RESOURCE GROUP oltp_group WITH (CONCURRENCY=50,
MEMORY_LIMIT=15, MEMORY_SHARED_QUOTA=20,
CPU_RATE_LIMIT=60);

To isolate the resources between different user groups, DBA
could assign a resource group to a role using the ALTER ROLE or
CREATE ROLE commands. For example:

CREATE ROLE dev1 RESOURCE GROUP olap_group;
ALTER ROLE dev1 RESOURCE GROUP oltp_group;

The resource group setting shown above includes two resource
groups: one is dedicated for analytical workloads, and the other one
is for transactional workloads. For CPU resources, we assign more
CPU rate limit to the transactional resource group, since transac-
tional queries are short and sensitive to query latency. By prior-
itizing the CPU resources over the transactional resource group,
we want to alleviate the impact of latency and transaction per sec-
ond (TPS) of short-running queries when long-running queries are
executing concurrently. For memory resources, we assign higher
memory limit to the analytical resource group to allow analytical

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2538



queries to use more memory and to avoid spilling to disk exces-
sively. Instead, the memory usage of transactional queries is often
low. Concurrency is another parameter of resource group, which
controls the maximum number of connections to the database.
Transactional workloads often involve higher concurrency. On the
other hand, analytical workloads need a fine-grained control over
concurrency. As mentioned earlier, memory cannot be reclaimed
immediately, it would make the amount of memory used by each
query become small, which results in more frequent disk spills
when the concurrency limit is set to be too large. This is a trade-off
between the concurrency and performance. In the future, we plan
to introduce a workload prediction module, which allows a query
to use more memory when the prediction of incoming workload
is not heavy, even when the concurrency number of the resource
group is set to be large.

FutureWork. In addition to CPU andmemory isolation, Disk IO
andNetwork IO isolation is critical for the hybridworkloads. Similar
to PostgreSQL and other database systems, the backend processes
in Greenplum change the pages in the shared memory buffer pool,
and the dirty pages are flushed into disks by a background process
asynchronously. As a result, it’s hard to separate the disk IO from
different processes in the Greenplum cluster. However, we find that
for many of the workloads, the disk IO and network IO usage is
related to the CPU usage. Hence, throttling CPU usage can limit
the usage of disk and network IO as well. We plan to explore how
to isolate disk and network IO in the future.

7 PERFORMANCE EVALUATION
In this section, we measure the effectiveness of the optimizations
proposed in this paper. To align with the focus of the optimizations,
we use benchmarks specific to OLTP and HTAP workloads in our
performance evaluation.

7.1 Experimental Setup
We conducted our experiments on a cluster of 8 hosts (where each
host has 4 segments respectively). These hosts are connected by
a 10 Gbps Ethernet network. Each node has 32 Intel Xeon CPU
cores (2.20GHz), 120 GB RAM, and 500 GB SSD storage. The HTAP
optimizations, discussed in the paper, are implemented in Green-
plum 6.0 (GPDB 6). To verify the effectiveness of our approach, we
compare the performance of GPDB 6 with Greenplum 5.0 (GPDB
5) (which is the baseline in our experiments). Both Greenplum
installers can be downloaded from VMware Tanzu Network [3].

7.2 OLTP Performance
Prior versions of Greenplum was as a traditional data warehouse
with low transactional processing capability and latency of data
analysis caused by batch processing. Starting with Greenplum ver-
sion 6 many features such as global deadlock detector, one-phase
commit, and resource group (the core contributions of this paper)
are introduced to improve the overall OLTP performance. Green-
plum continues to cater to the big data analytics marketplace. This
allows Greenplum to treat analytical, deep-learning, reporting and
ad-hoc queries as first class citizens. In contrast, HTAP systems like
CockroachDB and TiDB focus primarily on transactional queries

on terabytes of data and try to reduce the time to perform analyt-
ics. Analytical queries are improved nevertheless but do not query
peta-bytes of data like that of Greenplum.

20 40 60 80 100 120 140 160 180 200 300 400 500 600

2,000

4,000

6,000

8,000

Client number

Th
ro
ug

hp
ut
(T
PS

)

GPDB 5
GPDB 6

Figure 12: TPC-B Like Benchmark Result

1K 10K 100K

0.3

0.6

0.9

1.2

1.5
·104

Scale factor

Th
ro
ug

hp
ut
(T
PS

)

PostgreSQL
GPDB

Figure 13: Greenplum and PostgreSQL comparisons

To better understand the transactional processing optimization
in Greenplum 6, we evaluate the OLTP performance using the TPC-
B benchmark. We compare the performance among GPDB 6, GPDB
5 and PostgreSQL with different client connections. Result shows
that GPDB 6 could process 80 times more transactions per seconds
compared with GPDB 5, as shown in Figure 12. The improvements
are directly associated with the optimizations discussed in Section
4 and Section 5. In the beginning, throughput in TPS grows lin-
early with the number of clients. Beyond 100 clients, the growth
in throughput reduces and finally at 600 clients, the throughput
starts to decline. Our analysis indicates that the decline is due to
the bottleneck shifting to LWLock, which is being addressed in

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2539



subsequent versions of Greenplum. We also compare the perfor-
mance of GPDB 6 and PostgreSQL 9.4. We use pgbench to generate
data with different scale factor. Scale factor 1K corresponds to
14GB data, 10K corresponds to 143GB data and 100K corresponds
to 1.4TB data. Figure 13 shows that PostgreSQL’s throughput in
TPS is higher than GPDB 6 when data size is small. As the data
size increases, PostgreSQL throughput sharply declines whereas
Greenplum throughput remains steady. This is an encouraging tes-
timony to the Greenplum vision to continuously improve OLTP
performance.

20 40 60 80 100 120 140 160 180 200 300 400 500 600

0.5

1

1.5

2
·104

Client number

Th
ro
ug

hp
ut
(T
PS

)

GPDB 5
GPDB 6

Figure 14: Update Only Workload Result

Let us study performance impact of individual optimizations
targetted for OLTP workloads. To evaluate the effects of the global
dead lock detector, we use update-only workload. Figure 14 shows
that GPDB 6’s TPS is higher than 12000, which is approximately
100 times the TPS of GPDB 5. The reason is GPDB 5 must serialize
update operations on the same table, whereas the global deadlock
detector enables GPDB 6 to permit concurrent updates to the same
table.

20 40 60 80 100 120 140 160 180 200 300 400 500 600

1

2

3

4
·104

Client number

Th
ro
ug

hp
ut
(T
PS

)

GPDB 5
GPDB 6

Figure 15: Insert Only Workload Result

To better study the effect of one-phase commit optimization,
we analyze the performance of insert-only workload. Each insert
statement in this workload inserts values that all map to a single
segment. One-phase commit optimization can be applied to such
transactions. The result in Figure 15 shows that GPDB 6 can process
5 times more transactions per seconds than GPDB 5. The reason is
that the one-phase commit protocol not only reduces the overhead
of communication between the coordinator and segments, which
exists in two-phase commit protocol, but also could eliminate un-
necessary CPU cost on segments which in fact does not insert any
tuple. Besides the one-phase commit protocol, insert-only queries
also benefit from the transaction manager optimization, which
in-turn reduces the overhead of LWLock.

Given the fact that Coordinator often becomes the bottleneck
of OLTP performance in Greenplum. In future, we plan to add dis-
tributed transaction aware hot standby and multi-master features.

7.3 HTAP Performance
To evaluate the performance of Greenplum on HTAP workloads,
we conducted an experiment with the CH-benCHmark [8], a widely
used HTAP benchmark. CH-benCHmark is a hybrid benchmark,
which is composited of TPC-H OLAP benchmark as well as TPC-C
OLTP benchmark. In our experiment, both the OLAP workloads
and OLTP workloads are executed simultaneously with different
client numbers and resource group configurations.

1 2 4 8 16
client number

0

500

1000

1500

2000

2500

3000

QP
H

GP5 TC:0
GP5 TC:100
GP6 TC:0
GP6 TC:100

Figure 16: OLAP performance for HTAP workloads

Next we compare the HTAP performance between GPDB 5 and
GPDB 6. Figure 16 shows the queries per hour (QPH) of OLAP
workload with various OLAP client numbers and two fixed OLTP
client numbers: 0 and 100, respectively. This experiment demon-
strates the impact of OLTP workloads to OLAP workloads. Result
shows that the OLAP performance has more than 2x slowdown on
QPH in GPDB 6, but has no significant difference in GPDB 5. This
is due to the fact that the OLTP queries per minute (QPM) in GPDB
5 is too small to preempt the resource of OLAP workloads.

To better evaluate the impact of OLAP workload to OLTP work-
load, we compare the QPMnumber of OLTPworkloads with various
OLTP client numbers and two fixed OLAP client number settings: 0

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2540



and 20. Figure 17 shows that there is 3 times performance reduction
for OLTP performance on GPDB 6, while there is no difference
on GPDB 5, since the QPM number is limited by the lock conflict
instead of the system resource. The above two experiments also
demonstrate significant improvement on HTAP capability. GPDB
6 is able to handle ten thousands of OLTP queries and executes
complex ad-hoc queries at the same time.

20 40 80 120
client number

0

5000

10000

15000

20000

25000

30000

35000

QP
M

GP5 AC:0
GP5 AC:20
GP6 AC:0
GP6 AC:20

Figure 17: OLTP performance for HTAP workloads

Previous experiments show the fact that OLAP and OLTP work-
loads will preempt the system resources when running concurrently.
To demonstrate the capability of resource isolation in Greenplum,
we create two resource groups, one for OLAP workloads and the
other for OLTP workloads. The configuration of resource groups
varies on CPU priorities. Three different configurations are listed
as follows: Configuration I evenly distributes the CPU resources
with the same CPU rate limit, Configuration II assign 4 out of 32
CPUs to OLTP resource group, and Configuration III assigns 16 out
of 32 CPUs to OLTP resource group.

Configuration I.
CREATE RESOURCE GROUP olap_group WITH (CONCURRENCY=10,

MEMORY_LIMIT=15, CPU_RATE_LIMIT=20);
CREATE RESOURCE GROUP oltp_group WITH (CONCURRENCY=50,

MEMORY_LIMIT=15, CPU_RATE_LIMIT=20);

Configuration II
CREATE RESOURCE GROUP olap_group WITH (CONCURRENCY=10,

MEMORY_LIMIT=15, CPU_SET=0-3);
CREATE RESOURCE GROUP oltp_group WITH (CONCURRENCY=50,

MEMORY_LIMIT=15, CPU_SET=4-31);

Configuration III
CREATE RESOURCE GROUP olap_group WITH (CONCURRENCY=10,

MEMORY_LIMIT=15, CPU_SET=0-15);
CREATE RESOURCE GROUP oltp_group WITH (CONCURRENCY=50,

MEMORY_LIMIT=15, CPU_SET=16-31);

The following experiment evaluates the performance impact of
latency on OLTP workloads when OLAP workloads are running

concurrently with a fix number of OLAP concurrency: 20, and with
different resource group configurations mentioned above. Results
in Figure 18 show that the latency of OLTP workloads decreased
when we isolate the CPU resource and assign specific CPUs to
OLTP resource group. Moreover, the latency continues to decrease
when the number of isolate CPUs increase from 4 to 16. This proves
that resource group is able to tune the resource allocation and query
performance of HTAP workloads in a flexible way.

0 40 80 120 160 200

100

200

300

400

Client number
La
te
nc
y
(m

s)

ResGroup Config I
ResGroup Config II
ResGroup Config III

Figure 18: Varying resource group configurations for OLTP

8 CONCLUSION
In this paper, we demonstrate the conversion of a distributed data
warehouse into a hybrid system that can cater to both OLAP as well
as OLTP workloads. Design decisions in favor of OLAP workloads
can prove to be prohibitively expensive for OLTP workloads, as we
see in case of two phase commit and restrictive locking. The seem-
ingly insignificant overhead becomes quite significant for short
OLTP queries. Our novel approach and careful implementation
eliminates the overhead without sacrificing performance or sys-
tem integrity (ACID properties). Our detailed performance analysis
shows that global deadlock detector and one-phase commit have
significantly improved the performance of Greenplum for OLTP
workloads. Capability to run OTLP and OLAP workloads simulta-
neously in single system is desirable and Greenplum has made it
possible by effective utilization of CPU and memory using resource
group. We acknowledge that this work is just the first step and more
work is needed to make a system like Greenplum, designed for long
running analytical queries, to achieve performance comparable to
a dedicated OLTP databases, such as PostgreSQL.

9 ACKNOWLEDGEMENTS
We thank the entire VMware Greenplum team both current and
alumni (Heikki Linnakangas, Ning Yu, Pengzhou Tang, etc.) for
their valuable development contribution. In addition, we greatly
appreciate Guannan Wei, Yuquan Fu, Chujun Chen, Rui Wang and
Liang Jeff Chen in reviewing the paper and providing valuable
feedback.

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2541



REFERENCES
[1] [n.d.]. http://www.teradata.com
[2] [n.d.]. https://aws.amazon.com/rds/
[3] [n.d.]. https://network.pivotal.io/products/pivotal-gpdb/
[4] [n.d.]. Linux Cgroup. https://https://www.kernel.org/doc/html/latest/admin-

guide/cgroup-v1/cgroups.html.
[5] [n.d.]. Oracla Exadata. https://www.oracle.com/technetwork/database/exadata/

exadata-storage-technical-overview-128045.pdf.
[6] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Rene Mueller, Vi-

jayshankar Raman, Richard Sidle, Matt Spilchen, Adam J Storm, Yuanyuan Tian,
Pinar Tözün, et al. 2017. Evolving Databases for New-Gen Big Data Applications..
In CIDR.

[7] John Catozzi and Sorana Rabinovici. 2001. Operating system extensions for the
teradata parallel VLDB. In VLDB, Vol. 1. 679–682.

[8] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
et al. 2011. The mixed workload CH-benCHmark. In Proceedings of the Fourth
International Workshop on Testing Database Systems. 1–6.

[9] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[10] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for Sim-
pler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015, Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM,
1917–1923.

[11] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[12] Natalija Krivokapić, Alfons Kemper, and Ehud Gudes. 1999. Deadlock detection
in distributed database systems: a new algorithm and a comparative performance
analysis. The VLDB Journal 8, 2 (1999), 79–100.

[13] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7
Years Later. Proc. VLDB Endow. 5, 12 (2012), 1790–1801.

[14] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier,
Lyric Doshi, and Chuck Bear. 2012. The vertica analytic database: C-store 7 years
later. arXiv preprint arXiv:1208.4173 (2012).

[15] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001),
18–25.

[16] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identifying hot and
cold data in main-memory databases. In 2013 IEEE 29th International Conference

on Data Engineering (ICDE). IEEE, 26–37.
[17] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Haozhou Wang, Gang Guo,

Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Ashwin Agrawal, Alexandra
Wang, Wen Lin, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu, Jesse
Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for
Transactional and Analytical Workloads. arXiv:2103.11080 [cs.DB]

[18] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient isolated execution of hybrid OLTP+ OLAP workloads for inter-
active applications. In Proceedings of the 2017 ACM International Conference
on Management of Data. 37–50.

[19] Diego Ongaro and John Ousterhout. 2014. In search of an understand-
able consensus algorithm. In 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14). 305–319.

[20] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transactional/-
analytical processing: A survey. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1771–1775.

[21] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, ChadWhipkey, Eric Rollins,
Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, et al. 2013. F1:
A distributed SQL database that scales. (2013).

[22] Mukesh Singhal. 1989. Deadlock detection in distributed systems. Computer 22,
11 (1989), 37–48.

[23] Mohamed A Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw,
Zhongxian Gu, Entong Shen, George C Caragea, Carlos Garcia-Alvarado, Foyzur
Rahman, Michalis Petropoulos, et al. 2014. Orca: a modular query optimizer
architecture for big data. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 337–348.

[24] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
CockroachDB: The Resilient Geo-Distributed SQL Database. In Proceedings of
the 2020ACMSIGMOD International Conference onManagement of Data. 1493–
1509.

[25] Naidu Siddartha Tigani Jordan. 2014. Google BigQuery Analytics. Wiley.
[26] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations for
high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041–1052.

[27] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, et al. 2020. F1 Lightning: HTAP as a Service.
Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.

[28] Chaoqun Zhan, Maomeng Su, ChuangxianWei, Xiaoqiang Peng, Liang Lin, Sheng
Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, and Chengliang Chai. 2019.
AnalyticDB: Real-time OLAP Database System at Alibaba Cloud. Proc. VLDB
Endow. 12, 12 (2019), 2059–2070.

Industrial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2542

http://www.teradata.com
https://aws.amazon.com/rds/
https://network.pivotal.io/products/pivotal-gpdb/
https://https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.oracle.com/technetwork/database/exadata/exadata-storage-technical-overview-128045.pdf
https://www.oracle.com/technetwork/database/exadata/exadata-storage-technical-overview-128045.pdf
https://arxiv.org/abs/2103.11080

	Abstract
	1 Introduction
	2 Related Work
	3 Greenplum's MPP Architecture
	3.1 Roles and Responsibility of Segments
	3.2 Distributed Plan and Distributed Executor
	3.3 Distributed Transaction Management
	3.4 Hybrid Storage and Optimizer

	4 Object lock optimization
	4.1 Locks in Greenplum
	4.2 Global Deadlock Issue
	4.3 Global Deadlock Detection Algorithm

	5 Distributed Transaction Management
	5.1 Distributed Transaction Isolation
	5.2 One-Phase Commit Protocol
	5.3 Other Optimizations

	6 Resource Isolation
	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 OLTP Performance
	7.3 HTAP Performance

	8 Conclusion
	9 Acknowledgements
	References



