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Abstract—Ever since the Turing Test was proposed in the 1950s, humans have explored the mastering of language intelligence
by machine. Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a
significant challenge to develop capable artificial intelligence (AI) algorithms for comprehending and grasping a language. As a major
approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving
from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-
training Transformer models over large-scale corpora, showing strong capabilities in solving various natural language processing (NLP)
tasks. Since the researchers have found that model scaling can lead to an improved model capacity, they further investigate the scaling
effect by increasing the parameter scale to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these
enlarged language models not only achieve a significant performance improvement, but also exhibit some special abilities (e.g., in-
context learning) that are not present in small-scale language models (e.g., BERT). To discriminate the language models in different
parameter scales, the research community has coined the term large language models (LLM) for the PLMs of significant size (e.g.,
containing tens or hundreds of billions of parameters). Recently, the research on LLMs has been largely advanced by both academia
and industry, and a remarkable progress is the launch of ChatGPT (a powerful AI chatbot developed based on LLMs), which has
attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI
community, which would revolutionize the way how we develop and use AI algorithms. Considering this rapid technical progress, in this
survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular,
we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Furthermore, we
also summarize the available resources for developing LLMs and discuss the remaining issues for future directions. This survey provides
an up-to-date review of the literature on LLMs, which can be a useful resource for both researchers and engineers.

Index Terms—Large Language Models; Emergent Abilities; Adaptation Tuning; Utilization; Alignment; Capacity Evaluation

✦

1 INTRODUCTION

“The limits of my language mean the limits of my world.”
—Ludwig Wittgenstein

LANGUAGE is a prominent ability in human beings to
express and communicate, which develops in early

childhood and evolves over a lifetime [3, 4]. Machines,
however, cannot naturally grasp the abilities of understand-
ing and communicating in the form of human language,
unless equipped with powerful artificial intelligence (AI)
algorithms. It has been a longstanding research challenge
to achieve this goal, to enable machines to read, write, and
communicate like humans [5].

Technically, language modeling (LM) is one of the major
approaches to advancing language intelligence of machines.
In general, LM aims to model the generative likelihood
of word sequences, so as to predict the probabilities of
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future (or missing) tokens. The research of LM has received
extensive attention in the literature, which can be divided
into four major development stages:
• Statistical language models (SLM). SLMs [6–9] are de-

veloped based on statistical learning methods that rose in
the 1990s. The basic idea is to build the word prediction
model based on the Markov assumption, e.g., predicting the
next word based on the most recent context. The SLMs with
a fixed context length n are also called n-gram language
models, e.g., bigram and trigram language models. SLMs
have been widely applied to enhance task performance
in information retrieval (IR) [10, 11] and natural language
processing (NLP) [12–14]. However, they often suffer from
the curse of dimensionality: it is difficult to accurately
estimate high-order language models since an exponential
number of transition probabilities need to be estimated.
Thus, specially designed smoothing strategies such as back-
off estimation [15] and Good–Turing estimation [16] have
been introduced to alleviate the data sparsity problem.
• Neural language models (NLM). NLMs [1, 17, 18] charac-

terize the probability of word sequences by neural networks,
e.g., multi-layer perceptron (MLP) and recurrent neural net-
works (RNNs). As a remarkable contribution, the work in
[1] introduced the concept of distributed representation of
words and built the word prediction function conditioned
on the aggregated context features (i.e., the distributed
word vectors). By extending the idea of learning effective
features for text data, a general neural network approach
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Fig. 1: The trends of the cumulative numbers of arXiv papers that contain the keyphrases “language model” (since June 2018)
and “large language model” (since October 2019), respectively. The statistics are calculated using exact match by querying
the keyphrases in title or abstract by months. We set different x-axis ranges for the two keyphrases, because “language
models” have been explored at an earlier time. We label the points corresponding to important landmarks in the research
progress of LLMs. A sharp increase occurs after the release of ChatGPT: the average number of published arXiv papers
that contain “large language model” in title or abstract goes from 0.40 per day to 8.58 per day (Figure 1(b)).
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Fig. 2: An evolution process of the four generations of language models (LM) from the perspective of task solving capacity.
Note that the time period for each stage may not be very accurate, and we set the time mainly according to the publish
date of the most representative studies at each stage. For neural language models, we abbreviate the paper titles of
two representative studies to name the two approaches: NPLM [1] (“A neural probabilistic language model”) and NLPS [2]
(“Natural language processing (almost) from scratch”). Due to the space limitation, we don’t list all representative studies in
this figure.

was developed to build a unified, end-to-end solution for
various NLP tasks [2]. Furthermore, word2vec [19, 20] was
proposed to build a simplified shallow neural network
for learning distributed word representations, which were
demonstrated to be very effective across a variety of NLP
tasks. These studies have initiated the use of language
models for representation learning (beyond word sequence
modeling), having an important impact on the field of NLP.

• Pre-trained language models (PLM). As an early at-
tempt, ELMo [21] was proposed to capture context-aware
word representations by first pre-training a bidirectional
LSTM (biLSTM) network (instead of learning fixed word
representations) and then fine-tuning the biLSTM network
according to specific downstream tasks. Furthermore, based
on the highly parallelizable Transformer architecture [22]
with self-attention mechanisms, BERT [23] was proposed by

pre-training bidirectional language models with specially
designed pre-training tasks on large-scale unlabeled cor-
pora. These pre-trained context-aware word representations
are very effective as general-purpose semantic features,
which have largely raised the performance bar of NLP
tasks. This study has inspired a large number of follow-up
work, which sets the “pre-training and fine-tuning” learning
paradigm. Following this paradigm, a great number of stud-
ies on PLMs have been developed, introducing either differ-
ent architectures [24, 25] (e.g., GPT-2 [26] and BART [24]) or
improved pre-training strategies [27–29]. In this paradigm, it
often requires fine-tuning the PLM for adapting to different
downstream tasks.

• Large language models (LLM). Researchers find that
scaling PLM (e.g., scaling model size or data size) often
leads to an improved model capacity on downstream tasks
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(i.e., following the scaling law [30]). A number of studies
have explored the performance limit by training an ever
larger PLM (e.g., the 175B-parameter GPT-3 and the 540B-
parameter PaLM). Although scaling is mainly conducted
in model size (with similar architectures and pre-training
tasks), these large-sized PLMs display different behaviors
from smaller PLMs (e.g., 330M-parameter BERT and 1.5B-
parameter GPT-2) and show surprising abilities (called emer-
gent abilities [31]) in solving a series of complex tasks. For
example, GPT-3 can solve few-shot tasks through in-context
learning, whereas GPT-2 cannot do well. Thus, the research
community coins the term “large language models (LLM)”1

for these large-sized PLMs [32–35], which attract increasing
research attention (See Figure 1). A remarkable application
of LLMs is ChatGPT2 that adapts the LLMs from the GPT
series for dialogue, which presents an amazing conversation
ability with humans. We can observe a sharp increase of the
arXiv papers that are related to LLMs after the release of
ChatGPT in Figure 1.

As discussed before, language model is not a new tech-
nical concept specially for LLMs, but has evolved with the
advance of artificial intelligence over the decades. Early lan-
guage models mainly aim to model and generate text data,
while latest language models (e.g., GPT-4) focus on complex
task solving. From language modeling to task solving, it is an
important leap in scientific thinking, which is the key to
understand the development of language models in the re-
search history. From the perspective of task solving, the four
generations of language models have exhibited different lev-
els of model capacities. In Figure 2, we describe the evolu-
tion process of language models in terms of the task solving
capacity. At first, statistical language models mainly assisted
in some specific tasks (e.g., retrieval or speech tasks), in
which the predicted or estimated probabilities can enhance
the performance of task-specific approaches. Subsequently,
neural language models focused on learning task-agnostic
representations (e.g., features), aiming to reduce the efforts
for human feature engineering. Furthermore, pre-trained
language models learned context-aware representations that
can be optimized according to downstream tasks. For the
latest generation of language model, LLMs are enhanced by
exploring the scaling effect on model capacity, which can be
considered as general-purpose task solvers. To summarize,
in the evolution process, the task scope that can be solved
by language models have been greatly extended, and the
task performance attained by language models have been
significantly enhanced.

In the existing literature, PLMs have been widely dis-
cussed and surveyed [36–39], while LLMs are seldom re-
viewed in a systematic way. To motivate our survey, we first
highlight three major differences between LLMs and PLMs.
First, LLMs display some surprising emergent abilities that
may not be observed in previous smaller PLMs. These abili-
ties are key to the performance of language models on com-
plex tasks, making AI algorithms unprecedently powerful
and effective. Second, LLMs would revolutionize the way
that humans develop and use AI algorithms. Unlike small

1. Note that a LLM is not necessarily more capable than a small PLM,
and emergent abilities may not occur in some LLMs.

2. https://openai.com/blog/chatgpt/

PLMs, the major approach to accessing LLMs is through
the prompting interface (e.g., GPT-4 API). Humans have to
understand how LLMs work and format their tasks in a way
that LLMs can follow. Third, the development of LLMs no
longer draws a clear distinction between research and en-
gineering. The training of LLMs requires extensive practical
experiences in large-scale data processing and distributed
parallel training. To develop capable LLMs, researchers
have to solve complicated engineering issues, working with
engineers or being engineers.

Nowadays, LLMs are posing a significant impact on
the AI community, and the advent of ChatGPT and GPT-4
leads to the rethinking of the possibilities of artificial general
intelligence (AGI). OpenAI has published a technical article
entitled “Planning for AGI and beyond”, which discusses
the short-term and long-term plans to approach AGI [40],
and a more recent paper has argued that GPT-4 might be
considered as an early version of an AGI system [41]. The
research areas of AI are being revolutionized by the rapid
progress of LLMs. In the field of NLP, LLMs can serve as a
general-purpose language task solver (to some extent), and
the research paradigm has been shifting towards the use
of LLMs. In the field of IR, traditional search engines are
challenged by the new information seeking way through AI
chatbots (i.e., ChatGPT), and New Bing3 presents an initial
attempt that enhances the search results based on LLMs. In
the field of CV, the researchers try to develop ChatGPT-like
vision-language models that can better serve multimodal
dialogues [42–45], and GPT-4 [46] has supported multi-
modal input by integrating the visual information. This new
wave of technology would potentially lead to a prosperous
ecosystem of real-world applications based on LLMs. For
instance, Microsoft 365 is being empowered by LLMs (i.e.,
Copilot) to automate the office work, and OpenAI supports
the use of plugins in ChatGPT for implementing special
functions.

Despite the progress and impact, the underlying prin-
ciples of LLMs are still not well explored. Firstly, it is
mysterious why emergent abilities occur in LLMs, instead of
smaller PLMs. As a more general issue, there lacks a deep,
detailed investigation of the key factors that contribute to
the superior abilities of LLMs. It is important to study when
and how LLMs obtain such abilities [47]. Although there are
some meaningful discussions about this problem [31, 47],
more principled investigations are needed to uncover the
“secrets“ of LLMs. Secondly, it is difficult for the research
community to train capable LLMs. Due to the huge de-
mand of computation resources, it is very costly to carry
out repetitive, ablating studies for investigating the effect
of various strategies for training LLMs. Indeed, LLMs are
mainly trained by industry, where many important training
details (e.g., data collection and cleaning) are not revealed
to the public. Thirdly, it is challenging to align LLMs with
human values or preferences. Despite the capacities, LLMs
are also likely to produce toxic, fictitious, or harmful con-
tents. It requires effective and efficient control approaches
to eliminating the potential risk of the use of LLMs [46].

Faced with both opportunities and challenges, it needs
more attention on the research and development of LLMs. In

3. https://www.bing.com/new
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order to provide a basic understanding of LLMs, this survey
conducts a literature review of the recent advances in LLMs
from four major aspects, including pre-training (how to pre-
train a capable LLM), adaptation (how to effectively adapt
pre-trained LLMs for better use), utilization (how to use
LLMs for solving various downstream tasks) and capability
evaluation (how to evaluate the abilities of LLMs and existing
empirical findings). We thoroughly comb the literature and
summarize the key findings, techniques, and methods of
LLMs. For this survey, we also create a GitHub project
website by collecting the supporting resources for LLMs, at
the link https://github.com/RUCAIBox/LLMSurvey. We
are also aware of several related review articles on PLMs
or LLMs [32, 36, 38, 39, 43, 48–54]. These papers either
discuss PLMs or some specific (or general) aspects of LLMs.
Compared with them, we focus on the techniques and
methods to develop and use LLMs and provide a relatively
comprehensive reference to important aspects of LLMs.

The remainder of this survey is organized as follows:
Section 2 introduces the background for LLMs and the evo-
lution of GPT-series models, followed by the summarization
of available resources for developing LLMs in Section 3.
Sections 4, 5, 6, and 7 review and summarize the recent
progress from the four aspects of pre-training, adaptation,
utilization, and capacity evaluation, respectively. Then, Sec-
tion 8 discusses the practical guide for prompt design,
and Section 9 reviews the applications of LLMs in several
representative domains. Finally, we conclude the survey in
Section 10 by summarizing the major findings and discuss
the remaining issues for future work.

2 OVERVIEW

In this section, we present an overview about the back-
ground of LLMs and then summarize the technical evolu-
tion of the GPT-series models.

2.1 Background for LLMs
Typically, large language models (LLMs) refer to Transformer
language models that contain hundreds of billions (or
more) of parameters4, which are trained on massive text
data [32], such as GPT-3 [55], PaLM [56], Galactica [35],
and LLaMA [57]. LLMs exhibit strong capacities to un-
derstand natural language and solve complex tasks (via
text generation). To have a quick understanding of how
LLMs work, this part introduces the basic background for
LLMs, including scaling laws, emergent abilities and key
techniques.

Formulation of Scaling Laws for LLMs. Currently, LLMs
are mainly built upon the Transformer architecture [22],
where multi-head attention layers are stacked in a very
deep neural network. Existing LLMs adopt similar Trans-
former architectures and pre-training objectives (e.g., lan-
guage modeling) as small language models. However, LLMs
significantly extend the model size, data size, and total

4. In existing literature, there is no formal consensus on the minimum
parameter scale for LLMs, since the model capacity is also related to
data size and total compute. In this survey, we take a slightly loose
definition of LLMs, and mainly focus on discussing language models
with a model size larger than 10B.

compute (orders of magnification). Extensive research has
shown that scaling can largely improve the model capacity
of LLMs [26, 55, 56]. Thus, it is useful to establish a quantita-
tive approach to characterizing the scaling effect. Next, we
introduce two representative scaling laws for Transformer
language models [30, 34].
• KM scaling law5. In 2020, Kaplan et al. [30] (the OpenAI

team) firstly proposed to model the power-law relationship
of model performance with respective to three major factors,
namely model size (N ), dataset size (D), and the amount of
training compute (C), for neural language models. Given
a compute budget c, they empirically presented three basic
formulas for the scaling law6:

L(N) =

(
Nc

N

)αN

, αN ∼ 0.076, Nc ∼ 8.8× 1013 (1)

L(D) =

(
Dc

D

)αD

, αD ∼ 0.095, Dc ∼ 5.4× 1013

L(C) =

(
Cc

C

)αC

, αC ∼ 0.050, Cc ∼ 3.1× 108

where L(·) denotes the cross entropy loss in nats, and
a follow-up study [58] from OpenAI has shown that the
language modeling loss can be decomposed into two parts,
namely irreducible loss (the entropy of the true data distri-
bution) and reducible loss (an estimate of the KL divergence
between the true and model distributions). The three laws
were derived by fitting the model performance with varied
data sizes (22M to 23B tokens), model sizes (768M to 1.5B
non-embedding parameters) and training compute, under
some assumptions (e.g., the analysis of one factor should
be not bottlenecked by the other two factors). They showed
that the model performance has a strong dependence rela-
tion on the three factors.
• Chinchilla scaling law. As another representative study,

Hoffmann et al. [34] (the Google DeepMind team) proposed
an alternative form for scaling laws to instruct the compute-
optimal training for LLMs. They conducted rigorous exper-
iments by varying a larger range of model sizes (70M to
16B) and data sizes (5B to 500B tokens), and fitted a similar
scaling law yet with different coefficients as below [34]:

L(N,D) = E +
A

Nα
+

B

Dβ
, (2)

where E = 1.69, A = 406.4, B = 410.7, α = 0.34 and
β = 0.28. By optimizing the loss L(N,D) under the con-
straint C ≈ 6ND, they showed that the optimal allocation
of compute budget to model size and data size can be
derived as follows:

Nopt(C) = G

(
C

6

)a

, Dopt(C) = G−1

(
C

6

)b

, (3)

where a = α
α+β , b = β

α+β and G is a scaling coefficient that
can be computed by A, B, α and β. As analyzed in [34],

5. Since there was not a model trained following this law in the
original paper, we took the last names of the two co-first authors to
name this scaling law.

6. Here, Nc, Dc and Cc are measured in the number of non-
embedding parameters, the number of training tokens and the number
of FP-days, respectively. According to the original paper [30], Cc and C
should be denoted by Cmin

c and Cmin, corresponding to the optimal
use of compute. We use the simplified notations for ease of discussions.

https://github.com/RUCAIBox/LLMSurvey
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given an increase in compute budget, the KM scaling law
favors a larger budget allocation in model size than the data
size, while the Chinchilla scaling law argues that the two
sizes should be increased in equal scales, i.e., having similar
values for a and b in Equation (3).

Discussion on Scaling Laws. After introducing the formu-
lations, we continue to discuss scaling law in the following
two aspects, to enhance its understanding:
• Predictable scaling. In practice, scaling law can be used

to instruct the training of LLMs, and it has been proven
feasible to reliably estimate the performance of larger mod-
els based on that of smaller models, called predictable scal-
ing [46]. The benefits of predictable scaling for training
LLMs are mainly twofold. Firstly, for large models, it is
infeasible to rigorously examine various training tricks or
variants, and it would be very helpful if experiences gained
from small models could also apply to large models. For
instance, small proxy models can be trained to find the
optimal schedule of the data mixture for large models [59].
Secondly, the training of large-scale models takes a long
time, often suffering from issues such as training loss spike,
and scaling law can be employed to monitor the training
status of LLMs, e.g., identifying abnormal performance at an
early time. Despite that scaling law characterizes a smooth
trend of performance increase (or loss decrease), it also
indicates that diminishing returns7 might occur as model
scaling. An empirical study [58] from the OpenAI team
has shown that representation quality or semantic content
can still effectively improve even if approaching the point
of diminishing returns (i.e., approaching the irreducible
loss) [58]. This finding suggests that training large models
are promising for improving the performance of down-
stream tasks. To further explore scaling effect, a potential
issue is that the amount of available data for training LLMs
is actually limited. With the ever-increasing model scale, the
public text data would be soon “exhausted” for LLMs [60].
Thus, it will be meaningful to study how scaling laws apply
to a data-constrained regime [61], where data repetition or
augmentation might be useful to alleviate data scarcity.
• Task-level predictability. Existing research of scaling laws

are mostly conducted in terms of language modeling loss
(e.g., per-token cross-entropy loss in nats [30]), while in
practice we are more concerned about the performance of
LLMs on actual tasks. Thus, a basic problem is that how
the decrease of language modeling loss translates into the
improvement of task performance [58]. Intuitively, a model
with a smaller language modeling loss tends to yield a
better performance on downstream tasks, since language
modeling loss can be considered as a general measure of
the overall model capacity. GPT-4 [46] has reported that
some capabilities (e.g., coding ability) can be accurately
predicted via scaling law. Despite that, readers should be
aware that a direct decrease in language modeling loss does
not always indicate an improvement of model performance
on downstream tasks. Specially, the phenomenon of inverse
scaling would occur for some tasks, where task performance
surprisingly becomes worse as the language modeling loss
decreases [62]. Overall, it is more difficult to explore and

7. https://en.wikipedia.org/wiki/Diminishing returns

characterize task-level scaling laws, since it might be also
dependent on task-related information (task metric, task
difficulty, etc.). Furthermore, some capacities (e.g., in-context
learning [55]) are unpredictable according to the scaling law,
which can be observed only when the model size exceeds a
certain level (as discussed below).

Emergent Abilities of LLMs. In the literature [31], emergent
abilities of LLMs are formally defined as “the abilities that
are not present in small models but arise in large models”,
which is one of the most prominent features that distin-
guish LLMs from previous PLMs. It further introduces a
notable characteristic when emergent abilities occur [31]:
performance rises significantly above random when the
scale reaches a certain level. By analogy, such an emergent
pattern has close connections with the phenomenon of phase
transition in physics [31, 63]. In principle, emergent abilities
can be defined in relation to some complex tasks [31, 64],
while we are more concerned with general abilities that
can be applied to solve a variety of tasks. Here, we briefly
introduce three typical emergent abilities for LLMs and
representative models that possess such an ability8.
• In-context learning. The in-context learning (ICL) ability

is formally introduced by GPT-3 [55]: assuming that the
language model has been provided with a natural language
instruction and/or several task demonstrations, it can gen-
erate the expected output for the test instances by com-
pleting the word sequence of input text, without requiring
additional training or gradient update9. Among the GPT-
series models, the 175B GPT-3 model exhibited a strong ICL
ability in general, but not the GPT-1 and GPT-2 models. Such
an ability also depends on the specific downstream task. For
example, the ICL ability can emerge on the arithmetic tasks
(e.g., the 3-digit addition and subtraction) for the 13B GPT-3,
but 175B GPT-3 even cannot work well on the Persian QA
task [31].
• Instruction following. By fine-tuning with a mixture of

multi-task datasets formatted via natural language descrip-
tions (called instruction tuning), LLMs are shown to perform
well on unseen tasks that are also described in the form
of instructions [28, 66, 67]. With instruction tuning, LLMs
are enabled to follow the task instructions for new tasks
without using explicit examples, thus having an improved
generalization ability. According to the experiments in [67],
instruction-tuned LaMDA-PT [68] started to significantly
outperform the untuned one on unseen tasks when the
model size reached 68B, but not for 8B or smaller model
sizes. A recent study [69] found that a model size of 62B is
at least required for PaLM to perform well on various tasks
in four evaluation benchmarks (i.e., MMLU, BBH, TyDiQA
and MGSM), though a much smaller size might suffice for
some specific tasks (e.g., MMLU).
• Step-by-step reasoning. For small language models, it

is usually difficult to solve complex tasks that involve

8. It is difficult to accurately examine the critical size for emergent
abilities of LLMs (i.e., the minimum size to possess an ability), since it
might vary for different models or tasks. Also, existing studies often
test emergent abilities on very limited model sizes for a specific LLM.
For example, PaLM is often tested with three sizes of 8B, 62B and 540B.
It is unclear about the model performance of the untested sizes.

9. In a recent study [65], it also shows that in-context learning implic-
itly performs meta-optimization through the attention mechanism.
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multiple reasoning steps, e.g., mathematical word problems.
In contrast, with the chain-of-thought (CoT) prompting
strategy [33], LLMs can solve such tasks by utilizing the
prompting mechanism that involves intermediate reasoning
steps for deriving the final answer. This ability is speculated
to be potentially obtained by training on code [33, 47]. An
empirical study [33] has shown that CoT prompting can
bring performance gains (on arithmetic reasoning bench-
marks) when applied to PaLM and LaMDA variants with
a model size larger than 60B, while its advantage over
the standard prompting becomes more evident when the
model size exceeds 100B. Furthermore, the performance
improvement with CoT prompting seems to be also varied
for different tasks, e.g., GSM8K > MAWPS > SWAMP for
PaLM [33].

How Emergent Abilities Relate to Scaling Laws. In existing
literature [30, 31, 34], scaling laws and emergent abilities
provide two perspectives to understand the advantage of
large models over small models. In general, scaling law
(often measured by language modeling loss) describes pre-
dictable performance relation with the potential effect of
diminishing returns, while emergent abilities (often mea-
sured by task performance) are unpredictable but very prof-
itable once such abilities actually emerge. Since the two
perspectives reflect different performance trends (continu-
ous improvement v.s. sharp performance leap), they might
lead to misaligned findings or observations. There are also
extensive debates on the rationality of emergent abilities.
A popular speculation is that emergent abilities might be
partially attributed to the evaluation setting for special tasks
(e.g., the discontinuous evaluation metrics) [70, 71]: when
evaluation metrics are altered accordingly, the sharpness of
the emergent ability curve would disappear. However, the
performance of LLMs on most tasks are perceived by users
naturally in a discontinuous way. For instance, end users
prefer a reliable code generated by LLMs that can success-
fully pass the test case, but are less interested in selecting a
better code with fewer errors between two failed ones. More
recently, a study [72] proposes a new evaluation setting
that can enlarge the resolution of task metrics, making task
performance more predictable. Despite these efforts, more
fundamental research (e.g., grokking10) about the working
mechanism of LLMs is still in need to understand the emer-
gence of certain abilities. The subtle relation between scaling
law and emergent abilities can be explained by analogy with
the ability acquisition of human11. Take the speaking ability
as an example. For children, language development (espe-
cially infants) can be also considered as a multi-level process
where “emergent abilities” occur. Specially, the language
ability would relatively stable within a time interval, but
qualitative change only occurs when evolving into another
ability level (e.g., from speaking simple words to speaking
simple sentences). Such a learning process is essentially not
smooth and stable (i.e., language ability does not develop at
a constant rate over time), though a child actually grows

10. Grokking refers that “a pattern in the data, improving generaliza-
tion performance from random chance level to perfect generalization”,
quoted from the original paper [73].

11. This explanation is only for ease of understanding, and there is
not direct evidence to connect the two points.

every day. It is interesting that young parents would be often
surprised by unexpected progress of the speaking ability
exhibited by their babies.

Key Techniques for LLMs. It has been a long way that
LLMs evolve into the current state: general and capable
learners. In the development process, a number of impor-
tant techniques are proposed, which largely improve the
capacity of LLMs. Here, we briefly list several important
techniques that (potentially) lead to the success of LLMs, as
follows.
• Scaling. As discussed in previous parts, there exists

an evident scaling effect in Transformer language mod-
els: larger model/data sizes and more training compute
typically lead to an improved model capacity [30, 34]. As
two representative models, GPT-3 and PaLM explored the
scaling limits by increasing the model size to 175B and
540B, respectively. Since compute budget is usually limited,
scaling laws can be further employed to conduct a more
compute-efficient allocation of the compute resources. For
example, Chinchilla (with more training tokens) outper-
forms its counterpart model Gopher (with a larger model
size) by increasing the data scale with the same compute
budget [34]. In addition, data scaling should be with careful
cleaning process, since the quality of pre-training data plays
a key role in the model capacity.
• Training. Due to the huge model size, it is very chal-

lenging to successfully train a capable LLM. Distributed
training algorithms are needed to learn the network param-
eters of LLMs, in which various parallel strategies are of-
ten jointly utilized. To support distributed training, several
optimization frameworks have been released to facilitate
the implementation and deployment of parallel algorithms,
such as DeepSpeed [74] and Megatron-LM [75–77]. Also, op-
timization tricks are also important for training stability and
model performance, e.g., restart to overcome training loss
spike [56] and mixed precision training [78]. More recently,
GPT-4 [46] proposes to develop special infrastructure and
optimization methods that reliably predict the performance
of large models with much smaller models.
• Ability eliciting. After being pre-trained on large-scale

corpora, LLMs are endowed with potential abilities as
general-purpose task solvers. These abilities might not be
explicitly exhibited when LLMs perform some specific tasks.
As the technical approach, it is useful to design suitable task
instructions or specific in-context learning strategies to elicit
such abilities. For instance, chain-of-thought prompting has
been shown to be useful to solve complex reasoning tasks
by including intermediate reasoning steps. Furthermore,
we can perform instruction tuning on LLMs with task
descriptions expressed in natural language, for improving
the generalizability of LLMs on unseen tasks. These eliciting
techniques mainly correspond to the emergent abilities of
LLMs, which may not show the same effect on small lan-
guage models.
• Alignment tuning. Since LLMs are trained to capture

the data characteristics of pre-training corpora (including
both high-quality and low-quality data), they are likely to
generate toxic, biased, or even harmful content for humans.
It is necessary to align LLMs with human values, e.g., helpful,
honest, and harmless. For this purpose, InstructGPT [66]
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designs an effective tuning approach that enables LLMs to
follow the expected instructions, which utilizes the tech-
nique of reinforcement learning with human feedback [66, 79].
It incorporates human in the training loop with elaborately
designed labeling strategies. ChatGPT is indeed developed
on a similar technique to InstructGPT, which shows a strong
alignment capacity in producing high-quality, harmless re-
sponses, e.g., rejecting to answer insulting questions.
• Tools manipulation. In essence, LLMs are trained as text

generators over massive plain text corpora, thus performing
less well on the tasks that are not best expressed in the
form of text (e.g., numerical computation). In addition, their
capacities are also limited to the pre-training data, e.g., the
inability to capture up-to-date information. To tackle these
issues, a recently proposed technique is to employ external
tools to compensate for the deficiencies of LLMs [80, 81].
For example, LLMs can utilize the calculator for accurate
computation [80] and employ search engines to retrieve
unknown information [81]. More recently, ChatGPT has
enabled the mechanism of using external plugins (existing
or newly created apps)12, which are by analogy with the
“eyes and ears” of LLMs. Such a mechanism can broadly
expand the scope of capacities for LLMs.

In addition, many other factors (e.g., the upgrade of
hardware) also contribute to the success of LLMs. Currently,
we limit our discussion to the major technical approaches
and key findings for developing LLMs.

2.2 Technical Evolution of GPT-series Models

Due to the excellent capacity in communicating with hu-
mans, ChatGPT has ignited the excitement of the AI com-
munity since its release. ChatGPT is developed based on the
powerful GPT model with specially optimized conversation
capacities. Considering the ever-growing interest in Chat-
GPT and GPT models, we add a special discussion about the
technical evolution of the GPT-series models, to briefly sum-
marize the progress how they have been developed in the
past years. Meanwhile, we drew a schematic diagram de-
picting the technological evolution of the GPT-series models
in Figure 4. The basic principle underlying GPT models is
to compress the world knowledge into the decoder-only
Transformer model by language modeling, such that it can
recover (or memorize) the semantics of world knowledge
and serve as a general-purpose task solver. Two key points
to the success are (I) training decoder-only Transformer
language models that can accurately predict the next word
and (II) scaling up the size of language models. Overall, the
research of OpenAI on LLMs can be roughly divided into
the following stages13.

Early Explorations. According to one interview with Ilya
Sutskever14 (a co-founder and chief scientist of OpenAI),
the idea of approaching intelligent systems with language

12. https://openai.com/blog/chatgpt-plugins
13. Note that the discussion of this part can be somewhat subjective.

The overall viewpoints and summaries are made based on the under-
standing of the survey authors by reading the papers, blog articles,
interview reports and APIs released by OpenAI.

14. https://hackernoon.com/an-interview-with-ilya-sutskever-co-
founder-of-openai

models was already explored in the early days of Ope-
nAI, while it was attempted with recurrent neural net-
works (RNN) [121]. With the advent of Transformer, OpenAI
developed two initial GPT models, namely GPT-1 [122] and
GPT-2 [26], which can be considered as the foundation to
more powerful models subsequently i.e., GPT-3 and GPT-4.
• GPT-1. In 2017, the Transformer model [22] was intro-

duced by Google, and the OpenAI team quickly adapted
their language modeling work to this new neural network
architecture. They released the first GPT model in 2018,
i.e., GPT-1 [122], and coined the abbreviation term GPT
as the model name, standing for Generative Pre-Training.
GPT-1 was developed based on a generative, decoder-only
Transformer architecture, and adopted a hybrid approach of
unsupervised pretraining and supervised fine-tuning. GPT-
1 has set up the core architecture for the GPT-series models
and established the underlying principle to model natural
language text, i.e., predicting the next word.
• GPT-2. Following a similar architecture of GPT-1,

GPT-2 [26] increased the parameter scale to 1.5B, which
was trained with a large webpage dataset WebText. As
claimed in the paper of GPT-2, it sought to perform
tasks via unsupervised language modeling, without explicit
fine-tuning using labeled data. To motivate the approach,
they introduced a probabilistic form for multi-task solving,
i.e., p(output|input, task) (similar approaches have been
adopted in [123]), which predicts the output conditioned on
the input and task information. To model this conditional
probability, language text can be naturally employed as a
unified way to format input, output and task information.
In this way, the process of solving a task can be cast as a
word prediction problem for generating the solution text.
Further, they introduced a more formal claim for this idea:
“Since the (task-specific) supervised objective is the same
as the unsupervised (language modeling) objective but only
evaluated on a subset of the sequence, the global minimum
of the unsupervised objective is also the global minimum
of the supervised objective (for various tasks)” [26]15. A
basic understanding of this claim is that each (NLP) task
can be considered as the word prediction problem based
on a subset of the world text. Thus, unsupervised language
modeling could be capable in solving various tasks, if it was
trained to have sufficient capacity in recovering the world
text. These early discussion in GPT-2’s paper echoed in the
interview of Ilya Sutskever by Jensen Huang: “What the
neural network learns is some representation of the process
that produced the text. This text is actually a projection of
the world...the more accurate you are in predicting the next
word, the higher the fidelity, the more resolution you get in
this process...”16.

Capacity Leap. Although GPT-2 is intended to be an “un-
supervised multitask learner”, it overall has an inferior
performance compared with supervised fine-tuning state-
of-the-art methods. Because it has a relatively small model
size, it has been widely fine-tuned in downstream tasks,
especially the dialog tasks [124, 125]. Based on GPT-2, GPT-3

15. To better understand this sentence, we put some explanation
words in parentheses.

16. https://lifearchitect.ai/ilya/

https://hackernoon.com/an-interview-with-ilya-sutskever-co-founder-of-openai
https://hackernoon.com/an-interview-with-ilya-sutskever-co-founder-of-openai
https://lifearchitect.ai/ilya/
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TABLE 1: Statistics of large language models (having a size larger than 10B in this survey) in recent years, including the
capacity evaluation, pre-training data scale (either in the number of tokens or storage size) and hardware resource costs.
In this table, we only include LLMs with a public paper about the technical details. Here, “Release Time” indicates the
date when the corresponding paper was officially released. “Publicly Available” means that the model checkpoints can be
publicly accessible while “Closed Source” means the opposite. “Adaptation” indicates whether the model has been with
subsequent fine-tuning: IT denotes instruction tuning and RLHF denotes reinforcement learning with human feedback.
“Evaluation” indicates whether the model has been evaluated with corresponding abilities in their original paper: ICL
denotes in-context learning and CoT denotes chain-of-thought. “*” denotes the largest publicly available version.

Adaptation EvaluationModel Release
Time

Size
(B)

Base
Model IT RLHF

Pre-train
Data Scale

Latest Data
Timestamp

Hardware
(GPUs / TPUs)

Training
Time ICL CoT

T5 [82] Oct-2019 11 - - - 1T tokens Apr-2019 1024 TPU v3 - ✓ -
mT5 [83] Oct-2020 13 - - - 1T tokens - - - ✓ -
PanGu-α [84] Apr-2021 13* - - - 1.1TB - 2048 Ascend 910 - ✓ -
CPM-2 [85] Jun-2021 198 - - - 2.6TB - - - - -
T0 [28] Oct-2021 11 T5 ✓ - - - 512 TPU v3 27 h ✓ -
CodeGen [86] Mar-2022 16 - - - 577B tokens - - - ✓ -
GPT-NeoX-20B [87] Apr-2022 20 - - - 825GB - 96 40G A100 - ✓ -
Tk-Instruct [88] Apr-2022 11 T5 ✓ - - - 256 TPU v3 4 h ✓ -
UL2 [89] May-2022 20 - - - 1T tokens Apr-2019 512 TPU v4 - ✓ ✓
OPT [90] May-2022 175 - - - 180B tokens - 992 80G A100 - ✓ -
NLLB [91] Jul-2022 54.5 - - - - - - - ✓ -
CodeGeeX [92] Sep-2022 13 - - - 850B tokens - 1536 Ascend 910 60 d ✓ -
GLM [93] Oct-2022 130 - - - 400B tokens - 768 40G A100 60 d ✓ -
Flan-T5 [69] Oct-2022 11 T5 ✓ - - - - - ✓ ✓
BLOOM [78] Nov-2022 176 - - - 366B tokens - 384 80G A100 105 d ✓ -
mT0 [94] Nov-2022 13 mT5 ✓ - - - - - ✓ -
Galactica [35] Nov-2022 120 - - - 106B tokens - - - ✓ ✓
BLOOMZ [94] Nov-2022 176 BLOOM ✓ - - - - - ✓ -
OPT-IML [95] Dec-2022 175 OPT ✓ - - - 128 40G A100 - ✓ ✓
LLaMA [57] Feb-2023 65 - - - 1.4T tokens - 2048 80G A100 21 d ✓ -
Pythia [96] Apr-2023 12 - - - 300B tokens - 256 40G A100 - ✓ -
CodeGen2 [97] May-2023 16 - - - 400B tokens - - - ✓ -
StarCoder [98] May-2023 15.5 - - - 1T tokens - 512 40G A100 - ✓ ✓
LLaMA2 [99] Jul-2023 70 - ✓ ✓ 2T tokens - 2000 80G A100 - ✓ -
Baichuan2 [100] Sep-2023 13 - ✓ ✓ 2.6T tokens - 1024 A800 - ✓ -
QWEN [101] Sep-2023 14 - ✓ ✓ 3T tokens - - - ✓ -
FLM [102] Sep-2023 101 - ✓ - 311B tokens - 192 A800 22 d ✓ -

Publicly
Available

Skywork [103] Oct-2023 13 - - - 3.2T tokens - 512 80G A800 - ✓ -

GPT-3 [55] May-2020 175 - - - 300B tokens - - - ✓ -
GShard [104] Jun-2020 600 - - - 1T tokens - 2048 TPU v3 4 d - -
Codex [105] Jul-2021 12 GPT-3 - - 100B tokens May-2020 - - ✓ -
ERNIE 3.0 [106] Jul-2021 10 - - - 375B tokens - 384 V100 - ✓ -
Jurassic-1 [107] Aug-2021 178 - - - 300B tokens - 800 GPU - ✓ -
HyperCLOVA [108] Sep-2021 82 - - - 300B tokens - 1024 A100 13.4 d ✓ -
FLAN [67] Sep-2021 137 LaMDA-PT ✓ - - - 128 TPU v3 60 h ✓ -
Yuan 1.0 [109] Oct-2021 245 - - - 180B tokens - 2128 GPU - ✓ -
Anthropic [110] Dec-2021 52 - - - 400B tokens - - - ✓ -
WebGPT [81] Dec-2021 175 GPT-3 - ✓ - - - - ✓ -
Gopher [64] Dec-2021 280 - - - 300B tokens - 4096 TPU v3 920 h ✓ -
ERNIE 3.0 Titan [111] Dec-2021 260 - - - - - - - ✓ -
GLaM [112] Dec-2021 1200 - - - 280B tokens - 1024 TPU v4 574 h ✓ -
LaMDA [68] Jan-2022 137 - - - 768B tokens - 1024 TPU v3 57.7 d - -
MT-NLG [113] Jan-2022 530 - - - 270B tokens - 4480 80G A100 - ✓ -
AlphaCode [114] Feb-2022 41 - - - 967B tokens Jul-2021 - - - -
InstructGPT [66] Mar-2022 175 GPT-3 ✓ ✓ - - - - ✓ -
Chinchilla [34] Mar-2022 70 - - - 1.4T tokens - - - ✓ -
PaLM [56] Apr-2022 540 - - - 780B tokens - 6144 TPU v4 - ✓ ✓
AlexaTM [115] Aug-2022 20 - - - 1.3T tokens - 128 A100 120 d ✓ ✓
Sparrow [116] Sep-2022 70 - - ✓ - - 64 TPU v3 - ✓ -
WeLM [117] Sep-2022 10 - - - 300B tokens - 128 A100 40G 24 d ✓ -
U-PaLM [118] Oct-2022 540 PaLM - - - - 512 TPU v4 5 d ✓ ✓
Flan-PaLM [69] Oct-2022 540 PaLM ✓ - - - 512 TPU v4 37 h ✓ ✓
Flan-U-PaLM [69] Oct-2022 540 U-PaLM ✓ - - - - - ✓ ✓
GPT-4 [46] Mar-2023 - - ✓ ✓ - - - - ✓ ✓
PanGu-Σ [119] Mar-2023 1085 PanGu-α - - 329B tokens - 512 Ascend 910 100 d ✓ -

Closed
Source

PaLM2 [120] May-2023 16 - ✓ - 100B tokens - - - ✓ ✓



9

2020

2023

2021
1-4

5-8

9-10

1-3

7-10

11-12

T5

GPT-3

WebGPT

BLOOMZ

Galatica

mT0

2019

FLAN

InstructGPT

GPT-NeoX-20B

CodeGen

OPT

OPT-IML

MT-NLG

T0

Tk-Instruct

GPT-4

GShard

UL2

PaLM Flan-T5

Flan-PaLM

Sparrow

ChatGPT

Ernie 3.0 Titan

Yuan 1.0

Gopher

GLaM

mT5 PanGu-𝛂

PLUG

LaMDA
CPM-2

HyperCLOVA

Codex

Jurassic-1

Ernie 3.0

Anthropic

NLLBCohere

Luminous

YaLM

11-12

2022

GLM

AlexaTM

BLOOM

WeLM

AlphaCode

Chinchilla

CodeGeeX

Falcon

CodeGen2

5-8

LLaMA2

StarCoder

PaLM2

Baichuan

RWKV MPT

InternLM

XVERSE

QWEN

Skywork

9-11

Publicly Available

4-6

1-4

LLaMA

PanGu-Σ

Bard

Pythia

Vicuna Baichuan2

Aquila2

Grok-1

FLM

Fig. 3: A timeline of existing large language models (having a size larger than 10B) in recent years. The timeline was
established mainly according to the release date (e.g., the submission date to arXiv) of the technical paper for a model. If
there was not a corresponding paper, we set the date of a model as the earliest time of its public release or announcement.
We mark the LLMs with publicly available model checkpoints in yellow color. Due to the space limit of the figure, we only
include the LLMs with publicly reported evaluation results.

GPT-1
2018.06

decoder-only architecture
generative pre-training

GPT-2
2019.02

unsupervised multitask learner
scaling the model size

in-context learning
exploring scaling limits

code pre-training

gpt-3.5-turbo
2023.03

excellent comprehensive ability

text-davinci-002
2022.03

instruction following

code-davinci-002
2022.03

capable code model

+code

+chat+RLHF+instruction

Codex
2021.07

GPT-3
2020.05

GPT-4
2023.03

GPT-3.5
2022.03

text-davinci-003
2022.09

human alignment

GPT-4 Turbo
2023.09

longer context window

GPT-4 Turbo with vision
2023.09

multimodal ability

ChatGPT

strong reasoning ability

Fig. 4: A brief illustration for the technical evolution of GPT-series models. We plot this figure mainly based on the papers,
blog articles and official APIs from OpenAI. Here, solid lines denote that there exists an explicit evidence (e.g., the official
statement that a new model is developed based on a base model) on the evolution path between two models, while dashed
lines denote a relatively weaker evolution relation.

demonstrates a key capacity leap by scaling of the (nearly
same) generative pre-training architecture.
• GPT-3. GPT-3 [55] was released in 2020, which scaled

the model parameters to an ever larger size of 175B. In
the GPT-3’s paper, it formally introduced the concept of
in-context learning (ICL)17, which utilizes LLMs in a few-
shot or zero-shot way. ICL can teach (or instruct) LLMs to
understand the tasks in the form of natural language text.
With ICL, the pre-training and utilization of LLMs converge
to the same language modeling paradigm: pre-training pre-
dicts the following text sequence conditioned on the context,
while ICL predicts the correct task solution, which can be
also formatted as a text sequence, given the task description

17. GPT-2 essentially used ICL for unsupervised task learning,
though it wasn’t called ICL at that time.

and demonstrations. GPT-3 not only demonstrates very ex-
cellent performance in a variety of NLP tasks, but also on a
number of specially designed tasks that require the abilities
of reasoning or domain adaptation. Although the GPT-3’s
paper does not explicitly discuss the emergent abilities of
LLMs, we can observe large performance leap that might
transcend the basic scaling law [30], e.g., larger models have
significantly stronger ICL ability (illustrated in the original
Figure 1.2 of the GPT-3’s paper [55]). Overall, GPT-3 can be
viewed as a remarkable landmark in the journey evolving
from PLMs to LLMs. It has empirically proved that scaling
the neural networks to a significant size can lead to a huge
increase in model capacity.

Capacity Enhancement. Due to the strong capacities, GPT-
3 has been the base model to develop even more capable
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LLMs for OpenAI. Overall, OpenAI has explored two major
approaches to further improving the GPT-3 model, i.e., train-
ing on code data and alignment with human preference,
which are detailed as follows.
• Training on code data. A major limitation of the original

GPT-3 model (pre-trained on plain text) lies in the lack of
the reasoning ability on complex tasks, e.g., completing the
code and solving math problems. To enhance this ability,
Codex [105] was introduced by OpenAI in July 2021, which
was a GPT model fine-tuned on a large corpus of GitHub
code. It demonstrated that Codex can solve very difficult
programming problems, and also lead to a significant per-
formance improvement in solving math problems [126].
Further, a contrastive approach [127] to training text and
code embedding was reported in January 2022, which was
shown to improve a series of related tasks (i.e., linear-
probe classification, text search and code search). Actually,
the GPT-3.5 models are developed based on a code-based
GPT model (i.e., code-davinci-002), which indicates that
training on code data is a very useful practice to improve
the model capacity of GPT models, especially the reasoning
ability. Furthermore, there is also a speculation that train-
ing on code data can greatly increase the chain-of-thought
prompting abilities of LLMs [47], while it is still worth
further investigation with more thorough verification.
• Human alignment. The related research of human

alignment can be dated back to the year 2017 (or earlier)
for OpenAI: a blog article entitled “learning from human
preferences”18 was posted on the OpenAI blog describing
a work that applied reinforcement learning (RL) to learn
from the preference comparisons annotated by humans [79]
(similar to the reward training step in the aligning algorithm
of InstructGPT in Figure 12). Shortly after the release of this
RL paper [79], the paper of the Proximal Policy Optimiza-
tion (PPO) [128] was published in July 2017, which now has
been the foundational RL algorithm for learning from hu-
man preferences [66]. Later in January 2020, GPT-2 was fine-
tuned using the aforementioned RL algorithms [79, 128],
which leveraged human preferences to improve the capac-
ities of GPT-2 on NLP tasks. In the same year, another
work [129] trained a summarization model for optimizing
human preferences in a similar way. Based on these prior
work, InstructGPT [66] was proposed in January 2022 to
improve the GPT-3 model for human alignment, which
formally established a three-stage reinforcement learning from
human feedback (RLHF) algorithm. Note that it seems that
the wording of “instruction tuning” has seldom been used in
OpenAI’s paper and documentation, which is substituted by
supervised fine-tuning on human demonstrations (i.e., the first
step of the RLHF algorithm [66]). In addition to improving
the instruction following capacity, the RLHF algorithm is
particularly useful to mitigate the issues of generating harm
or toxic content for LLMs, which is key to the safe deploy-
ment of LLMs in practice. OpenAI describes their approach
to alignment research in a technical article [130], which
has summarized three promising directions: “training AI
systems to use human feedback, to assist human evaluation
and to do alignment research”.

These enhancement techniques lead to the improved

18. https://openai.com/research/learning-from-human-preferences

GPT-3 models with stronger capacities, which are called
GPT-3.5 models by OpenAI (see the discussion about the
OpenAI API in Section 3.1).

The Milestones of Language Models. Based on all the ex-
ploration efforts, two major milestones have been achieved
by OpenAI, namely ChatGPT [131] and GPT-4 [46], which
have largely raised the capacity bar of existing AI systems.
• ChatGPT. In November 2022, OpenAI released the

conversation model ChatGPT, based on the GPT models
(GPT-3.5 and GPT-4). As the official blog article intro-
duced [131], ChatGPT was trained in a similar way as
InstructGPT (called “a sibling model to InstructGPT” in the
original post), while specially optimized for dialogue. They
reported a difference between the training of ChatGPT and
InstructGPT in the data collection setup: human-generated
conversations (playing both the roles of user and AI) are
combined with the InstructGPT dataset in a dialogue format
for training ChatGPT. ChatGPT exhibited superior capaci-
ties in communicating with humans: possessing a vast store
of knowledge, skill at reasoning on mathematical problems,
tracing the context accurately in multi-turn dialogues, and
aligning well with human values for safe use. Later on, the
plugin mechanism has been supported in ChatGPT, which
further extends the capacities of ChatGPT with existing tools
or apps. So far, it seems to be the ever most powerful chatbot
in the AI history. The launch of ChatGPT has a significant
impact on the AI research in the future, which sheds light
on the exploration of human-like AI systems.
•GPT-4. As another remarkable progress, GPT-4 [46] was

released in March 2023, which extended the text input to
multimodal signals. Overall, GPT-4 has stronger capacities
in solving complex tasks than GPT-3.5, showing a large
performance improvement on many evaluation tasks. A re-
cent study [41] investigated the capacities of GPT-4 by con-
ducting qualitative tests with human-generated problems,
spanning a diverse range of difficult tasks, and showed
that GPT-4 can achieve more superior performance than
prior GPT models such as ChatGPT. Furthermore, GPT-4
responds more safely to malicious or provocative queries,
due to a six-month iterative alignment (with an additional
safety reward signal in the RLHF training). In the technical
report, OpenAI has emphasized how to safely develop
GPT-4 and applied a number of intervention strategies to
mitigate the possible issues of LLMs, such as hallucinations,
privacy and overreliance. For example, they introduced the
mechanism called red teaming [132] to reduce the harm or
toxic content generation. As another important aspect, GPT-
4 has been developed on a well-established deep learning
infrastructure with improved optimization methods. They
introduced a new mechanism called predictable scaling that
can accurately predict the final performance with a small
proportion of compute during model training.
• GPT-4V, GPT-4 turbo, and beyond. Based on the work

done for GPT-4 [46], OpenAI further released GPT-4V in
September 2023, which focused on the safe deployment of
the vision capabilities of GPT-4. In the GPT-4V’s system
card [133], it has extensively discussed the assessment and
mitigation of risks related to visually augmented inputs.
Specially, GPT-4V exhibited strong vision capacities in var-
ious application scenarios, showing the great potential as

https://openai.com/research/learning-from-human-preferences
Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight



11

a powerful multimodal learning system. More recently, in
November 2023, OpenAI released an upgraded generation
of GPT-4 model at DevDay, named GPT-4 Turbo, with a
series of technical improvements. GPT-4 Turbo is featured
by the improved model capacity (more capable than GPT-
4), the extended knowledge source (up to April 2023),
long context window (up to 128k tokens), optimized model
performance (cheaper price), and other useful functional-
ity updates (function call, reproducible outputs, etc.). At
the same time, Assistants API was launched to ease the
rapid development of agent-like assistants. With this API,
developers can easily create goal-oriented assistants within
their applications, by leveraging specific instruction, extra
knowledge and tool use. Furthermore, multimodal capaci-
ties (see, hear, and speak) were also enhanced in this new
release, supported by GPT-4 Turbo with vision, DALL·E 3,
Text-to-speech (TTS), and Listen to voice samples. These
improvements have greatly extended the capacity scope and
enhanced the task performance of GPT models. More impor-
tantly, the application ecosystem will be greatly strength-
ened with the technology upgrade in improved models,
APIs, and functionalities.

Despite the huge progress, there are still limitations with
these superior LLMs, e.g., generating hallucinations with
factual errors or potentially risky response within some
specific context [46]. More limitations or issues of LLMs will
be discussed in Section 7. It poses long-standing research
challenges to develop more capable, safer LLMs. From
the perspective of engineering, OpenAI has adopted an
iterative deployment strategy [134] to develop the models
and products by following a five-stage development and
deployment life-cycle, which aims to effectively reduce the
potential risks of using the models. In the following, we
will dive into the technical details in order to have a specific
understanding of how they have been developed.

3 RESOURCES OF LLMS

It is by no means an easy job to develop or reproduce LLMs,
considering the challenging technical issues and huge de-
mands of computation resources. A feasible way is to learn
experiences from existing LLMs and reuse publicly avail-
able resources for incremental development or experimental
study. In this section, we briefly summarize the publicly
available resources for developing LLMs, including model
checkpoints (or APIs), corpora and libraries.

3.1 Publicly Available Model Checkpoints or APIs

Given the huge cost of model pre-training, well-trained
model checkpoints are critical to the study and development
of LLMs for the research community. Since the parameter
scale is a key factor to consider for using LLMs, we cate-
gorize these public models into two scale levels (i.e., tens
of billions of parameters and hundreds of billions of parameters),
which is useful for users to identify the suitable resources ac-
cording to their resource budget. In addition, for inference,
we can directly employ public APIs to perform our tasks,
without running the model locally. Next, we introduce the
publicly available model checkpoints and APIs.

Models with Tens of Billions of Parameters. Most of the
models in this category have a parameter scale ranging from
10B to 20B, except LLaMA [57] and LLaMA2 [99] (con-
taining 70B parameters in the largest version), NLLB [91]
(containing 54.5B parameters in the largest version), and
Falcon [135] (containing 40B parameters in the largest ver-
sion). Other models within this range include mT5 [83],
PanGu-α [84], T0 [28], GPT-NeoX-20B [87], CodeGen [86],
UL2 [89], Flan-T5 [69], and mT0 [94]. Among them, Flan-
T5 (11B version) can serve as a premier model for re-
search on instruction tuning, since it explores the instruction
tuning from three aspects [69]: increasing the number of
tasks, scaling the model size, and fine-tuning with chain-of-
thought prompting data. Besides, CodeGen (11B version), as
an autoregressive language model designed for generating
code, can be considered as a good candidate for exploring
the code generation ability. It also introduces a new bench-
mark MTPB [86] specially for multi-turn program synthesis,
which is composed by 115 expert-generated problems. To
solve these problems, it requires LLMs to acquire sufficient
programming knowledge (e.g., math, array operations, and
algorithms). More recently, CodeGen2 [97] has been released
to explore the impact of choices in model architecture,
learning algorithms, and data distributions on the model. As
another LLM specialized in coding abilities, StarCoder [98]
has also achieved excellent results. As for multilingual tasks,
mT0 (13B version) might be a good candidate model, which
has been fine-tuned on multilingual tasks with multilingual
prompts. Furthermore, PanGu-α [84] shows good perfor-
mance in Chinese downstream tasks in zero-shot or few-
shot settings, which is developed based on the deep learn-
ing framework MindSpore [136]. Note that PanGu-α [84]
holds multiple versions of models (up to 200B parameters),
while the largest public version has 13B parameters. As
a popular LLM, LLaMA (65B version) [57], which contains
approximately five times as many parameters as other mod-
els, has exhibited superior performance in tasks related to
instruction following. Compared to LLaMA, LLaMA2 [99]
has made more explorations in reinforcement learning from
human feedback (RLHF) and developed a chat-oriented
version called LLaMA-chat, which generally outperforms ex-
isting open-source models across a range of helpfulness and
safety benchmarks. Due to the openness and effectiveness,
LLaMA has attracted significant attention from the research
community, and many efforts [137–140] have been devoted
to fine-tuning or continually pre-training its different model
versions for implementing new models or tools. More
recently, Falcon [135], as another open-source LLM, has also
achieved very excellent performance on open benchmarks.
It is featured by a more careful data cleaning process to
prepare the pre-training data (with a publicly shared dataset
RefinedWeb [141]). Typically, pre-training models at this
scale require hundreds or even thousands of GPUs or TPUs.
For instance, GPT-NeoX-20B uses 12 supermicro servers,
each equipped with 8 NVIDIA A100-SXM4-40GB GPUs,
while LLaMA utilizes 2,048 A100-80G GPUs as reported
in their original publications. To accurately estimate the
computation resources needed, it is suggested to use the
metrics measuring the number of involved computations
such as FLOPS (i.e., FLoating point number Operations Per
Second) [30].
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Fig. 5: An evolutionary graph of the research work conducted on LLaMA. Due to the huge number, we cannot include all
the LLaMA variants in this figure, even much excellent work. To support incremental update, we share the source file of
this figure, and welcome the readers to include the desired models by submitting the pull requests on our GitHub page.

Models with Hundreds of Billions of Parameters. For
models in this category, only a handful of models have been
publicly released. For example, OPT [90], OPT-IML [95],
BLOOM [78], and BLOOMZ [94] have nearly the same num-
ber of parameters as GPT-3 (175B version), while GLM [93]
and Galactica [35] have 130B and 120B parameters, re-
spectively. Among them, OPT (175B version), with the
instruction-tuned version OPT-IML, has been specially mo-
tivated for open sharing, which aims to enable researchers
to carry out reproducible research at scale. For research
in cross-lingual generalization, BLOOM (176B version) and
BLOOMZ (176B version) can be used as base models, due to
the competence in multilingual language modeling tasks.
As a bilingual LLM, GLM has also provided a popular
small-sized Chinese chat model ChatGLM2-6B (a updated
version for ChatGLM-6B), which is featured with many
improvements in efficiency and capacity (e.g., quantization,
32K-length context, fast inference rate). Models of this scale
typically require thousands of GPUs or TPUs to train. For
instance, OPT (175B version) used 992 A100-80GB GPUs,
while GLM (130B version) used a cluster of 96 NVIDIA
DGX-A100 (8x40G) GPU nodes.

LLaMA Model Family. The collection of LLaMA mod-
els [57] were introduced by Meta AI in February, 2023,
consisting of four sizes (7B, 13B, 30B and 65B). Since
released, LLaMA has attracted extensive attention from
both research and industry communities. LLaMA mod-

els have achieved very excellent performance on various
open benchmarks, which have become the most popu-
lar open language models thus far. A large number of
researchers have extended LLaMA models by either in-
struction tuning or continual pretraining. In particular, in-
struction tuning LLaMA has become a major approach
to developing customized or specialized models, due to
the relatively low computational costs. To effectively adapt
LLaMA models in non-English languages, it often needs to
extend the original vocabulary (trained mainly on English
corpus) or fine-tune it with instructions or data in the
target language. Among these extended models, Stanford
Alpaca [142] is the first open instruct-following model
fine-tuned based on LLaMA (7B). It is trained by 52K
instruction-following demonstrations generated via self-
instruct [143] using text-davinci-003. The instruction
data, named Alpaca-52K, and training code have been ex-
tensively adopted in subsequent work, such as Alpaca-
LoRA [144] (a reproduction of Stanford Alpaca using
LoRA [145]), Koala [146], and BELLE [147]. In addition, Vi-
cuna [138] is another popular LLaMA variant, trained upon
user-shared conversations collected from ShareGPT [148].
Due to the excellent performance and availability of the
LLaMA model family, many multimodal models incorpo-
rate them as the base language models, to achieve strong
language understanding and generation abilities. Compared
with other variants, Vicuna is more preferred in multimodal

Junwang Zhao
Highlight



13

language models, which have led to the emergence of a va-
riety of popular models, including LLaVA [149], MiniGPT-
4 [150], InstructBLIP [151], and PandaGPT [152]. The re-
lease of LLaMA has greatly advanced the research progress
of LLMs. To summarize the research work conducted on
LLaMA, we present a brief evolutionary graph in Figure 5.

Public API of LLMs. Instead of directly using the model
copies, APIs provide a more convenient way for common
users to use LLMs, without the need of running the model
locally. As a representative interface for using LLMs, the
APIs for the GPT-series models [46, 55, 66, 105] have
been widely used for both academia and industry19.
OpenAI has provided seven major interfaces to the models
in GPT-3 series: ada, babbage, curie, davinci (the
most powerful version in GPT-3 series), text-ada-001,
text-babbage-001, and text-curie-001. Among
them, the first four interfaces can be further fine-
tuned on the host server of OpenAI. In particular,
babbage, curie, and davinci correspond to the
GPT-3 (1B), GPT-3 (6.7B), and GPT-3 (175B) models,
respectively [55]. In addition, there are also two APIs
related to Codex [105], called code-cushman-001 (a
powerful and multilingual version of the Codex (12B) [105])
and code-davinci-002. Further, GPT-3.5 series
include one base model code-davinci-002 and
three enhanced versions, namely text-davinci-002,
text-davinci-003, and gpt-3.5-turbo. As more
powerful alternatives, in this year, OpenAI has released
the model interfaces for GPT-4 series, including gpt-4,
gpt-4-32k, gpt-4-1106-preview (i.e., GPT-4 Turbo)
and gpt-4-vision-preview (i.e., GPT-4 Turbo with
vision, a multimodal model). It is worth noting that OpenAI
has been maintaining and upgrading these model interfaces
(gpt-3.5-turbo, gpt-4, gpt-4-32k), so the API name
will actually point to the latest version. Currently, ChatGPT
can be powered by either GPT-3.5 or GPT-4 models. Overall,
one select the suitable model interface based on the specific
application scenarios and response requirements. The
detailed usage can be found on their project websites20.

TABLE 2: Statistics of commonly-used data sources.

Corpora Size Source Latest Update Time

BookCorpus [153] 5GB Books Dec-2015
Gutenberg [154] - Books Dec-2021
C4 [82] 800GB CommonCrawl Apr-2019
CC-Stories-R [155] 31GB CommonCrawl Sep-2019
CC-NEWS [27] 78GB CommonCrawl Feb-2019
REALNEWs [156] 120GB CommonCrawl Apr-2019
OpenWebText [157] 38GB Reddit links Mar-2023
Pushift.io [158] 2TB Reddit links Mar-2023
Wikipedia [159] 21GB Wikipedia Mar-2023
BigQuery [160] - Codes Mar-2023
the Pile [161] 800GB Other Dec-2020
ROOTS [162] 1.6TB Other Jun-2022

3.2 Commonly Used Corpora for Pre-training
In contrast to earlier PLMs, LLMs which consist of a signifi-
cantly larger number of parameters require a higher volume

19. https://platform.openai.com/docs/api-reference/introduction
20. https://platform.openai.com/docs/models/overview

of training data that covers a broad range of content. For
this need, there are increasingly more accessible training
datasets that have been released for research. In this section,
we will briefly summarize several widely used corpora for
training LLMs. Based on their content types, we catego-
rize these corpora into six groups: Books, CommonCrawl,
Reddit links, Wikipedia, Code, and others.

Books. BookCorpus [153] is a commonly used dataset in
previous small-scale models (e.g., GPT [122] and GPT-2 [26]),
consisting of over 11,000 books covering a wide range of
topics and genres (e.g., novels and biographies). Another
large-scale book corpus is Project Gutenberg [154], consist-
ing of over 70,000 literary books including novels, essays,
poetry, drama, history, science, philosophy, and other types
of works in the public domain. It is currently one of the
largest open-source book collections, which is used in train-
ing of MT-NLG [113] and LLaMA [57]. As for Books1 [55]
and Books2 [55] used in GPT-3 [55], they are much larger
than BookCorpus but have not been publicly released so
far.

CommonCrawl. CommonCrawl [163] is one of the largest
open-source web crawling databases, containing a petabyte-
scale data volume, which has been widely used as training
data for existing LLMs. As the whole dataset is very large,
existing studies mainly extract subsets of web pages from
it within a specific period. However, due to the widespread
existence of noisy and low-quality information in web data,
it is necessary to perform data preprocessing before usage.
Based on CommonCrawl, there are four filtered datasets
that are commonly used in existing work: C4 [82], CC-
Stories [155], CC-News [27], and RealNews [156]. The Colos-
sal Clean Crawled Corpus (C4) includes five variants21,
namely en (806G), en.noclean (6T), realnewslike (36G), web-
textlike (17G), and multilingual (38T). The en version has
been utilized for pre-training T5 [82], LaMDA [68], Go-
pher [64], and UL2 [89]. The multilingual C4, also called
mC4, has been used in mT5 [83]. CC-Stories (31G) is com-
posed of a subset of CommonCrawl data, in which the
contents are made in a story-like way. Because the original
source of CC-Stories is not available now, we include a re-
production version, CC-Stories-R [164], in Table 2. Moreover,
two news corpora extracted from CommonCrawl, i.e., RE-
ALNEWS (120G) and CC-News (76G), are also commonly
used as the pre-training data.

Reddit Links. Reddit is a social media platform that enables
users to submit links and text posts, which can be voted on
by others through “upvotes” or “downvotes”. Highly up-
voted posts are often considered useful, and can be utilized
to create high-quality datasets. WebText [26] is a well-known
corpus composed of highly upvoted links from Reddit, but it
is not publicly available. As a surrogate, there is a readily ac-
cessible open-source alternative called OpenWebText [157].
Another corpus extracted from Reddit is PushShift.io [158],
a real-time updated dataset that consists of historical data
from Reddit since its creation day. Pushshift provides not
only monthly data dumps but also useful utility tools to
support users in searching, summarizing, and conducting

21. https://www.tensorflow.org/datasets/catalog/c4
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preliminary investigations on the entire dataset. This makes
it easy for users to collect and process Reddit data.

Wikipedia. Wikipedia [159] is an online encyclopedia con-
taining a large volume of high-quality articles on diverse
topics. Most of these articles are composed in an expository
style of writing (with supporting references), covering a
wide range of languages and fields. Typically, the English-
only filtered versions of Wikipedia are widely used in most
LLMs (e.g., GPT-3 [55], LaMDA [68], and LLaMA [57]).
Wikipedia is available in multiple languages, so it can be
used in multilingual settings.

Code. To collect code data, existing work mainly crawls
open-source licensed codes from the Internet. Two major
sources are public code repositories under open-source li-
censes (e.g., GitHub) and code-related question-answering
platforms (e.g., StackOverflow). Google has publicly re-
leased the BigQuery dataset [160], which includes a substan-
tial number of open-source licensed code snippets in various
programming languages, serving as a representative code
dataset. CodeGen has utilized BIGQUERY [86], a subset of
the BigQuery dataset, for training the multilingual version
of CodeGen (CodeGen-Multi).

Others. The Pile [161] is a large-scale, diverse, and open-
source text dataset consisting of over 800GB of data from
multiple sources, including books, websites, codes, scientific
papers, and social media platforms. It is constructed from
22 diverse high-quality subsets. The Pile dataset is widely
used in models with different parameter scales, such as
GPT-J (6B) [165], CodeGen (16B) [86], and Megatron-Turing
NLG (530B) [113]. ROOTS [162] is composed of various
smaller datasets (totally 1.61 TB of text) and covers 59
different languages (containing natural languages and pro-
gramming languages), which have been used for training
BLOOM [78].

In practice, it commonly requires a mixture of different
data sources for pre-training LLMs (see Figure 6), instead
of a single corpus. Therefore, existing studies commonly
mix several ready-made datasets (e.g., C4, OpenWebText,
and the Pile), and then perform further processing to obtain
the pre-training corpus. Furthermore, to train the LLMs that
are adaptive to specific applications, it is also important
to extract data from relevant sources (e.g., Wikipedia and
BigQuery) for enriching the corresponding information in
pre-training data. To have a quick reference of the data
sources used in existing LLMs, we present the pre-training
corpora of three representative LLMs:
• GPT-3 (175B) [55] was trained on a mixed dataset of

300B tokens, including CommonCrawl [163], WebText2 [55],
Books1 [55], Books2 [55], and Wikipedia [159].
• PaLM (540B) [56] uses a pre-training dataset of 780B

tokens, which is sourced from social media conversations,
filtered webpages, books, Github, multilingual Wikipedia,
and news.
• LLaMA [57] extracts training data from various sources,

including CommonCrawl, C4 [82], Github, Wikipedia,
books, ArXiv, and StackExchange. The training data size for
LLaMA (6B) and LLaMA (13B) is 1.0T tokens, while 1.4T
tokens are used for LLaMA (32B) and LLaMA (65B).

TABLE 3: A detailed list of available collections for instruc-
tion tuning.

Categories Collections Time #Examples

Task

Nat. Inst. [166] Apr-2021 193K
FLAN [67] Sep-2021 4.4M
P3 [167] Oct-2021 12.1M
Super Nat. Inst. [88] Apr-2022 5M
MVPCorpus [168] Jun-2022 41M
xP3 [94] Nov-2022 81M
OIG[169] Mar-2023 43M

Chat

HH-RLHF [170] Apr-2022 160K
HC3 [171] Jan-2023 87K
ShareGPT [148] Mar-2023 90K
Dolly [172] Apr-2023 15K
OpenAssistant [173] Apr-2023 161K

Synthetic

Self-Instruct [143] Dec-2022 82K
Alpaca [137] Mar-2023 52K
Guanaco [174] Mar-2023 535K
Baize [175] Apr-2023 158K
BELLE [176] Apr-2023 1.5M

TABLE 4: A list of available collections for alignment.

Dataset Release Time #Examples

Summarize from Feedback [129] Sep-2020 193K
SHP [177] Oct-2021 385K
WebGPT Comparisons [81] Dec-2021 19K
Stack Exchange Preferences [178] Dec-2021 10M
HH-RLHF [170] Apr-2022 169K
Sandbox Alignment Data [179] May-2023 169K
CValues [180] Jul-2023 145K
PKU-SafeRLHF [181] Oct-2023 330K

3.3 Commonly Used Datasets for Fine-tuning

After pre-training, it requires further fine-tuning LLMs to
enhance the model capacity, which often involve two major
steps, namely instruction tuning (supervised fine-tuning)
and alignment tuning. In this section, we mainly focus on
discussing the related available datasets for the two kinds of
tuning approaches, and more algorithm details can be found
in Section 5.

3.3.1 Instruction Tuning Datasets

After pre-training, instruction tuning (a.k.a., supervised fine-
tuning) is an important method to enhance or unlock spe-
cific abilities of LLMs (e.g., instruction following). In this
part, we introduce several widely used datasets for in-
struction tuning, and categorize them into three main types
based on the construction method of formatted instruction
instances, namely NLP task datasets, daily chat datasets and
synthetic datasets. We show their details in Table 3.

NLP Task Datasets. This kind of datasets are formatted
based on collected NLP task datasets (e.g., text classifica-
tion and summarization) with corresponding natural lan-
guage task descriptions. In this category, P3 [182] and
FLAN [67, 183] are two widely used datasets for instruction
tuning.
• P3 [182] is composed of 170 English NLP datasets and

2,052 English prompt templates, where the input and output
of each data example have been formatted with specific
prompt templates for composing the training instance.
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• FLAN [67] consists of 62 widely used NLP benchmarks
in its original version. Recently, FLAN-v2 [183] is also pro-
posed, which expands FLAN by mixing additional instruc-
tion datasets, including Muffin [67], NIV2 [88], T0-SF [28],
and CoT [184–186]. Muffin contains 62 tasks from the orig-
inal FLAN and additional 26 tasks, including conversation
and code synthesis tasks. T0-SF is extracted from T0 [28]
while ensuring no overlap with Muffin. NIV2 refers to the
Natural-Instructions v2 dataset [88], and CoT [184–186] is
a combination of nine reasoning tasks with corresponding
chain-of-thought prompts and outputs.

Daily Chat Datasets. This kind of datasets are constructed
based on real user conversations where queries are posed
by humans and responses are mainly generated by hu-
man labelers or LLMs (e.g., ChatGPT, GPT-4). The con-
versation types include open-ended generation, question
answering, brainstorming, and chatting. In this category,
ShareGPT [148], OpenAssistant [173] and Dolly [172] are
three commonly used datasets for LLM fine-tuning.
• ShareGPT [148] is collected from a data collection

platform where users can upload their conversations with
ChatGPT or GPT-4 through the ShareGPT API. Currently,
this dataset consists of approximately 90,000 conversations,
including real instructions or inquiries from human and
responses from ChatGPT.
• OpenAssistant [173] is a multilingual corpus containing

66,497 real-world conversation trees between human and AI
assistant. Each conversation tree consists of multiple nodes,
and each node represents the information generated by a
role in the dialogue. It spans 35 languages and includes
461,292 manually annotated quality ratings of responses.
• Dolly [172] is an English dataset comprising 15,000

human-generated data instances (prompt-response pairs)
from Databricks. This dataset covers seven domains out-
lined in the InstructGPT [66], including brainstorming, clas-
sification, closed-book quality assurance, generation, infor-
mation extraction, open-book quality assurance, and sum-
marization.

Synthetic Datasets. This kind of datasets are typically
constructed by instructing LLMs, based on pre-defined
guidance rules or methods. In this category, Self-Instruct-
52K [143], Alpaca [142] and Baize [175] are three commonly
used synthetic datasets for LLMs.
• Self-Instruct-52K [143] is an instruction dataset gener-

ated through the self-instruct [143] method, consisting of
82,000 instances with 52,000 instructions. Concretely, the
authors construct 175 seed instances, and then iteratively
prompt the LLM [55] to synthesize additional instructions
based on randomly selected 8 instructions as reference.
Subsequently, the LLM is further instructed to generate in-
stance inputs and their corresponding outputs based on the
synthetic instructions, and finally obtain the Self-Instruct-
52K dataset.
• Alpaca [142] is also a synthetic dataset based on the self-

instruct [143] method. It utilizes the text-davinci-003
model on the 175 seed datasets from Self-Instruct-52K to
obtain 52,000 new instructions and corresponding inputs
and outputs. Moreover, 60% of the examples are pure in-
structions without the input part in the final dataset.

• Baize [175] is an English multi-turn conversation corpus
constructed using ChatGPT, comprising 111.5K instances. To
create Baize, a method called “self-chat” [175] is purposed,
where ChatGPT takes on the roles of both the user and the
AI assistant in turns, generating information in a conversa-
tional format.

3.3.2 Alignment Datasets

Apart from instruction tuning, it is important to construct
high-quality datasets for aligning LLMs with human values
and preferences (e.g., helpfulness, honesty, and harmless-
ness). In this section, we introduce several widely used
datasets for alignment tuning, including HH-RLHF [170],
SHP [177], PKU-SafeRLHF [181], Stack Exchange Prefer-
ences [178] and Sandbox Alignment Data [179]. We show
their details in Table 4.
•HH-RLHF [170] consists of around 169K instances, and

can be divided into two parts that focus on the helpfulness
and harmlessness of LLMs, respectively. Each instance is
an open-ended conversation between a crowdworker and
a chat model, about seeking assistance, advice, or task
completion. The chat model provides two responses to each
user query, and the more helpful or harmful responses will
be chosen as the annotations.
• SHP [177] focuses on the helpfulness of responses.

It comprises 385K collective human preferences over re-
sponses to questions/instructions across 18 diverse subject
areas, spanning topics from cooking to legal advice. Each
instance is a Reddit post containing a question or instruction
and a pair of top-level comments, one of which is deemed
as more preferable by Reddit users and the other one is
deemed as less helpful. Different from HH-RLHF [170], the
data in SHP consists of naturally occurring and human-
written responses.
• PKU-SafeRLHF [181] encompasses more than 330K

instances of expert comparison data, concentrating on the
helpfulness and harmlessness. Each instance in the dataset
includes a question and two responses, accompanied by
safety labels for each response and two preference anno-
tations between the two responses according to helpfulness
and harmlessness. The harmlessness of a response indicates
its classification as risk-neutral across all 14 harm categories,
while the helpfulness of a response is evaluated based on its
effectiveness in addressing the question.
• Stack Exchange Preferences [178] focuses on the help-

fulness of answers. It comprises about 10M questions and
answers from Stack Overflow. Each instance consists of a
question and more than two corresponding answers. Each
answer is annotated with a score calculated based on its
votes and a label denoting whether it is selected.
• Sandbox Alignment Data [179] is an alignment dataset

containing feedback from LLMs rather than human. It
comes from a virtual interaction environment called SAND-
BOX, where the model simulates social interactions with
other models and revise responses according to the feedback
from other models. The dataset contains 169K instances, and
each instance consists of a societal query, several responses,
and corresponding ratings from other models.



16

3.4 Library Resource

In this part, we briefly introduce a series of available li-
braries for developing LLMs.
• Transformers [187] is an open-source Python library

for building models using the Transformer architecture,
which is developed and maintained by Hugging Face. It
has a simple and user-friendly API, making it easy to use
and customize various pre-trained models. It is a powerful
library with a large and active community of users and
developers who regularly update and improve the models
and algorithms.
•DeepSpeed [74] is a deep learning optimization library

(compatible with PyTorch) developed by Microsoft, which
has been used to train a number of LLMs, such as MT-
NLG [113] and BLOOM [78]. It provides the support of
various optimization techniques for distributed training,
such as memory optimization (ZeRO technique, gradient
checkpointing), and pipeline parallelism.
•Megatron-LM [75–77] is a deep learning library devel-

oped by NVIDIA for training large-scale language models.
It also provides rich optimization techniques for distributed
training, including model and data parallelism, mixed-
precision training, and FlashAttention. These optimization
techniques can largely improve the training efficiency and
speed, enabling efficient distributed training across GPUs.
• JAX [188] is a Python library for high-performance

machine learning algorithms developed by Google, allow-
ing users to easily perform computations on arrays with
hardware acceleration (e.g., GPU or TPU). It enables efficient
computation on various devices and also supports several
featured functions, such as automatic differentiation and
just-in-time compilation.
• Colossal-AI [189] is a deep learning library developed

by HPC-AI Tech for training large-scale AI models. It is
implemented based on PyTorch and supports a rich collec-
tion of parallel training strategies. Furthermore, it can also
optimize heterogeneous memory management with meth-
ods proposed by PatrickStar [190]. Recently, a ChatGPT-like
model called ColossalChat [140] has been publicly released
with two versions (7B and 13B), which are developed using
Colossal-AI based on LLaMA [57].
• BMTrain [191] is an efficient library developed by

OpenBMB for training models with large-scale parameters
in a distributed manner, which emphasizes code simplicity,
low resource, and high availability. BMTrain has already
incorporated several common LLMs (e.g., Flan-T5 [69] and
GLM [93]) into its ModelCenter, where developers can use
these models directly.
• FastMoE [192] is a specialized training library for MoE

(i.e., mixture-of-experts) models. It is developed based on
PyTorch, prioritizing both efficiency and user-friendliness
in its design. FastMoE simplifies the process of transferring
Transformer models to MoE models and supports both data
parallelism and model parallelism during training.
• vLLM [193] is a fast, memory efficient, and easy-

to-use library for LLM inference and serving. To enable
fast inference, it is specially optimized with high serving
throughput, effective attention memory management using
PagedAttention [193], continuous batching, and optimized
CUDA kernels. Furthermore, vLLM also supports various

decoding algorithms, tensor parallelism and streaming out-
puts. To ease the integration with other systems, vLLM is
friendly to the use of HuggingFace models, and also provide
OpenAI-compatible API servers.
• DeepSpeed-MII [194] is also a memory efficient

Python library developed by DeepSpeed [74]. It aims to
democratize LLMs inference by prioritizing high through-
put, low latency, and cost-effectiveness. DeepSpeed-MII
achieves accelerated text generation inference by leveraging
four essential technologies: blocked KV caching, continuous
batching, dynamic SplitFuse, and high-performance CUDA
Kernels. It currently supports over 13,000 models across
three popular model architectures, such as LLaMA [57],
Mistral [195], and OPT [90].
• DeepSpeed-Chat [196] is a fast, cost-effective, and

easy-to-use system framework that enables the integration
of the complete RLHF process during model training. It
is featured by three major functionalities: (1) it simplifies
the training and inference process for ChatGPT-like models,
enabling using a simple script to implement multiple train-
ing or inference steps; (2) it replicates the training mode
of InstructGPT [66] and provides a complete pipeline for
three training steps (i.e., SFT, reward model fine-tuning, and
RLHF); (3) it integrates the training engine and inference en-
gine of Deepspeed into a unified hybrid engine (Deepspeed
HE) for RLHF training, which enables seamless switch be-
tween training and inference modes, and leveraging various
optimizations from DeepSpeed Inference.

In addition to the above library resources, existing deep
learning frameworks (e.g., PyTorch [197], TensorFlow [198],
MXNet [199], PaddlePaddle [200], MindSpore [136] and
OneFlow [201]) have also provided the support for parallel
algorithms, which are commonly used for training large-
scale models.

4 PRE-TRAINING

Pre-training establishes the basis of the abilities of LLMs. By
pre-training on large-scale corpora, LLMs can acquire essen-
tial language understanding and generation skills [55, 56]. In
this process, the scale and quality of the pre-training corpus
are critical for LLMs to attain powerful capabilities. Fur-
thermore, to effectively pre-train LLMs, model architectures,
acceleration methods, and optimization techniques need to
be well designed. In what follows, we first discuss the data
collection and processing in Section 4.1, then introduce the
commonly used model architectures in Section 4.2, and fi-
nally present the training techniques to stably and efficiently
optimize LLMs in Section 4.3.

4.1 Data Collection and Preparation

Compared with small-scale language models, LLMs have
a stronger demand for high-quality data for model pre-
training, and their model capacities largely rely on the pre-
training corpus and how it has been preprocessed. In this
part, we discuss the collection and processing of pre-training
data, including data sources, preprocessing methods, and
important analysis of how pre-training data affects the
performance of LLMs.
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Fig. 6: Ratios of various data sources in the pre-training data for existing LLMs.

4.1.1 Data Source
To develop a capable LLM, it is key to collect a large amount
of natural language corpus from various data sources. Ex-
isting LLMs mainly leverage a mixture of diverse public
textual datasets as the pre-training corpus. Figure 6 shows
the distribution of the sources of pre-training data for a
number of representative LLMs.

The source of pre-training corpus can be broadly cate-
gorized into two types: general data and specialized data.
General data, such as webpages, books, and conversational
text, is utilized by most LLMs [55, 56, 90] due to its large,
diverse, and accessible nature, which can enhance the lan-
guage modeling and generalization abilities of LLMs. In
light of the impressive generalization capabilities exhibited
by LLMs, there are also studies that extend their pre-training
corpus to more specialized datasets, such as multilingual
data, scientific data, and code, endowing LLMs with specific
task-solving capabilities [35, 56, 86]. In what follows, we
describe these two types of pre-training data sources and
their effects on LLMs. For a detailed introduction to the
commonly used corpus, one can refer to Section 3.2.

General Text Data. As we can see in Figure 6, the vast
majority of LLMs adopt general-purpose pre-training data,
such as webpages, books, and conversational text, which
provides rich text sources on a variety of topics. Next, we
briefly summarize three important kinds of general data.
• Webpages. Owing to the proliferation of the Internet,

various types of data have been created, which enables
LLMs to gain diverse linguistic knowledge and enhance
their generalization capabilities [26, 82]. For convenient
use of these data resources, a large amount of data is
crawled from the web in previous work, such as Com-
monCrawl [163]. However, the crawled web data tends to
contain both high-quality text, such as Wikipedia and low-
quality text, like spam mail, thus it is important to filter and
process webpages for improving the data quality.
• Conversation text. Conversation data can enhance the

conversational competence of LLMs [90] and potentially im-

prove their performance on a range of question-answering
tasks [56]. Researchers can utilize subsets of public conver-
sation corpus (e.g., PushShift.io Reddit corpus) [158, 202] or
collect conversation data from online social media. Since on-
line conversational data often involves discussions among
multiple participants, an effective processing way is to
transform a conversation into a tree structure, where the
utterance is linked to the one it responds to. In this way, the
multi-party conversation tree can be divided into multiple
sub-conversations, which can be collected in the pre-training
corpus. Furthermore, a potential risk is that the excessive
integration of dialogue data into LLMs may result in a side
effect [90]: declarative instructions and direct interrogatives
are erroneously perceived as the beginning of conversations,
thus leading to a decline in the efficacy of the instructions.
• Books. Compared to other corpus, books provide an

important source of formal long texts, which are potentially
beneficial for LLMs to learn linguistic knowledge, model
long-term dependency, and generate narrative and coherent
texts. To obtain open-source book data, existing studies
usually adopt the Books3 and Bookcorpus2 datasets, which
are available in the Pile dataset [161].

Specialized Text Data. Specialized datasets are useful to
improve the specific capabilities of LLMs on downstream
tasks. Next, we introduce three kinds of specialized data.
• Multilingual text. In addition to the text in the target

language, integrating a multilingual corpus can enhance
the multilingual abilities of language understanding and
generation. For example, BLOOM [78] and PaLM [56] have
curated multilingual data covering 46 and 122 languages,
respectively, within their pre-training corpora. FLM [102]
mixes Chinese and English corpora in nearly equal propor-
tions. These models demonstrate impressive performance in
multilingual tasks, such as translation, multilingual summa-
rization, and multilingual question answering, and achieve
comparable or superior performance to the state-of-the-
art models that are fine-tuned on the corpus in the target
language(s).
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• Scientific text. The exploration of science by humans has
been witnessed by the increasing growth of scientific publi-
cations. In order to enhance the understanding of scientific
knowledge for LLMs [35, 203], it is useful to incorporate a
scientific corpus for model pre-training [35, 203]. By pre-
training on a vast amount of scientific text, LLMs can
achieve impressive performance in scientific and reasoning
tasks [204]. To construct the scientific corpus, existing efforts
mainly collect arXiv papers, scientific textbooks, math web-
pages, and other related scientific resources. Due to the com-
plex nature of data in scientific fields, such as mathematical
symbols and protein sequences, specific tokenization and
preprocessing techniques are usually required to transform
these different formats of data into a unified form that can
be processed by language models.
• Code. Program synthesis has been widely studied in

the research community [105, 205–208], especially the use of
PLMs trained on code [165, 209]. However, it remains chal-
lenging for these PLMs (e.g., GPT-J [165]) to generate high-
quality and accurate programs. Recent studies [105, 208]
have found that training LLMs on a vast code corpus
can lead to a substantial improvement in the quality of
the synthesized programs. The generated programs can
successfully pass expert-designed unit-test cases [105] or
solve competitive programming questions [114]. In gen-
eral, two types of code corpora are commonly used for
pre-training LLMs. The first source is from programming
question answering communities like Stack Exchange [210].
The second source is from public software repositories
such as GitHub [86, 105, 208], where code data (includ-
ing comments and docstrings) are collected for utilization.
Compared to natural language text, code is in the format
of a programming language, corresponding to long-range
dependencies and accurate execution logic [211]. A recent
study [47] also speculates that training on code might be a
source of complex reasoning abilities (e.g., chain-of-thought
ability [33]). Furthermore, it has been shown that formatting
reasoning tasks into code can help LLMs generate more
accurate results [211].

4.1.2 Data Preprocessing

After collecting a large amount of text data, it is essential
to preprocess the data for constructing the pre-training
corpus, especially removing noisy, redundant, irrelevant,
and potentially toxic data [56, 64, 212], which may largely
affect the capacity and performance of LLMs. To facilitate
the data processing, a recent study [213] proposes a useful
data processing system for LLMs, named Data-Juicer, which
provides over 50 processing operators and tools. In this
part, we review the detailed data preprocessing strategies
to improve the quality of the collected data [64, 78, 112]. A
typical pipeline of preprocessing the pre-training data for
LLMs has been illustrated in Figure 7.

Quality Filtering. To remove low-quality data from the
collected corpus, existing work generally adopts two ap-
proaches: (1) classifier-based, and (2) heuristic-based. The
former approach trains a selection classifier based on high-
quality texts and leverages it to identify and filter out low-
quality data. Typically, these methods [55, 56, 112] train
a binary classifier with well-curated data (e.g., Wikipedia

pages) as positive instances and sample candidate data
as negative instances, and predict the score that measures
the quality of each data example. However, several stud-
ies [64, 112] find that a classifier-based approach may result
in the unintentional removal of high-quality texts in dialec-
tal, colloquial, and sociolectal languages, which potentially
leads to bias in the pre-training corpus and diminishes the
corpus diversity. As the second approach, several studies,
such as BLOOM [78] and Gopher [64], employ heuristic-
based approaches to eliminate low-quality texts through a
set of well-designed rules, which can be summarized as
follows:
• Language based filtering. If a LLM would be mainly used

in the tasks of certain languages, the text in other lan-
guages can be filtered.

• Metric based filtering. Evaluation metrics about the gener-
ated texts, e.g., perplexity, can be employed to detect and
remove unnatural sentences.

• Statistic based filtering. Statistical features of a corpus,
e.g., the punctuation distribution, symbol-to-word ratio,
and sentence length, can be utilized to measure the text
quality and filter the low-quality data.

• Keyword based filtering. Based on specific keyword set, the
noisy or unuseful elements in the text, such as HTML
tags, hyperlinks, boilerplates, and offensive words, can
be identified and removed.

De-duplication. Existing work [214] has found that dupli-
cate data in a corpus would reduce the diversity of language
models, which may cause the training process to become un-
stable and thus affect the model performance. Therefore, it is
necessary to de-duplicate the pre-training corpus. Specially,
de-duplication can be performed at different granularities,
including sentence-level, document-level, and dataset-level
de-duplication. First, low-quality sentences that contain re-
peated words and phrases should be removed, as they may
introduce repetitive patterns in language modeling [215].
At the document level, existing studies mostly rely on the
overlap ratio of surface features (e.g., words and n-grams
overlap) between documents to detect and remove duplicate
documents containing similar contents [57, 64, 78, 216].
Furthermore, to avoid the dataset contamination problem,
it is also crucial to prevent the overlap between the training
and evaluation sets [56], by removing the possible duplicate
texts from the training set. It has been shown that the three
levels of de-duplication are useful to improve the training
of LLMs [56, 217], which should be jointly used in practice.

Privacy Reduction. The majority of pre-training text data is
obtained from web sources, including user-generated con-
tent involving sensitive or personal information, which may
increase the risk of privacy breaches [218]. Thus, it is nec-
essary to remove the personally identifiable information (PII)
from the pre-training corpus. One direct and effective ap-
proach is to employ rule-based methods, such as keyword
spotting, to detect and remove PII such as names, addresses,
and phone numbers [162]. Furthermore, researchers also
find that the vulnerability of LLMs under privacy attacks
can be attributed to the presence of duplicate PII data in the
pre-training corpus [219]. Therefore, de-duplication can also
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Fig. 7: An illustration of a typical data preprocessing pipeline for pre-training large language models.

reduce privacy risks to some extent.

Tokenization. Tokenization is also a crucial step for data
preprocessing. It aims to segment raw text into sequences
of individual tokens, which are subsequently used as the
inputs of LLMs. In traditional NLP research (e.g., sequence
labeling with conditional random fields [220]), word-based
tokenization is the predominant approach, which is more
aligned with human’s language cognition. However, word-
based tokenization can yield different segmentation results
for the same input in some languages (e.g., Chinese word
segmentation), generate a huge word vocabulary containing
many low-frequency words, and also suffer from the “out-
of-vocabulary” issue. Thus, several neural network models
employ character as the minimum unit to derive the word
representation (e.g., a CNN word encoder in ELMo [21]).
Recently, subword tokenizers have been widely used in Trans-
former based language models, typically including Byte-
Pair Encoding tokenization, WordPiece tokenization and
Unigram tokenization. HuggingFace has maintained an
excellent online NLP course on tokenizer22 with running
examples, and we refer to the beginners to this course. Next,
we briefly describe the three representative tokenization
methods.
• Byte-Pair Encoding (BPE) tokenization. BPE was origi-

nally proposed as a general data compression algorithm in
1994 [221], and then adapted to NLP for tokenization [222].
It starts with a set of basic symbols (e.g., the alphabets
and boundary characters), and iteratively combine frequent
pairs of two consecutive tokens in the corpus as new to-
kens (called merge). For each merge, the selection criterion
is based on the co-occurrence frequency of two contigu-
ous tokens: the top frequent pair would be selected. The
merge process continues until it reaches the predefined
size. Further, Byte-level BPE has been used to improve the
tokenization quality for multilingual corpus (e.g., the text
containing non-ASCII characters) by considering bytes as the
basic symbols for merge. Representative language models
with this tokenization approach include GPT-2, BART, and
LLaMA.
• WordPiece tokenization. WordPiece was a Google inter-

nal subword tokenization algorithm. It was originally pro-
posed by Google in developing voice search systems [223].
Then, it was used in the neural machine translation system
in 2016 [224], and was adopted as the word tokenizer for
BERT in 2018 [23]. WordPiece has a very similar idea with
BPE by iteratively merging consecutive tokens, whereas

22. https://huggingface.co/learn/nlp-course/chapter6

taking a slightly different selection criterion for the merge.
To conduct the merge, it first trains a language model and
employs it to score all possible pairs. Then, at each merge, it
selects the pair that leads to the most increase in the likeli-
hood of training data. Since Google has’t released the official
implementation of the WordPiece algorithm, HuggingFace
gives a more intuitive selection measure in its online NLP
course: a pair is scored by dividing the co-occurrence count
by the product of the occurrence counts of two tokens in the
pair based on training corpus.

• Unigram tokenization. Unlike BPE and WordPiece, Un-
igram tokenization [225] starts with a sufficiently large
set of possible substrings or subtokens for a corpus, and
iteratively removes the tokens in the current vocabulary
until the expected vocabulary size is reached. As the se-
lection criterion, it calculates the yielded increase in the
likelihood of training corpus by assuming that some to-
ken was removed from current vocabulary. This step is
conducted based on a trained unigram language model.
To estimate the unigram language model, it adopts an
expectation–maximization (EM) algorithm: at each iteration,
we first find the currently optimal tokenization of words
based on the old language model, and then re-estimate the
probabilities of unigrams to update the language model.
During this procedure, dynamic programming algorithms
(i.e., the Viterbi algorithm) are used to efficiently find the
optimal decomposition way of a word given the language
model. Representative models that adopt this tokenization
approach include T5 and mBART.

Although it is expedient to leverage an existing tokenizer
(e.g., OPT [90] and GPT-3 [55] utilize the tokenizer of GPT-
2 [26]), using a tokenizer specially designed for the pre-
training corpus can be highly beneficial [78], especially for
the corpus that consists of diverse domains, languages, and
formats. Therefore, recent LLMs often train the customized
tokenizers specially for the pre-training corpus with the
SentencePiece library [226], which includes Byte-level BPE
and Unigram tokenization. A note is that normalization
techniques in BPE, such as NFKC [227], may degrade the
tokenization performance [34, 64, 78]. When extending
existing LLMs (i.e., continual pre-training or instruction
tuning), we should be also aware of the potential side effect
with customized tokenizers. For example, LLaMA trains
the BPE tokenizer based on a pre-training corpus mainly
consisting of English texts, and the derived vocabulary
might be less capable in processing non-English data, e.g.,
taking longer inference latency to generate Chinese texts.
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LLMs.

Discussion on Effect of Data Quality. For pre-training, the
quality of pre-training data is vital to the model capacities
of LLMs. Existing work has shown that pre-training on the
low-quality corpus, such as noisy, toxic, and duplicate data,
would largely hurt the performance of models [64, 214,
216, 219]. Recent studies, such as T5 [82], GLaM [112], and
Gopher [64], have investigated the influence of data quality
on the LLMs’ capacities. By comparing the performance of
models trained on the filtered and unfiltered corpus, they
have reached the similar conclusion that pre-training LLMs
on cleaned data can improve the model performance. More
specifically, the duplication of data may result in “double
descent” (referring to the phenomenon of performance ini-
tially deteriorating and subsequently improving) [214, 228],
or even overwhelm the training process [214]. In addition,
it has been shown that duplicate data degrades the ability
of LLMs to copy from the context, which might further
affect the generalization capacity of LLMs using in-context
learning [214]. Therefore, as suggested in [56, 64, 78, 212],
it is essential to utilize preprocessing methods like quality
filtering, toxic filtering and deduplication to carefully clean
the pre-training corpus (as illustrated in Section 4.1.2), to
improve stability of the training process and avoid affecting
the model performance.

4.1.3 Data Scheduling

After data preprocessing, it is essential to design suit-
able strategies to schedule these multi-source data for pre-
training a capable LLM. Generally, two key aspects should
be paid close attention for data scheduling: the proportion
of each data source (data mixture), and the order in which
each data source is scheduled for training (data curriculum).
Next, we discuss the two aspects in detail. An illustration of
data scheduling has been presented in Figure 8.

Data Mixture. Since each kind of data source is closely
related to the development of certain capacities for LLMs
(referring to the discussions in Section 4.1), it is important
to set a suitable distribution to mix these data. The data
mixture is generally set in a global level (i.e., the distribution
of the entire pre-training data), and can be also locally set
to varied proportions at different training stages. During
pre-training, data samples from different sources would be
selected according to the mixture proportions: more data
will be sampled from a data source with a larger weight.
Typically, existing LLMs such as LLaMA [57] may employ
upsampling or downsampling on the full data of each

source to create specific data mixtures as pre-training data.
As Figure 6 illustrates, existing LLMs use different data mix-
tures to construct the pre-training data. As a representative
model, the pre-training data of LLaMA [57] mainly consists
of webpages (over 80%), alongside 6.5% of code-heavy data
from GitHub and StackExchange, 4.5% from books, and
2.5% of scientific data sourced from arXiv, which has become
an important reference for training general-purpose LLMs.
Furthermore, special data mixtures can be used to facilitate
different purposes. For example, Falcon [141] is trained on
pure webpages, and CodeGen [86] largely increases the
amount of code data. In practice, data mixture is often de-
termined empirically, and we summarize several common
strategies for finding an effective data mixture as follows:
• Increasing the diversity of data sources. Recent studies

have empirically shown that training on excessive data
about a certain domain would degrade the generalization
capability of LLMs on other domains [35, 64]. In contrast,
increasing the data source heterogeneity (e.g., including
diverse data sources) is critical for improving the down-
stream performance of LLMs [212, 229, 230]. To further
examine the effect of different data sources, some studies
have conducted ablation experiments by removing each
data source one by one, and pre-train LLMs with specially
curated datasets [212]. It has been shown that dropping data
sources with high heterogeneity (e.g., webpages) impacts
LLM’s abilities more severely than dropping sources with
low heterogeneity (e.g., academic corpus).
• Optimizing data mixtures. In addition to manually set-

ting the data mixtures, several studies have proposed to
optimize the data mixtures for improving the model pre-
training [59, 231]. Given the target downstream tasks, one
can select pre-training data with either higher proximity
in the feature space [231] or those that provide positive
influences on downstream task performance [232]. Further,
to reduce the reliance of target tasks, DoReMi [59] first trains
a small reference model using given initial domain weights,
and then trains another small proxy model, upweighting the
domains on which the greatest discrepancies in likelihood
between the two models are observed. Finally, the learned
domain weights of the proxy model are applied to train
a much larger LLM. In a more simple way, one can train
several small language models with different data mixtures,
and select the data mixture that leads to the most desir-
able performance. However, an assumption made in this
approach is, when trained in a similar way, small models
would resemble with large models in model abilities or
behaviors, which may not always hold in practice.
• Specializing the targeted abilities. The model capacities

of LLMs heavily rely on data selection and mixture, and
one can boost the proportions of specific data sources to
enhance certain model abilities [64, 212]. For example, the
mathematical reasoning and coding abilities can be specially
enhanced by training with more mathematical texts and
code data, respectively. Furthermore, experimental results
on the LAMBADA dataset [233] show that increasing the
proportion of books data can improve the model capacity in
capturing long-term dependencies from text, and increasing
the proportion of the C4 dataset [82] leads to performance
improvement on the C4 validation dataset [64]. Generally,
it is important to identify more implicit relations between
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data sources and model abilities. To enhance specific skills
such as mathematics and coding in LLMs, or to develop
specialized LLMs, a practical way is to employ a multi-stage
training approach, e.g., general and skill-specific data can
be scheduled at two consecutive stages. This approach of
training LLMs on varying sources or proportions of data
across multiple stages is also known as “data curriculum”,
which will be introduced below.

Data Curriculum. After preparing the data mixture, it
is important to schedule the order that specific data is
presented to LLMs for pre-training. It has been shown that,
in some cases, to learn a certain skill, learning in a skill-
set sequence (e.g., basic skills → target skill) outperforms
direct learning from a corpus focused solely on the target
skill [234, 235]. Following the idea of curriculum learn-
ing [236], data curriculum has been proposed and widely
used in model pre-training [234, 235, 237, 238]. It aims to
organize different parts of pre-training data for LLMs in
a specific order, e.g., starting with easy/general examples
and progressively introducing more challenging/special-
ized ones. More generally, it can broadly refer to the adap-
tive adjustment of data proportions for different sources
during pre-training. Existing work about data curriculum
mainly focuses on continual pre-training, such as special-
ized coding LLMs (e.g., CodeLLaMA [235]) or long context
LLMs (e.g., LongLLaMA [238]). However, it still lacks of
more detailed report about data curriculum for general-
purpose LLMs (e.g., LLaMA) in the literature. To determine
data curriculum, a practical approach is to monitor the de-
velopment of key abilities of LLMs based on specially con-
structed evaluation benchmarks, and then adaptively adjust
the data mixture during pre-training. Next, we take three
common abilities as examples to introduce how the concept
of data curriculum23 applies in continual pre-training.
• Coding. To improve the coding ability of LLMs, CodeL-

LaMA [235] is developed based on LLaMA 2 [99] (2T general
tokens → 500B code-heavy tokens), aiming to improve the
code generation ability and retain natural language under-
standing skills. CodeLLaMA also provides a version that
is further specialized to a certain programming language,
namely CodeLLaMA-Python (2T general tokens → 500B
code-heavy tokens→ 100B Python-heavy tokens).
• Mathematics. Llemma [239] is proposed to enhance

the mathematical capacities of general-purpose LLMs. It
is developed based on CodeLLaMA. Although CodeL-
LaMA [235] mainly focuses on the coding ability, exper-
iments have shown that it performs better than its base
model LLaMA 2 on mathematics benchmarks [239]. Based
on CodeLLaMA, Llemma is continually trained on mixtures
of scientific papers, web data containing mathematical text
and code (2T general tokens → 500B code-heavy tokens
→ 50∼200B math-heavy tokens). Note that the pre-training
data of Llemma also contains 5% general domain data as a
form of regularization.
• Long context. Long context modeling is an important

ability for LLMs, and many studies have explored extend-

23. We utilize the symbol “→” to represent the data order in data
curriculum. For example, “2T webpage tokens → 500B code tokens”
means that the LLM is firstly trained with 2T webpage tokens and
subsequently with 500B code data tokens.

ing the context windows of LLMs via continually train-
ing [235, 238]. With modifications on position embeddings
(i.e., position interpolation) of RoPE-based LLMs [57, 99,
240], CodeLLaMA further extends the context window of
LLaMA 2 (2.5T tokens with 4K context window → 20B
tokens with 16K context window). LongLLaMA [238] also
achieves longer context window with the help of external
memory and a unique training objective (1T tokens with 2K
context window→ 10B tokens with 8K context window).

4.1.4 Summary of Data Preparation
In this part, we summarize the general procedure and key
points to prepare pre-training data for LLMs, which are
detailed in the following three aspects.
• Data collection. It is suggested to include diverse data

sources in the pre-training data. Although Falcon [141]
shows that webpages alone can be employed to train power-
ful LLMs, a more typical approach is to also incorporate di-
verse high-quality text like code, books, scientific papers, etc.
If a LLM is specialized with a certain skill, the proportion of
corresponding data source should be increased accordingly.
For example, Gopher [64] and Chinchilla [34] are trained
with approximately 40% of data from books. PaLM [44] and
LaMDA [68] use approximately 50% conversational data.
• Data cleaning. After data collection, it is crucial to clean

the raw corpus to enhance its quality as possible. First,
deduplication is commonly used in existing work [99, 141,
229]. Second, low-quality text, toxic content, and data with
privacy concerns should be removed at different granulari-
ties (e.g., document, passage or sentence). In practice, both
heuristic and classifier-based methods can be employed
for quality and toxicity filtering (e.g., CCNet [241], fast-
Text [242], and Data-Juicer [243]). Third, with the cleaned
data, one can further unify or specify the format for pre-
training data, and perform the tokenization by training
the tokenizer on the filtered and deduplicated corpus with
libraries like SentencePiece [226].
• Data scheduling. With the preprocessed data, the next

step is to determine the data mixture and the specific order
of data for pre-training LLMs. To determine both settings, a
practical way is to first train several small language models
with multiple candidate plans and then select a good plan
among them [59]. Overall, it is more difficult to find a
suitable data curriculum. In practice, one can monitor the
performance of intermediate model checkpoints on specific
evaluation benchmarks, and dynamically tune the data mix-
ture and distribution during pre-training. In this process, it
is also useful to explore the potential relations between data
sources and model abilities to instruct the design of data
curriculum.

4.2 Architecture
In this section, we review the architecture design of LLMs,
i.e., mainstream architecture, pre-training objective, and de-
tailed configuration. Table 5 presents the model cards of
several representative LLMs with public details.

4.2.1 Typical Architectures
Due to the excellent parallelizability and capacity, the Trans-
former architecture [22] has become the de facto backbone to
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TABLE 5: Model cards of several selected LLMs with public configuration details. Here, PE denotes position embedding,
#L denotes the number of layers, #H denotes the number of attention heads, dmodel denotes the size of hidden states, and
MCL denotes the maximum context length during training.

Model Category Size Normalization PE Activation Bias #L #H dmodel MCL

GPT3 [55] Causal decoder 175B Pre LayerNorm Learned GeLU ✓ 96 96 12288 2048
PanGU- α [84] Causal decoder 207B Pre LayerNorm Learned GeLU ✓ 64 128 16384 1024
OPT [90] Causal decoder 175B Pre LayerNorm Learned ReLU ✓ 96 96 12288 2048
PaLM [56] Causal decoder 540B Pre LayerNorm RoPE SwiGLU × 118 48 18432 2048
BLOOM [78] Causal decoder 176B Pre LayerNorm ALiBi GeLU ✓ 70 112 14336 2048
MT-NLG [113] Causal decoder 530B - - - - 105 128 20480 2048
Gopher [64] Causal decoder 280B Pre RMSNorm Relative - - 80 128 16384 2048
Chinchilla [34] Causal decoder 70B Pre RMSNorm Relative - - 80 64 8192 -
Galactica [35] Causal decoder 120B Pre LayerNorm Learned GeLU × 96 80 10240 2048
LaMDA [68] Causal decoder 137B - Relative GeGLU - 64 128 8192 -
Jurassic-1 [107] Causal decoder 178B Pre LayerNorm Learned GeLU ✓ 76 96 13824 2048
LLaMA [57] Causal decoder 65B Pre RMSNorm RoPE SwiGLU × 80 64 8192 2048
LLaMA 2 [99] Causal decoder 70B Pre RMSNorm RePE SwiGLU × 80 64 8192 4096
Falcon [141] Causal decoder 40B Pre LayerNorm RoPE GeLU × 60 64 8192 2048
GLM-130B [93] Prefix decoder 130B Post DeepNorm RoPE GeGLU ✓ 70 96 12288 2048
T5 [82] Encoder-decoder 11B Pre RMSNorm Relative ReLU × 24 128 1024 512
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Fig. 9: A comparison of the attention patterns in three mainstream architectures. Here, the blue, green, yellow and grey
rounded rectangles indicate the attention between prefix tokens, attention between prefix and target tokens, attention
between target tokens, and masked attention respectively.

develop various LLMs, making it possible to scale language
models to hundreds or thousands of billions of parameters.
In general, the mainstream architectures of existing LLMs
can be roughly categorized into three major types, namely
encoder-decoder, causal decoder, and prefix decoder, as
shown in Figure 9.

Encoder-decoder Architecture. The vanilla Transformer
model is built on the encoder-decoder architecture [22],
which consists of two stacks of Transformer blocks as
the encoder and decoder, respectively. The encoder adopts
stacked multi-head self-attention layers to encode the input
sequence for generating its latent representations, while
the decoder performs cross-attention on these representa-
tions and autoregressively generates the target sequence.
Encoder-decoder PLMs (e.g., T5 [82] and BART [24]) have
shown effectiveness on a variety of NLP tasks. So far,
there are only a small number of LLMs that are built based
on the encoder-decoder architecture, e.g., Flan-T5 [69]. We
leave a detailed discussion about the architecture selection

in Section 4.2.6.

Causal Decoder Architecture. The causal decoder archi-
tecture incorporates the unidirectional attention mask, to
guarantee that each input token can only attend to the
past tokens and itself. The input and output tokens are
processed in the same fashion through the decoder. As
representative language models of this architecture, the
GPT-series models [26, 55, 122] are developed based on
the causal-decoder architecture. In particular, GPT-3 [55]
has successfully demonstrated the effectiveness of this ar-
chitecture, also showing an amazing in-context learning
capability of LLMs. Interestingly, GPT-1 [122] and GPT-
2 [26] do not exhibit such superior abilities as those in
GPT-3, and it seems that scaling plays an important role
in increasing the model capacity of this model architecture.
So far, the causal decoders have been widely adopted as
the architecture of LLMs by various existing LLMs, such
as OPT [90], BLOOM [78], and Gopher [64]. Note that both
the causal decoder and prefix decoder discussed next belong
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to decoder-only architectures. When mentioning “decoder-
only architecture”, it mainly refers to the causal decoder
architecture in existing literature, unless specified.

Prefix Decoder Architecture. The prefix decoder architec-
ture (a.k.a., non-causal decoder [244]) revises the masking
mechanism of causal decoders, to enable performing bidi-
rectional attention over the prefix tokens [245] and unidi-
rectional attention only on generated tokens. In this way,
like the encoder-decoder architecture, the prefix decoders
can bidirectionally encode the prefix sequence and autore-
gressively predict the output tokens one by one, where the
same parameters are shared during encoding and decoding.
Instead of pre-training from scratch, a practical suggestion
is to continually train causal decoders and then convert
them into prefix decoders for accelerating convergence [29],
e.g., U-PaLM [118] is derived from PaLM [56]. Existing rep-
resentative LLMs based on prefix decoders include GLM-
130B [93] and U-PaLM [118].

Mixture-of-Experts. For the above three types of archi-
tectures, we can further extend them via the mixture-of-
experts (MoE) scaling, in which a subset of neural network
weights for each input are sparsely activated, e.g., Switch
Transformer [25] and GLaM [112]. The major merit is that
MoE is a flexible way to scale up the model parameter while
maintaining a constant computational cost [25]. It has been
shown that substantial performance improvement can be
observed by increasing either the number of experts or the
total parameter size [246]. Despite the merits, training large
MoE models may suffer from instability issues due to the
complex, hard-switching nature of the routing operation.
To enhance the training stability of MoE-based language
models, techniques such as selectively using high-precision
tensors in the routing module or initializing the model with
a smaller range have been introduced [25]. More recently,
there is widespread speculation that GPT-4 has been devel-
oped based on the MoE architecture, but without official
verification.

Emergent Architectures. The conventional Transformer ar-
chitectures typically suffer from quadratic computational
complexity. Because of this, efficiency has become an im-
portant issue when training and making inference with
long inputs. To improve efficiency, some studies aim to
devise new architectures for language modeling, including
parameterized state space models (e.g., S4 [247], GSS [248],
and H3 [249]), long convolutions like Hyena [250], and
Transformer-like architectures that incorporate recursive up-
date mechanisms (e.g., RWKV [251] and RetNet [252]). The
key merits of these new architectures are twofold. First,
these models can generate outputs recursively like RNNs,
meaning that they only need to refer to the single previous
state during decoding. It makes the decoding process more
efficient as it eliminates the need to revisit all previous
states as in conventional Transformers. Second, these mod-
els have the capacity to encode an entire sentence in parallel
like Transformers. This contrasts with conventional RNNs
which has to encode sentences on a token-by-token basis.
Thus, they can benefit from the parallelism of GPUs with
techniques such as Parallel Scan [253, 254], FFT [250, 251],
and Chunkwise Recurrent [252]. These techniques enable

models with these new architectures to be trained in a highly
parallel and efficient manner.

4.2.2 Detailed Configuration

Since the launch of Transformer [22], various improvements
have been proposed to enhance its training stability, per-
formance, and computational efficiency. In this part, we
will discuss the corresponding configurations for four major
parts of the Transformer, including normalization, position
embeddings, activation functions, and attention and bias.
To make this survey more self-contained, we present the
detailed formulations for these configurations in Table 6.

Normalization Methods. Training instability is a challeng-
ing issue for pre-training LLMs. To alleviate this issue,
normalization is a widely adopted strategy to stabilize the
training of neural networks. In the vanilla Transformer [22],
LayerNorm [256] is employed. Recently, several advanced
normalization techniques have been proposed as alterna-
tives to LayerNorm, e.g., RMSNorm, and DeepNorm.
• LayerNorm. In the early research, BatchNorm [265] is

a commonly used normalization method. However, it is
difficult to deal with sequence data of variable lengths and
small-batch data. Thus, LayerNorm [256] is introduced to
conduct layerwise normalization. Specifically, the mean and
variance over all activations per layer are calculated to re-
center and re-scale the activations.
• RMSNorm. To improve the training speed of Lay-

erNorm (LN), RMSNorm [257] is proposed by re-scaling
the activations with only the root mean square (RMS) of
the summed activations, instead of the mean and variance.
Related research has demonstrated its superiority in training
speed and performance on Transformer [266]. Representa-
tive models that adopt RMSNorm include Gopher [64] and
Chinchilla [34].
• DeepNorm. DeepNorm is proposed by Microsoft [258]

to stabilize the training of deep Transformers. With Deep-
Norm as residual connections, Transformers can be scaled
up to 1,000 layers [258], which has shown the advantages
of stability and good performance. It has been adopted by
GLM-130B [93].

Normalization Position. In addition to the normalization
method, normalization position also plays a crucial role in
the LLMs. There are generally three choices for the normal-
ization position, i.e., post-LN, pre-LN, and sandwich-LN.
• Post-LN. Post-LN is used in the vanilla Trans-

former [22], which is placed between residual blocks. How-
ever, existing work has found that the training of Trans-
formers with post-LN tends to be instable due to the large
gradients near the output layer [267]. Thus, post-LN is rarely
employed in existing LLMs except combined with other
strategies (e.g., combining post-LN with pre-LN in GLM-
130B [93]).
• Pre-LN. Different from post-LN, pre-LN [268] is applied

before each sub-layer, and an additional LN is placed before
the final prediction. Compared with post-LN, the Trans-
formers with pre-LN are more stable in training. However,
it performs worse than the variants with post-LN [269].
Despite the decreasing performance, most LLMs still adopt
pre-LN due to the training stability. However, one excep-
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TABLE 6: Detailed formulations for the network configurations. Here, Sublayer denotes a FFN or a self-attention module
in a Transformer layer, d denotes the size of hidden states, pi denotes position embedding at position i, Aij denotes the
attention score between a query and a key, ri−j denotes a learnable scalar based on the offset between the query and the
key, and RΘ,t denotes a rotary matrix with rotation degree t ·Θ.

Configuration Method Equation

Normalization position
Post Norm [22] Norm(x+Sublayer(x))
Pre Norm [26] x+ Sublayer(Norm(x))

Sandwich Norm [255] x+Norm(Sublayer(Norm(x)))

Normalization method
LayerNorm [256] x−µ

σ
· γ + β, µ = 1

d

∑d
i=1 xi, σ =

√
1
d

∑d
i=1(xi − µ))2

RMSNorm [257] x
RMS(x)

· γ, RMS(x) =
√

1
d

∑d
i=1 x

2
i

DeepNorm [258] LayerNorm(α · x+ Sublayer(x))

Activation function

ReLU [259] ReLU(x) = max(x,0)

GeLU [260] GeLU(x) = 0.5x⊗ [1 + erf(x/
√
2)], erf(x) = 2√

π

∫ x
0 e−t2dt

Swish [261] Swish(x) = x⊗ sigmoid(x)
SwiGLU [262] SwiGLU(x1,x2) = Swish(x1)⊗ x2

GeGLU [262] GeGLU(x1,x2) = GeLU(x1)⊗ x2

Position embedding

Absolute [22] xi = xi + pi

Relative [82] Aij = Wqxix
T
j WT

k + ri−j

RoPE [263] Aij = WqxiRΘ,i−jx
T
j WT

k = (WqxiRΘ,i)(WkxjRΘ,j)
T

ALiBi [264] Aij = Wqxix
T
j WT

k −m(i− j)

tion is that pre-LN has been found unstable in GLM when
training models more than 100B parameters [93].
• Sandwich-LN. Based on pre-LN, Sandwich-LN [255]

adds extra LN before the residual connections to avoid
the value explosion issues in Transformer layer outputs.
However, it has been found that Sandwich-LN sometimes
fails to stabilize the training of LLMs and may lead to the
collapse of training [93].

Activation Functions. To obtain good performance, activa-
tion functions also need to be properly set in feed-forward
networks. In existing LLMs, GeLU activations [270] are
widely used. Specially, in the latest LLMs (e.g., PaLM and
LaMDA), variants of GLU activation [262, 271] have also
been utilized, especially the SwiGLU and GeGLU variants,
which often achieve better performance in practice [266].
However, compared with GeLU, they require extra parame-
ters (about 50%) in the feed-forward networks [272].

Position Embeddings. Since the self-attention modules in
Transformer are permutation equivariant, position embed-
dings (PE) are employed to inject absolute or relative posi-
tion information for modeling sequences.
• Absolute position embedding. In the vanilla Trans-

former [22], absolute position embeddings are employed.
At the bottoms of the encoder and the decoder, the absolute
positional embeddings are added to the input embeddings.
There are two variants of absolute position embeddings
proposed in the vanilla Transformer [22], i.e., sinusoidal and
learned position embeddings, where the latter is commonly
used in existing pre-trained language models.
• Relative position embedding. Unlike absolute position

embeddings, relative positional embeddings are generated
according to the offsets between keys and queries [273].
A popular variant of relative PE was introduced in
Transformer-XL [274, 275]. The calculation of attention
scores between keys and queries has been modified to
introduce learnable embeddings corresponding to relative
positions. T5 [82] further simplified relative positional em-

beddings, which was subsequently adopted by Gopher [64].
Specifically, it adds learnable scalars to the attention scores,
where the scalars are calculated based on the distances
between the positions of the query and the key. Compared
with the absolute PE, Transformers with relative position
embedding can generalize to sequences longer than those
sequences for training, i.e., extrapolation [264].
• Rotary Position Embedding. Rotary position embedding

(RoPE) [263] sets specific rotatory matrices based on the
absolute position of each key or query. The scores between
keys and queries can be computed with relative position
information (Table 6). RoPE combines each consecutive pair
of elements in query and key vectors as a dimension, so there
are d/2 dimensions for an original d-length embedding.
For each dimension i ∈ {1, . . . , d/2}, the pair of involved
elements will rotate based on the rotation angle t · θi, where
t denotes the position index and θi is the basis in the
dimension. Following sinusoidal position embeddings [22],
RoPE defines the basis θi as an exponentiation of the base b
(set to 10000 by default):

Θ = {θi = b−2(i−1)/d|i ∈ {1, 2, . . . , d/2}}. (4)

Furthermore, a recent study [276] defines the distance re-
quired to rotate one cycle (2π) for each dimension as wave-
length:

λi = 2πb2(i−1)/d = 2π/θi. (5)

Due to the excellent performance and the long-term decay
property, RoPE is widely adopted in the latest LLMs, e.g.,
PaLM [56] and LLaMA [57]. Based on RoPE, xPos [277] fur-
ther improves the translation invariance and length extrap-
olation of Transformer. At each dimension of the rotation
angle vector, xPos adds a special exponential decay that is
smaller when the basis is larger. It can alleviate the unstable
phenomenon during training as the distance increases.
• ALiBi. ALiBi [264] is proposed to improve the extrap-

olation of Transformer. Similar to relative position embed-
ding, it biases attention scores with a penalty based on the
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distances between keys and queries. Different from the rela-
tive positional embedding methods like T5 [82], the penalty
scores in ALiBi are pre-defined without any trainable pa-
rameters. Empirical results in [264] have shown that ALiBi
has a better extrapolation performance on sequences that are
longer than those for training than several popular position
embedding methods such as sinusoidal PE [22], RoPE [263],
and T5 bias [82]. In addition, it has been shown that ALiBi
can also improve training stability in BLOOM [78].

Attention. Attention mechanism is a critical component of
Transformer. It allows the tokens across the sequence to
interact with each other and compute the representations
of the input and output sequence.
• Full attention. In the vanilla Transformer [22], the atten-

tion mechanism is conducted in a pairwise way, considering
the relations between all token pairs in a sequence. It adopts
scaled dot-product attention, in which the hidden states
are mapped into queries, keys, and values. Additionally,
Transformer uses multi-head attention instead of single
attention, projecting the queries, keys, and values with
different projections in different heads. The concatenation
of the output of each head is taken as the final output.
• Sparse attention. A crucial challenge of full attention

is the quadratic computational complexity, which becomes
a burden when dealing with long sequences. Therefore,
various efficient Transformer variants are proposed to re-
duce the computational complexity of the attention mecha-
nism [278, 279]. For instance, locally banded sparse attention
(i.e., Factorized Attention [280] has been adopted in GPT-
3 [55]. Instead of the whole sequence, each query can only
attend to a subset of tokens based on the positions.
• Multi-query/grouped-query attention. Multi-query atten-

tion refers to the attention variant where different heads
share the same linear transformation matrices on the keys
and values [281]. It achieves higher inference speed with
only a minor sacrifice in model quality. Representative
models with multi-query attention include PaLM [56] and
StarCoder [98]. To make a trade-off between multi-query
attention and multi-head attention, grouped-query attention
(GQA) [282] has been explored. In GQA, heads are assigned
into different groups, and those heads that belong to the
same group will share the same transformation matrices.
Specially, GQA has been adopted and empirically tested in
the recently released LLaMA 2 model [99].
• FlashAttention. Different from most existing approx-

imate attention methods that trade-off model quality to
improve the computing efficiency, FlashAttention [283] pro-
poses to optimize the speed and memory consumption of
attention modules on GPUs from an IO-aware perspective.
There exist different levels of memory on modern GPUs,
e.g., SRAM with a fast IO and HBM with a relatively
slow IO. FlashAttention organizes the input into blocks and
introduces necessary recomputation, both to make better
use of the fast memory SRAM. Implemented as a fused
kernel in CUDA, FlashAttention has been integrated into
PyTorch [197], DeepSpeed [74], and Megatron-LM [75]. The
updated version FlashAttention-2 [284] further optimizes
the work partitioning of GPU thread blocks and warps, lead-
ing to around 2× speedup when compared to the original
FlashAttention.

• PagedAttention. It has been observed when LLM are
deployed on servers, GPU memory is largely occupied by
cached attention key and value tensors (called KV cache).
The major reason is that the input lengths are often varied,
leading to fragmentation and over-reservation issues. In-
spired by the classic paging technique in operating systems,
PagedAttention has been proposed to improve the memory
efficiency and throughput of deployed LLMs [285]. In detail,
PagedAttention partitions each sequence into subsequences,
and the corresponding KV caches of these subsequences are
allocated into non-contiguous physical blocks. The paging
technique increases the GPU utilization and enables efficient
memory sharing in parallel sampling.

To put all these discussions together, we summarize the
suggestions from existing literature for detailed configura-
tion. For stronger generalization and training stability, it is
suggested to choose the pre RMSNorm for layer normaliza-
tion, and SwiGLU or GeGLU as the activation function. In
addition, LN may not be used immediately after embedding
layers, which is likely to incur performance degradation. As
for position embeddings, RoPE or ALiBi is a better choice
since it performs better on long sequences.

4.2.3 Pre-training Tasks

Pre-training plays a key role that encodes general knowl-
edge from large-scale corpus into the massive model param-
eters. For training LLMs, there are two commonly used pre-
training tasks, namely language modeling and denoising
autoencoding.

Language Modeling. The language modeling task (LM) is
the most commonly used objective to pre-train decoder-only
LLMs, e.g., GPT3 [55] and PaLM [56]. Given a sequence of
tokens x = {x1, . . . , xn}, the LM task aims to autoregres-
sively predict the target tokens xi based on the preceding
tokens x<i in a sequence. A general training objective is to
maximize the following likelihood:

LLM (x) =
n∑

i=1

logP (xi|x<i). (6)

Since most language tasks can be cast as the prediction
problem based on the input, these decoder-only LLMs might
be potentially advantageous to implicitly learn how to ac-
complish these tasks in a unified LM way. Some studies
have also revealed that decoder-only LLMs can be naturally
transferred to certain tasks by autoregressively predicting
the next tokens [26, 55], without fine-tuning. An important
variant of LM is the prefix language modeling task, which is
designed for pre-training models with the prefix decoder
architecture. The tokens within a randomly selected prefix
would not be used in computing the loss of prefix language
modeling. With the same amount of tokens seen during pre-
training, prefix language modeling performs slightly worse
than language modeling, since fewer tokens in the sequence
are involved for model pre-training [29].

Denoising Autoencoding. In addition to conventional
LM, the denoising autoencoding task (DAE) has also been
widely used to pre-train language models [24, 82]. The
inputs x\x̃ for DAE task are corrupted text with randomly
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I am sleepy. I start a pot of

coffee 0.661 strong 0.008 soup 0.005
water 0.119 black 0.008 . . . . . .
tea 0.057 hot 0.007 happy 4.3e-6
rice 0.017 oat 0.006 Boh 4.3e-6
chai 0.012 beans 0.006 . . . . . .

Fig. 10: The probability distribution over the vocabulary in
descending order for the next token of the context “I am
sleepy. I start a pot of ”. For ease of discussion, this example is
given in word units instead of subword units.

replaced spans. Then, the language models are trained to re-
cover the replaced tokens x̃. Formally, the training objective
of DAE is denoted as follows:

LDAE(x) = logP (x̃|x\x̃). (7)

However, the DAE task seems to be more complicated
in implementation than LM task. As a result, it has not
been widely used to pre-train large language models. Exist-
ing LLMs that take DAE as pre-training objectives include
T5 [82] and GLM-130B [93]. These models are mainly trained
to recover the replaced spans in an autoregressive way.

Mixture-of-Denoisers. Mixture-of-Denoisers (MoD) [89],
also known as UL2 loss, was introduced as a unified ob-
jective for pre-training language models. MoD regards both
LM and DAE objectives as different types of denoising tasks,
namely S-denoiser (LM), R-denoiser (DAE, short span and
low corruption), and X-denoiser (DAE, long span or high
corruption). Among the three denoising tasks, S-denoiser
is similar to the conventional LM objective (Equation (6)),
while R-denoiser and X-denoiser are similar to DAE ob-
jectives (Equation (7)) but differ from each other in the
lengths of spans and ratio of corrupted text. For input sen-
tences started with different special tokens (i.e., {[R], [S],
[X]}), the model will be optimized using the corresponding
denoisers. MoD has been applied in the latest PaLM 2
model [120].

4.2.4 Long Context Modeling
In real applications, there is an increasing demand for long
context modeling capacities of LLMs, such as PDF pro-
cessing and story writing [286]. Many closed-source LLMs
provide professional support for long text processing. For
instance, OpenAI releases GPT-4 Turbo with a 128K context
window, and Anthropic releases Claude 2.1 with a 200K
context window. To enhance the long context modeling
abilities, there are generally two feasible directions, namely
scaling position embeddings and adapting context window.
Next, we introduce the two parts in detail.

Scaling Position Embeddings. Transformer-based LLMs
can learn effective position embeddings within the maxi-
mum training length. Thus, when adapting LLMs to lan-
guage tasks beyond the maximum training length, it is
necessary to scale to larger position indices. Some specific
position embeddings have been shown to possess a certain
degree of ability to generalize to text beyond the training
length, which is formally termed extrapolation capability,

including T5 bias [82], ALiBi [264], xPos [277] and even
NoPE [287]. However, as one of the mainstream position
embedding methods, RoPE exhibits limited extrapolation
ability in empirical studies [240]. In the following, we dis-
cuss several methods that can scale RoPE to longer texts.
• Direct model fine-tuning. To adapt LLMs to a long con-

text window, a straightforward approach is to directly fine-
tune the models on long texts with the desired length. The
context extension can be scheduled with increased lengths
in a multi-stage approach (e.g., 2K→ 8K→ 32K). To conduct
effective extension, it needs specially prepared long texts
for training. Specially, some recent study has shown that
the quality is more important than the lengths of training
text in long context models [288]. However, a recent study
has highlighted that the fine-tuning approach tends to be
inherently slow when adapting LLMs for long texts [240].
• Position interpolation. This method downscales the po-

sition indices within the original context window, to avoid
out-of-distribution rotation angles during pre-training [240,
289]. To be more specific, this approach multiplies all posi-
tion indices by a coefficient L/L′ (L < L′), where L and
L′ represent the original and target context window length,
respectively. Experimental results [240] have shown that
this method can extend the context window effectively and
efficiently, compared to the above approach of direct model
fine-tuning. However, it is worth noting that this technique
may have an adverse impact on the model’s performance
when handling shorter texts[240, 290].
• Position truncation. To mitigate the challenges posed

by out-of-distribution rotation angles, another practical ap-
proach is to truncate longer relative positions to satisfy the
requirement of the maximum training length. Specifically,
ReRoPE and LeakyReRoPE [291] introduce a pre-defined
window length, which is smaller than the maximum train-
ing length. Position indices within this pre-defined window
are retained, while those indices beyond the window are
either truncated to the pre-defined window length or in-
terpolated to align with the maximum training length. This
strategy can reserve local position relationships and enhance
the extrapolation capacity. However, this approach needs
to compute the attention matrices twice, accommodating
additional computational budget.
• Base modification. LLMs are usually trained with a pre-

set maximum training length, e.g., 4096 in Llama 2 [99].
However, wavelengths in certain dimensions of RoPE may
exceed the training length for longer text [276], so that
language models have not undergone sufficient training
(i.e., a complete rotation cycle) on these dimensions. Thus,
when we adapt LLMs to longer texts, the rotation angles
for certain dimensions would be never seen in the training
phase [292]. Given a fixed rotation angle t·θi, a smaller basis
θi allows for a greater distance t, i.e., enabling the modeling
of longer texts [235, 276, 288]. According to the formula
θi = b−2(i−1)/d in Equation 4, decreasing the basis can be
achieved by increasing the value of the base. In addition,
decreasing the base can also help re-scale the wavelengths
of all dimensions below the training length, while it often
needs continual pre-training to adapt the LLMs to long
context windows [292]. A recent study [292] has empirically
compared these two base modification methods, and shown
that decreasing the base demonstrates a better extrapolation
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capacity beyond the training length, while increasing the
base performs better within the training length.
• Basis truncation. Similar to the base modification, the

truncation of the basis also concentrates on dealing with
the singular dimensions with wavelengths exceeding the
training length [293]. According to the definition λi = 2π/θi
in Equation 5, the dimension with a large wavelength λi

has a small basis θi accordingly. Based on this observation,
this approach first defines a basis range [a, c]. Given the
basis range, the value of basis is modified according to the
following ways: (1) when θi ≥ c, the value is retained,
(2) when θi ≤ a, the value is set to zero, and (3) when
a < θi < c, the value is truncated to a fixed small
value. Via basis truncation, the out-of-distribution rotation
angles can be avoided at larger position indices. However,
this approach does not perform very well at long context
tasks [293].

Adapting Context Window. Since Transformer-based LLMs
have limited context windows, they can not directly inte-
grate or utilize the entire information of the long sequences
exceeding the context window. To alleviate the limitation,
several methods adapting LLMs to long context have been
proposed, as discussed below.
• Parallel context window. Inspired by fusion-in-

decoder [294], parallel context window methods [295, 296]
adopt a divide-and-conquer strategy to process input text.
Specially, it divides the input text into multiple segments,
each independently encoded with shared position embed-
dings. In the generation stage, the attention masks are mod-
ified to make that subsequent tokens can access to previous
tokens in each segment. Nevertheless, this method cannot
distinguish the order of different segments, constraining the
model capacity on certain tasks.
• Λ-shaped context window. Some prior work has revealed

that LLMs tend to allocate greater attention weights to
the starting and nearest tokens among all previous to-
kens [297, 298], so called the “lost in the middle” phe-
nomenon [299]. Based on this observation, LM-Infinite [300]
and StreamingLLM [298] propose to employ a “Λ-shaped”
attention mask, which selectively preserves the initial tokens
and the nearest tokens that each query can attend to and
then discards any tokens beyond this scope. Experiments
demonstrate that this method can facilitate extra-long text
generation with a fixed memory [298]. However, it may
struggle to model the long-range dependency in prompts,
since it cannot effectively utilize the information from the
discarded tokens [298].
• External memory. It has been shown that a relatively

small subset of tokens can effectively capture the majority
of attention patterns in a Transformer [301], i.e., the top-
k attention keys can well approximate the original full
attention. Therefore, a number of studies propose to store
the past keys in external memory and utilize a k-NN
search method to retrieve the k most relevant tokens for
generation [238, 301, 302]. For a decoder model, it typically
employs one certain layer to access these top-k external
tokens, while still adopts the normal context window in the
rest layers [238, 302].

In addition to the studies based on vanilla Transformer,
there are a surge of Transformer variants with efficient at-

tentions and other efficient architectures, aiming to alleviate
high computational cost for modeling long texts. These
studies have been extensively discussed in Section 4.2.1
and Section 4.2.2. Furthermore, context compression and
prompting techniques (e.g., iterative reasoning [303]) have
also been proven to be a viable strategy for handling long
text tasks [303–306], without the need of model adaption.

4.2.5 Decoding Strategy

After the LLMs have been pre-trained, it is essential to em-
ploy a specific decoding strategy to generate the appropriate
output from the LLMs.

Background. We start the discussion with the prevalent
decoder-only architecture, and introduce the auto-regressive
decoding mechanism. Since such LLMs are pre-trained
based on the language modeling task (Equation 6), a basic
decoding method is greedy search that predicts the most
likely token at each step based on the previously generated
tokens, formally modeled as:

xi = argmax
x

P (x|x<i), (8)

where xi is the token with the highest probability at i-
th step of generation conditioned on the context x<i. For
instance in Figure 10, when predicting the next token of
the sentence “I am sleepy. I start a pot of”, greedy search
selects the token “coffee” which has the highest probability
at the current step. Greedy search can achieve satisfactory
results in text generation tasks (e.g., machine translation
and text summarization), in which the output is highly
dependent on the input [307]. However, in terms of open-
ended generation tasks (e.g., story generation and dialog),
greedy search sometimes tends to generate awkward and
repetitive sentences [308].

As another alternative decoding strategy, sampling-
based methods are proposed to randomly select the next
token based on the probability distribution to enhance the
randomness and diversity during generation:

xi ∼ P (x|x<i). (9)

For the example in Figure 10, sampling-based methods will
sample the word “coffee” with higher probability while
also retaining the possibilities of selecting the rest words,
“water”, “tea”, “rice”, etc.

Not limited to the decoder-only architecture, these two
decoding methods can be generally applied to encoder-
decoder models and prefix decoder models in a similar way.

Improvement for Greedy Search. Selecting the token with
the highest probability at each step may result in overlook-
ing a sentence with a higher overall probability but a lower
local estimation. Next, we introduce several improvement
strategies to alleviate this issue.
• Beam search. Beam search [309] retains the sentences

with the n (beam size) highest probabilities at each step
during the decoding process, and finally selects the gener-
ated response with the top probability. Typically, the beam
size is configured within the range of 3 to 6. However,
opting for a larger beam size might result in a decline in
performance [310].



28

• Length penalty. Since beam search favours shorter sen-
tences, imposing length penalty (a.k.a., length normaliza-
tion) is a commonly used technique [311] to overcome this
issue, which normalizes the sentence probability according
to the sentence length (divided by an exponential power α
of the length).

Besides, some researchers [312] propose to penalize the
generation of previously generated tokens or n-grams to
alleviate the issue of repetitive generation. In addition,
diverse beam search [313] can be leveraged to produce a
set of diverse outputs based on the same input.

Improvement for Random Sampling. Sampling-based
methods sample the token over the whole vocabulary, which
may select wrong or irrelevant tokens (e.g., “happy” and
“Boh” in Figure 10) based on the context. To improve the
generation quality, several strategies have been proposed
for mitigating or preventing the selection of words with
exceedingly low probabilities.
• Temperature sampling. To modulate the randomness of

sampling, a practical method is to adjust the temperature
coefficient of the softmax function for computing the proba-
bility of the j-th token over the vocabulary:

P (xj |x<i) =
exp (lj/t)∑
j′ exp (lj′/t)

, (10)

where lj′ is the logits of each word and t is the temperature
coefficient. Reducing the temperature t increases the chance
of selecting words with high probabilities while decreases
the chances of selecting words with low probabilities. When
t is set to 1, it becomes the default random sampling; when
t is approaching 0, it is equivalent to greedy search. In
addition, when t goes to infinity, it degenerates to uniform
sampling.
• Top-k sampling. Different from temperature sampling,

top-k sampling directly truncates the tokens with lower
probability and only samples from the tokens with the top
k highest probabilities [314]. For example in Figure 10, top-
5 sampling will sample from the words “coffee”, “water”,
“tea”, “rice”, and “chai” from their re-scaled probabilities.
• Top-p sampling. Since top-k sampling does not consider

the overall possibility distribution, a constant value of k may
be not be suitable for different contexts. Therefore, top-p
sampling (a.k.a., nucleus sampling) is proposed by sampling
from the smallest set having a cumulative probability above
(or equal to) p [308]. In practice, the smallest set can be con-
structed by gradually adding tokens from the vocabulary
sorted in descending order of generative probability, until
their cumulative value exceeds p.

Recently, researchers have also explored other sampling
strategies for LLMs. For instance, η-sampling [315] further
improves top-p sampling by introducing a dynamic thresh-
old based on the probability distribution. Furthermore, con-
trastive search [316] and typical sampling [317] can be utilized
to improve the generation coherence during decoding. Since
it has been found that large models tend to assign higher
probability to important tokens compared to small models,
contrastive decoding [318] utilizes a larger LM (e.g., OPT-
13B) and a smaller LM (e.g., OPT-125M) to measure their
log-likelihood differences. Subsequently, tokens are sampled
based on the delta value of the probability distribution,

thereby amplifying the impact of important tokens. Based
on this contrastive idea, DoLa [319] further extends this
approach to contrasting the logits across different layers of
a single LLM, as higher layers tend to assign more weight
to important tokens.

Memory Wall

When generating a new token, the most time-
consuming steps revolve around data transfer and
weight computation. A main issue is the significant
amount of time overwhelmed by data transfer, of-
ten referred to as the memory wall issue.

To address this issue, researchers formally quantify
data transfer from GPU memory to GPU caches
using the number of bytes in I/O, and they assess
weight computation by measuring the number of
FLOPs [320]. Specifically, let b, s, n, d, and h denote
the batch size, sequence length, number of attention
heads, hidden size of each head, and overall hidden
size (h = n · d), respectively. During the layer-
wise multi-head self-attention calculation in causal
decoder, the I/O bytes and FLOPs at each decoding
step can be expressed as 8bsn + 4bsnd + 4bnd and
8bsnd, respectively [320].

Arithmetic intensity is further defined as the ratio of
FLOPs to I/O bytes:

intensity =
FLOPs

I/O bytes
=

2

1 + 2
d + 1

s

(11)

Let’s consider LLaMA 13B (d = 128) with a se-
quence length of 1024 (s = 1024) as an example.
The calculated arithmetic intensity is 1.97. How-
ever, the A100 80G GPU can perform 312 TFLOPs
and transfer 2 TB of data in one second, i.e., its ideal
arithmetic intensity is 156. This indicates that the
bottleneck in attention calculation lies in the process
of data transfer (i.e., excessive I/O loading).

Decoding Efficiency Issues. In this part, we briefly ana-
lyze the decoding efficiency issues of LLMs. Overall, the
decoding process of LLMs can be divided into two stages
for overhead analysis: (1) the prefill stage, which computes
the hidden states of the input sequence, and (2) the incre-
mental decoding stage, which generates a token and updates
hidden states in an auto-regressive manner [321]. As shown
in the above memory wall box, the arithmetic intensity of
the incremental decoding stage is only 1.97, which is far
from the expected value of 156 (calculated according to
the standard configuration of A100 80GB GPU). In contrast,
the arithmetic intensity of the prefill stage achieves 113.78
for LLaMA-13B. Consequently, existing work mainly inves-
tigates how to enhance the efficiency of the incremental
decoding algorithm, which can be categorized into two
main approaches:
• Reducing data transfer mainly focuses on optimizing

GPU memory access, thereby increasing the arithmetic in-
tensity. As introduced in Section 4.2.2, KV cache can avoid
redundant computation of previous tokens and PagedAt-
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tention allocates KV caches into continuous blocks to reduce
memory fragmentation. Furthermore, Flash-Decoding [322]
speeds up attention computation by loading the keys and
values in parallel, especially effective for long text gen-
eration. As another alternative approach, multi-query and
grouped-query attention can reduce the GPU memory band-
width overhead by sharing KV parameters (loading fewer
weights).
• Decoding strategy optimization aims to improve the se-

quential nature of the auto-regressive generation manner in
different ways. As a representative study, speculative decod-
ing [323, 324] first leverages a compact but efficient model
(e.g., a n-gram model or a small PLM) to generate short
segments and then utilizes the LLM to verify and correct
these drafts. It can lead to a notable 2× to 3× speedup
without compromising the generation quality. Researchers
further suggest several variants to improve the efficiency of
this approach, such as a learning-based method to combine
several small models [325] and a stage-wise acceleration
which employs a more smaller LM to accelerate the small
LM first [326]. In addition, token-level early-exit techniques
have been proposed enabling the generation of a token at
lower Transformer layers, rather than passing through all
the layers [327]. It can attain greater speedup, but at the cost
of sacrificing generation quality.

Practical Settings. In practice, existing libraries (e.g., Trans-
formers [187]) and public APIs of LLMs (e.g., OpenAI) have
supported various decoding strategies to serve different
scenarios of text generation. Next, we present the decoding
settings of several representative LLMs:
• T5 [82] utilizes greedy search as the default setting and

applies beam search (beam size of 4) with a length penalty
of 0.6 for translation and summarization tasks.
• GPT-3 [55] employs beam search with a beam size of 4

and a length penalty of 0.6 for all generation tasks.
• Alpaca [142] utilizes sampling-based strategies with

top-k (k = 50), top-p (p = 0.9), and temperature of 0.7 for
open-ended generation.
• LLaMA [57] applies diverse decoding strategies tai-

lored to specific tasks. For instance, it employs the greedy
search for question answering tasks while utilizes a sam-
pling strategy with the temperature settings of 0.1 (pass@1)
and 0.8 (pass@100) for code generation.
• OpenAI API supports several basic decoding strate-

gies, including greedy search (by setting temperature to
0), beam search (with the setting best_of), temperature
sampling (with the setting temperature), nucleus sam-
pling (with the setting top_p). It also introduce param-
eters presence_penalty and frequency_penalty to
control the repetition degree of generation. According to
the OpenAI’s document, their APIs would produce different
outputs even if the input and the hyper-parameters are the
same. Setting temperature to 0 can yield more deterministic
outputs, albeit with a slight chance of variability.

4.2.6 Summary and Discussion
The choice of architecture and pre-training tasks may incur
different inductive biases for LLMs, which would lead to
different model capacities. In this part, we discuss one open
issue about the architecture choice for LLMs.

Why does Predicting the Next Word Works?

The essence of decoder-only architecture is to
accurately predict the next word for reconstructing
the pre-training data. Till now, there has been no
formal study that theoretically demonstrates its
advantage over other architectures. An interesting
explanation was from Ilya Sutskever during the
interview held by Jensen Huanga. The original
transcript from the interview was copied belowb:

Say you read a detective novel. It’s
like complicated plot, a storyline,
different characters, lots of events,
mysteries like clues, it’s unclear.
Then, let’s say that at the last
page of the book, the detective has
gathered all the clues, gathered
all the people and saying, "okay,
I’m going to reveal the identity of
whoever committed the crime and that
person’s name is". Predict that word.
...
Now, there are many different words.
But predicting those words better and
better, the understanding of the text
keeps on increasing. GPT-4 predicts
the next word better.

a. https://www.nvidia.com/en-us/on-
demand/session/gtcspring23-S52092/

b. https://lifearchitect.ai/ilya/

Architecture Choice. In earlier literature of pre-trained lan-
guage models, there are lots of discussions on the effects
of different architectures [29, 89]. However, most LLMs are
developed based on the causal decoder architecture, and
there still lacks a theoretical analysis on its advantage over
the other alternatives. Next, we briefly summarize existing
discussions on this issue.
• By pre-training with the LM objective, it seems that

causal decoder architecture can achieve a superior zero-
shot and few-shot generalization capacity. Existing research
has shown that without multi-task fine-tuning, the causal
decoder has better zero-shot performance than other archi-
tectures [29]. The success of GPT-3 [55] has demonstrates
that the large causal decoder model can be a good few-
shot learner. In addition, instruction tuning and alignment
tuning discussed in Section 5 have been proven to fur-
ther enhance the capability of large causal decoder mod-
els [66, 67, 69].
• Scaling law has been widely observed in causal de-

coders. By scaling the model size, the dataset size, and
the total computation, the performance of causal decoders
can be substantially improved [30, 55]. Thus, it has become
an important strategy to increase the model capacity of
the causal decoder via scaling. However, more detailed
investigation on encoder-decoder models is still lacking, and
more efforts are needed to investigate the performance of
encoder-decoder models at a large scale.

More research efforts about the discussions on architec-
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tures and pre-training objectives are in need to analyze how
the choices of the architecture and pre-training tasks affect
the capacity of LLMs, especially for encoder-decoder archi-
tectures. Despite the effectiveness of decoder-only architec-
ture, it is also suggested to make more diverse exploration
on architecture design. Besides the major architecture, the
detailed configuration of LLM is also worth attention, which
has been discussed in Section 4.2.2.

4.3 Model Training
In this part, we review the important settings, techniques,
or tricks for training LLMs.

4.3.1 Optimization Setting
For parameter optimization of LLMs, we present the com-
monly used settings for batch training, learning rate, opti-
mizer, and training stability.

Batch Training. For language model pre-training, existing
work generally sets the batch size to a large number (e.g.,
2,048 examples or 4M tokens) to improve the training
stability and throughput. For LLMs such as GPT-3 and
PaLM, they have introduced a new strategy that dynam-
ically increases the batch size during training, ultimately
reaching a million scale. Specifically, the batch size of GPT-3
is gradually increasing from 32K to 3.2M tokens. Empirical
results have demonstrated that the dynamic schedule of
batch size can effectively stabilize the training process of
LLMs [56].

Learning Rate. Existing LLMs usually adopt a similar learn-
ing rate schedule with the warm-up and decay strategies
during pre-training. Specifically, in the initial 0.1% to 0.5%
of the training steps, a linear warm-up schedule is employed
for gradually increasing the learning rate to the maximum
value that ranges from approximately 5× 10−5 to 1× 10−4

(e.g., 6 × 10−5 for GPT-3). Then, a cosine decay strategy
is adopted in the subsequent steps, gradually reducing the
learning rate to approximately 10% of its maximum value,
until the convergence of the training loss.

Optimizer. The Adam optimizer [328] and AdamW opti-
mizer [329] are widely utilized for training LLMs (e.g., GPT-
3), which are based on adaptive estimates of lower-order
moments for first-order gradient-based optimization. Com-
monly, its hyper-parameters are set as follows: β1 = 0.9,
β2 = 0.95 and ϵ = 10−8. Meanwhile, the Adafactor op-
timizer [330] has also been utilized in training LLMs (e.g.,
PaLM and T5), which is a variant of the Adam optimizer
specially designed for conserving GPU memory during
training. The hyper-parameters of the Adafactor optimizer
are set as: β1 = 0.9 and β2 = 1.0 − k−0.8, where k denotes
the number of training steps.

Stabilizing the Training. During the pre-training of LLMs,
it often suffers from the training instability issue, which
may cause the model collapse. To address this issue, weight
decay and gradient clipping have been widely utilized,
where existing studies [55, 78, 90, 93, 113] commonly set
the threshold of gradient clipping to 1.0 and weight decay
rate to 0.1. However, with the scaling of LLMs, the training
loss spike is also more likely to occur, leading to unstable

training. To mitigate this problem, PaLM [56] and OPT [90]
use a simple strategy that restarts the training process from
an earlier checkpoint before the occurrence of the spike and
skips over the data that may have caused the problem.
Further, GLM [93] finds that the abnormal gradients of the
embedding layer usually lead to spikes, and proposes to
shrink the embedding layer gradients to alleviate it.

4.3.2 Scalable Training Techniques

As the model and data sizes increase, it has become chal-
lenging to efficiently train LLMs under a limited compu-
tational resource. Especially, two primary technical issues
are required to be resolved, i.e., increasing training through-
put and loading larger models into GPU memory. In this
part, we review several widely used approaches in existing
work to address the above two challenges, namely 3D
parallelism [75, 331, 332], ZeRO [333], and mixed precision
training [334], and also give general suggestions about how
to utilize them for training.

3D Parallelism. 3D parallelism is actually a combination of
three commonly used parallel training techniques, namely
data parallelism, pipeline parallelism [331, 332], and tensor
parallelism [75]24. We next introduce the three parallel train-
ing techniques.
• Data parallelism. Data parallelism is one of the most

fundamental approaches to improving the training through-
put. It replicates the model parameters and optimizer states
across multiple GPUs and then distributes the whole train-
ing corpus into these GPUs. In this way, each GPU only
needs to process the assigned data for it, and performs
the forward and backward propagation to obtain the gra-
dients. The computed gradients on different GPUs will be
further aggregated to obtain the gradients of the entire batch
for updating the models in all GPUs. In this way, as the
calculations of gradients are independently performed on
different GPUs, the data parallelism mechanism is highly
scalable, enabling the way that increases the number of
GPUs to improve training throughput. Furthermore, this
technique is simple in implementation, and most of existing
popular deep learning libraries have already implemented
data parallelism, such as TensorFlow and PyTorch.
• Pipeline parallelism. Pipeline parallelism aims to dis-

tribute the different layers of a LLM into multiple GPUs.
Especially, in the case of a Transformer model, pipeline
parallelism loads consecutive layers onto the same GPU, to
reduce the cost of transmitting the computed hidden states
or gradients between GPUs. However, a naive implemen-
tation of pipeline parallelism may result in a lower GPU
utilization rate as each GPU has to wait for the previous
one to complete the computation, leading to the unneces-
sary cost of bubbles overhead [331]. To reduce these bubbles
in pipeline parallelism, GPipe [331] and PipeDream [332]
propose the techniques of padding multiple batches of data
and asynchronous gradient update to improve the pipeline
efficiency.
• Tensor parallelism. Tensor parallelism is also a com-

monly used technique that aims to decompose the LLM for

24. Model parallelism is a more broader term that includes tensor
parallelism and pipeline parallelism in some work [75].
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TABLE 7: Detailed optimization settings of several existing LLMs.

Model Batch Size
(#tokens)

Learning
Rate Warmup Decay Method Optimizer Precision

Type
Weight
Decay

Grad
Clip Dropout

GPT3 (175B) 32K→3.2M 6× 10−5 yes cosine decay to 10% Adam FP16 0.1 1.0 -
PanGu-α (200B) - 2× 10−5 - - Adam - 0.1 - -
OPT (175B) 2M 1.2× 10−4 yes manual decay AdamW FP16 0.1 - 0.1
PaLM (540B) 1M→4M 1× 10−2 no inverse square root Adafactor BF16 lr2 1.0 0.1
BLOOM (176B) 4M 6× 10−5 yes cosine decay to 10% Adam BF16 0.1 1.0 0.0
MT-NLG (530B) 64 K→3.75M 5× 10−5 yes cosine decay to 10% Adam BF16 0.1 1.0 -
Gopher (280B) 3M→6M 4× 10−5 yes cosine decay to 10% Adam BF16 - 1.0 -
Chinchilla (70B) 1.5M→3M 1× 10−4 yes cosine decay to 10% AdamW BF16 - - -
Galactica (120B) 2M 7× 10−6 yes linear decay to 10% AdamW - 0.1 1.0 0.1
LaMDA (137B) 256K - - - - BF16 - - -
Jurassic-1 (178B) 32 K→3.2M 6× 10−5 yes - - - - - -
LLaMA (65B) 4M 1.5× 10−4 yes cosine decay to 10% AdamW - 0.1 1.0 -
LLaMA 2 (70B) 4M 1.5× 10−4 yes cosine decay to 10% AdamW - 0.1 1.0 -
Falcon (40B) 2M 1.85× 10−4 yes cosine decay to 10% AdamW BF16 0.1 - -
GLM (130B) 0.4M→8.25M 8× 10−5 yes cosine decay to 10% AdamW FP16 0.1 1.0 0.1
T5 (11B) 64K 1× 10−2 no inverse square root AdaFactor - - - 0.1
ERNIE 3.0 Titan (260B) - 1× 10−4 - - Adam FP16 0.1 1.0 -
PanGu-Σ (1.085T) 0.5M 2× 10−5 yes - Adam FP16 - - -

multi-GPU loading. Unlike pipeline parallelism, tensor par-
allelism focuses on decomposing the tensors (the parameter
matrices) of LLMs. For a matrix multiplication operation
Y = XA in the LLM, the parameter matrix A can be
split into two submatrices, A1 and A2, by column, which
can be expressed as Y = [XA1, XA2]. By placing matrices
A1 and A2 on different GPUs, the matrix multiplication
operation would be invoked at two GPUs in parallel, and
the final result can be obtained by combining the outputs
from the two GPUs through across-GPU communication.
Currently, tensor parallelism has been supported in several
open-source libraries, e.g., Megatron-LM [75], and can be
extended to higher-dimensional tensors. Also, Colossal-AI
has implemented tensor parallelism for higher-dimensional
tensors [335–337] and proposed sequence parallelism [338]
especially for sequence data, which can further decompose
the attention operation of the Transformer model.

ZeRO. ZeRO [333] technique, proposed by the Deep-
Speed [74] library, focuses on the issue of memory re-
dundancy in data parallelism. As mentioned before, data
parallelism requires each GPU to store the same copy of
a LLM, including model parameters, model gradients, and
optimizer parameters. Whereas, not all of the above data is
necessary to be retained on each GPU, which would cause
a memory redundancy problem. To resolve it, the ZeRO
technique aims to retain only a fraction of data on each
GPU, while the rest data can be retrieved from other GPUs
when required. Specifically, ZeRO provides three solutions,
depending on how the three parts of the data are stored,
namely optimizer state partitioning, gradient partitioning,
and parameter partitioning. Empirical results indicate that
the first two solutions do not increase the communication
overhead, and the third solution increases about 50% com-
munication overhead but saves memory proportional to
the number of GPUs. PyTorch has implemented a similar
technique as ZeRO, called FSDP [339].

Mixed Precision Training. In previous PLMs (e.g.,
BERT [23]), 32-bit floating-point numbers, also known as
FP32, have been predominantly used for pre-training. In
recent years, to pre-train extremely large language models,

some studies [334] have started to utilize 16-bit floating-
point numbers (FP16), which reduces memory usage and
communication overhead. Additionally, as popular NVIDIA
GPUs (e.g., A100) have twice the amount of FP16 computa-
tion units as FP32, the computational efficiency of FP16 can
be further improved. However, existing work has found that
FP16 may lead to the loss of computational accuracy [64, 78],
which affects the final model performance. To alleviate it, an
alternative called Brain Floating Point (BF16) has been used
for training, which allocates more exponent bits and fewer
significant bits than FP16. For pre-training, BF16 generally
performs better than FP16 on representation accuracy [78].

Overall Training Suggestion. In practice, the above train-
ing techniques, especially 3D parallelism, are often jointly
used to improve the training throughput and large model
loading. For instance, researchers have incorporated 8-way
data parallelism, 4-way tensor parallelism, and 12-way
pipeline parallelism, enabling the training of BLOOM [78]
on 384 A100 GPUs. Currently, open-source libraries like
DeepSpeed [74], Colossal-AI [189], and Alpa [340] can well
support the three parallel training methods. To reduce the
memory redundancy, ZeRO, FSDP, and activation recom-
putation techniques [77, 341] can be also employed for
training LLMs, which have already been integrated into
DeepSpeed, PyTorch, and Megatron-LM. In addition, the
mixed precision training technique such as BF16 can be
also leveraged to improve the training efficiency and reduce
GPU memory usage, while it requires necessary support on
hardware (e.g., A100 GPU). Because training large models is
a time-intensive process, it would be useful to forecast the
model performance and detect abnormal issues at an early
stage. For this purpose, GPT-4 [46] has recently introduced
a new mechanism called predictable scaling built on a deep
learning stack, enabling the performance prediction of large
models with a much smaller model, which might be quite
useful for developing LLMs. In practice, one can further
leverage the supporting training techniques of mainstream
deep learning frameworks. For instance, PyTorch supports
the data parallel training algorithm FSDP [339] (i.e., fully
sharded data parallel), which allows for partial offloading
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of training computations to CPUs if desired.

5 ADAPTATION OF LLMS

After pre-training, LLMs can acquire the general abilities
for solving various tasks. However, an increasing number
of studies have shown that LLM’s abilities can be further
adapted according to specific goals. In this section, we
introduce two major approaches to adapting pre-trained
LLMs, namely instruction tuning and alignment tuning. The
former approach mainly aims to enhance (or unlock) the
abilities of LLMs, while the latter approach aims to align the
behaviors of LLMs with human values or preferences. Fur-
ther, we will also discuss efficient tuning and quantization
for model adaptation in resource-limited settings. In what
follows, we will introduce the four parts in detail.

5.1 Instruction Tuning
In essence, instruction tuning is the approach to fine-tuning
pre-trained LLMs on a collection of formatted instances in
the form of natural language [67], which is highly related
to supervised fine-tuning [66] and multi-task prompted
training [28]. In order to perform instruction tuning, we first
need to collect or construct instruction-formatted instances.
Then, we employ these formatted instances to fine-tune
LLMs in a supervised learning way (e.g., training with the
sequence-to-sequence loss). After instruction tuning, LLMs
can demonstrate superior abilities to generalize to unseen
tasks [28, 67, 69], even in a multilingual setting [94].

A recent survey [342] presents a systematic overview
of the research on instruction tuning. In comparison to
that, we mainly focus on the effect of instruction tuning
on LLMs and provide detailed guidelines or strategies for
instance collection and tuning. In addition, we also discuss
the use of instruction tuning for satisfying the real needs of
users, which has been widely applied in existing LLMs, e.g.,
InstructGPT [66] and GPT-4 [46].

5.1.1 Formatted Instance Construction
Generally, an instruction-formatted instance consists of a
task description (called an instruction), an optional input,
the corresponding output, and a small number of demon-
strations (optional). As important public resources, existing
studies have released a large number of labeled data format-
ted in natural language (see the list of available resources in
Table 3) as introduced in Section 3.3.1. Next, we introduce
three major methods for constructing formatted instances
(see an illustration in Figure 11) and then discuss several
key factors for instance construction.

Formatting NLP Task Datasets. Before instruction tuning
was proposed, several early studies [168, 343, 344] collected
the instances from a diverse range of traditional NLP tasks
(e.g., text summarization, text classification, and translation)
to create supervised multi-task training datasets. As a major
source of instruction tuning instances, it is convenient to for-
mat these multi-task training datasets with natural language
task descriptions. Specifically, recent work [28, 66, 67, 88]
augments the labeled datasets with human-written task de-
scriptions, which instructs LLMs to understand the tasks by
explaining the task goal. For example, in Figure 11(a), a task

description “Please answer this question” is added for each
example in the question-answering task. After instruction
tuning, LLMs can generalize well to other unseen tasks by
following their task descriptions [28, 67, 69]. In particular,
it has been shown that instructions are the crucial factor
in task generalization ability for LLMs [67]: by fine-tuning
the model on labeled datasets with the task descriptions re-
moved, it results in a dramatic drop in model performance.
To better generate labeled instances for instruction tuning,
a crowd-sourcing platform, PromptSource [167] has been
proposed to effectively create, share, and verify the task
descriptions for different datasets. To enrich the training
instances, several studies [28, 168, 345] also try to invert the
input-output pairs of existing instances with specially de-
signed task descriptions for instruction tuning. For instance,
given a question-answer pair, we can create a new instance
by predicting the answer-conditioned question (e.g., “Please
generate a question based on the answer:”).

Formatting Daily Chat Data. Despite that a large number
of training instances have been formatted with instructions,
they mainly come from public NLP datasets, either lack-
ing instruction diversity or mismatching with real human
needs [66]. To overcome this issue, InstructGPT [66] pro-
poses to take the queries that real users have submitted to
the OpenAI API as the task descriptions. Additionally, to
enrich the task diversity, human labelers are also asked to
compose the instructions for real-life tasks, including open-
ended generation, open question answering, brainstorm-
ing, and chatting. Then, they let another group of labelers
directly answer these instructions as the output. Finally,
they pair one instruction (i.e., the collected user query) and
the expected output (i.e., the human-written answer) as a
training instance. Note that InstructGPT also employs these
real-world tasks formatted in natural language for align-
ment tuning (discussed in Section 5.2). Further, GPT-4 [46]
has designed potentially high-risk instructions and guided
the model to reject these instructions through supervised
fine-tuning for safety concerns. Considering the absence
of high-quality public chat data, several studies have also
collected users’ chat requests as input data, and then utilized
ChatGPT or GPT-4 to generate responses as output data. A
notable example of such a dataset is the conversational data
from ShareGPT [148]. Additionally, Dolly [172] and Ope-
nAssistant [173] have further released their conversation
data, which has been carefully labeled by human annotators
to attain a high level of quality.

Formatting Synthetic Data. To reduce the burden of human
annotation or manual collection, several semi-automated
approaches [143] have been proposed for constructing in-
stances by feeding existing instances into LLMs to synthe-
size diverse task descriptions and instances. As illustrated
in Figure 11(c), the Self-Instruct method only needs 175
instances as the initial task pool. Then, they randomly select
a few instances from the pool as demonstrations and prompt
a LLM to generate new instructions and corresponding
input-output pairs. After the quality and diversity filter-
ing, newly generated instances would be added into the
task pool. Hence, the synthetic method is an effective and
economical way to generate large-scale instruction data for
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(a) Formatting Task Datasets (b) Formatting Daily Chat Data

Human-written
API collection

&

NLP  Datasets

Human-written

Please answer this question:

Task description

Q: What is the capital of France?

A: Paris.

Q: What is the capital of Brazil?

A: Brasilia

Demonstrations

Q: What is the capital of China?

A: Beijing.

OutputInput

Desired output written by human

Here are some ways to lose weight:

1. Eat a healthy diet: Focus on …

2. Increase physical activity: Engage …

Output

Can you recommend some ways 

to lose weight?

Task description

LLM

Give me a quote from a 

famous person on this topic.

Task description

Instruction 

Generation

LLM

Input-Output 

Generation

Input: The importance of being honest. 

Output: Honesty is the first chapter in 

the book of wisdom.

OutputInput

Instance Pool

Filter

(c) Formatting Synthetic Data

Seed 
Instances

Fig. 11: An illustration of instance formatting and three different methods for constructing the instruction-formatted
instances.

LLMs. However, the instances generated by the Self-Instruct
method might be simplistic or lack the diversity. To improve
the quality of synthetic int ructions, WizardLM [346] intro-
duces Evol-Instruct by proposing in-depth and in-breadth
evolving to enrich the complexity and diversity of the
instances. Furthermore, Self-Align [347] establishes multiple
human-aligned principles to filter the synthesized instances.
It then employs these instances to train a LLM in order
to yield more aligned instances. To enhance the quality
of the instance output, researchers directly adopt human-
written texts as the output and synthesize corresponding
instructions using ICL examples [348].

Key Factors for Instance Construction. The quality of
instruction instances has an important impact on the perfor-
mance of the model. Here, we discuss some essential factors
for instance construction.
• Scaling the instructions. It has been widely shown that

scaling the number of tasks can largely enhance the gen-
eralization ability of LLMs [28, 67, 88]. With the increasing
of the task number, the model performance initially shows
a continuous growth pattern, while the gain becomes neg-
ligible when it reaches a certain level [69, 88]. A plausible
speculation is that a certain number of representative tasks
can provide relatively sufficient knowledge and adding
more tasks may not bring additional gains [69]. Also, it is
beneficial to enhance the diversity of the task descriptions in
several aspects, such as length, structure, and creativity [28].
As for the number of instances per task, it has been found
that a small number of instances can usually saturate the
generalization performance of the model to perform a spe-
cific task [67, 69]. Specially, several recent work [349, 350]
has explored the effect of fine-tuning with a small amount of
high-quality instruction data (e.g., one or a few thousand in-
stances), showing very promising results on the evaluation
tasks. In contrast, another line of studies continue to explore
the scaling effect of instruction data [351, 352]. For example,
Orca [351] scales up the synthesized instances to 5 million
with step-by-step explanations, and it achieves superior

performance across a wide range of tasks compared to the
methods tuned with instruction data.
• Formatting design. As an important factor, the design

of natural language format also highly impacts the gener-
alization performance of LLMs [88]. Typically, we can add
task descriptions and optional demonstrations to the input-
output pairs of existing datasets, where the task description
is the most key part for LLMs to understand the task [88].
Further, it can lead to substantial improvements by using an
appropriate number of exemplars as demonstrations [69],
which also alleviates the model sensitivity to instruction
engineering [67, 69]. However, incorporating other compo-
nents (e.g., things to avoid, reasons, and suggestions) into
instructions may have a negligible or even adverse effect
on the performance of LLMs [88, 166]. Recently, to elicit
the step-by-step reasoning ability of LLMs, some work [69]
proposes to include chain-of-thought (CoT) examples for
some reasoning datasets, such as arithmetic reasoning. It
has been shown that fine-tuning LLMs with both CoT and
non-CoT examples can lead to a good performance across
various reasoning tasks, including those that require multi-
hop reasoning ability (e.g., commonsense question answer-
ing and arithmetic reasoning) as well as those without the
need for such a reasoning way (e.g., sentiment analysis and
extractive question answering) [69, 95].

To summarize, diversity and quality of instructions seem
to be more important than the number of instances [349]
since the well-performing InstructGPT [66] and LLaMA-2-
Chat [99] utilize fewer but more diverse instructions (or
instances) than the Flan-series LLMs [67, 69]. However,
a large amount of training data may compensate for the
absence of high-quality data [351]. Further, it is more useful
to invite labelers to compose human-need tasks than using
dataset-specific tasks. However, it still lacks general guide-
lines to annotate human-need instances, making the task
composition somehow heuristic. To reduce human efforts,
we can either reuse existing formatted datasets (Table 3)
or automatically construct the instructions using existing
LLMs [143]. We conduct a preliminary experiment to show
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the effectiveness of different construction methods in Sec-
tion 5.1.4.

5.1.2 Instruction Tuning Strategies
Unlike pre-training, instruction tuning is often more effi-
cient since only a moderate number of instances are used
for training. Since instruction tuning can be considered as
a supervised training process, its optimization is different
from pre-training in several aspects [69], such as the training
objective (i.e., sequence-to-sequence loss) and optimization
configuration (e.g., smaller batch size and learning rate),
which require special attention in practice. In addition to
these optimization configurations, there are also four im-
portant aspects to consider for instruction tuning:

Balancing the Data Distribution. Since instruction tun-
ing involves a mixture of different tasks, it is important
to balance the proportion of different tasks during fine-
tuning. A widely used method is the examples-proportional
mixing strategy [82], i.e., combining all the datasets and
sampling each instance equally from the mixed datasets.
Furthermore, increasing the sampling ratio of high-quality
collections (e.g., FLAN [67] and P3 [167]) can generally
lead to performance improvement according to recent find-
ings [69, 95]. Further, it is common to set a maximum
cap to control the maximum number of examples that a
dataset can contain during instruction tuning [82], which
is set to prevent larger datasets from overwhelming the
entire distribution [82, 95]. In practice, the maximum cap
is typically set to several thousands or tens of thousands
according to different datasets [67, 69]. Recently, it has been
empirically found that existing instruction datasets (Table 3)
mainly focus on enhancing LLMs’ capabilities in certain
aspects, and a single dataset alone cannot lead to a compre-
hensive enhancement in model capacity [353]. Therefore, it
is often suggested to use a mixture of existing instruction
datasets to achieve a balanced improvement in different
capacities, including NLP task data (e.g., FLAN v2 [292]),
chat data (e.g., ShareGPT [148]), and synthetic data (e.g.,
GPT4-Alpaca [354]).

Combining Instruction Tuning and Pre-Training. To make
the tuning process more effective and stable, OPT-IML [95]
incorporates pre-training data during instruction tuning,
which can be regarded as regularization for model tuning.
Further, instead of using a separate two-stage process (pre-
training then instruction tuning), some studies attempt to
train a model from scratch with a mixture of pre-training
data (i.e., plain texts) and instruction tuning data (i.e., for-
matted datasets) using multi-task learning [82]. Specifically,
GLM-130B [93] and Galactica [35] integrate instruction-
formatted datasets as a small proportion of the pre-training
corpora to pre-train LLMs, which potentially achieves the
advantages of pre-training and instruction tuning at the
same time.

Multi-stage Instruction Tuning. For instruction tuning,
there are two kinds of important instruction data, namely
task-formatted instructions and daily chat instructions. Gen-
erally, the former has a significantly larger volume than the
latter. It is important to balance the training with the two
kinds of instruction data. In addition to carefully mixing

different instruction data, we can also adopt a multi-stage
instruction tuning strategy [352], where LLMs are first fine-
tuned with large-scale task-formatted instructions and sub-
sequently fine-tuned on daily chat ones. To avoid the capac-
ity forgetting issue, it is also useful to add an amount of task-
formatted instructions at the second stage. Actually, such
a multi-stage tuning strategy can be also applied to other
settings for instruction tuning. For example, we can sched-
ule different fine-tuning stages with progressively increased
levels on difficulty and complexity, and gradually improve
the capacities of LLMs to follow complex instructions.

Other Practical Tricks. In practice, there are also several
useful strategies and tricks that are helpful to improve the
fine-tuning performance of LLMs. We list several represen-
tative ones as follows:
• Efficient training for multi-turn chat data. Given a multi-

turn chat example (the conversation between a user and
chatbot), a straightforward fine-tuning way is to split it into
multiple context-response pairs for training: a LLM is fine-
tuned to generate the response based on the correspond-
ing context for all splits (i.e., at each utterance from the
user). In such a fine-tuning way, it is apparent that there
exist overlapping utterances in the split examples from a
conversation. To save the training cost, Vicuna [138] has
adopted an efficient way that feeds the whole conversation
into the LLM, but relies on a loss mask that only computes
the loss on the responses of the chatbot for training. It can
significantly reduce the compute costs derived from the
overlapped utterances.
• Establishing self-identification for LLM. To deploy LLMs

for real-world applications, it is necessary to establish its
identity and make LLMs aware of these identity informa-
tion, such as name, developer and affiliation. A practical
way is to create identity-related instructions for fine-tuning
the LLM. It is also feasible to prefix the input with the self-
identification prompt, e.g., “The following is a conversation
between a human and an AI assistant called CHATBOTNAME,
developed by DEVELOPER.”, where CHATBOTNAME and DE-
VELOPER refer to the name and developer of the chatbot,
respectively.

In addition to the above practical strategies and tricks,
existing work has also used other tricks, e.g., concatenating
multiple examples into a single sequence to approach the
max length [355].

5.1.3 The Effect of Instruction Tuning
In this part, we discuss the effect of instruction tuning on
LLMs in three major aspects.

Performance Improvement. Despite being tuned on a mod-
erate number of instances, instruction tuning has become
an important way to improve or unlock the abilities of
LLMs [69]. Recent studies have experimented with language
models in multiple scales (ranging from 77M to 540B),
showing that the models of different scales can all benefit
from instruction tuning [69, 345], yielding improved perfor-
mance as the parameter scale increases [94]. Further, smaller
models with instruction tuning can even perform better
than larger models without fine-tuning [28, 69]. Besides
the model scale, instruction tuning demonstrates consistent
improvements in various model architectures, pre-training
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TABLE 8: Basic statistics of the required number of GPUs, tuning time, batch size (denoted as BS) per device (full tuning
and LoRA tuning), and inference rate (the number of generated tokes per second). Our experiments are conducted based
on two Linux servers having 8 A800-80G SXM4 GPUs with 6 NVSwitch and 8 3090-24G GPUs, respectively. The major
difference between A800 and A100 lies in the NVLink interconnect speed. Thus, our estimations about training and
inference efficiency would be slightly improved for A100, while the rest memory consumption would remain the same.
For full tuning experiments, we use data parallel training, ZeRO Stage 3, BF16, and gradient checkpointing. Additionally,
the LoRA tuning can be executed on one 80G GPU utilizing INT8 quantization with the rank setting set to 16. All the
experiments are conducted with Alpaca-52K dataset by training LLaMA models three epochs. The max sequence length
for both training settings is set to 512. The inference experiments are performed with the batch size set to 1.

Models A800 Full Training A800 LoRA Training A800 Inference (16-bit) 3090 Inference (16-bit) 3090 Inference (8-bit)
#GPU BS Time #GPU BS Time #GPU #Token/s #GPU #Token/s #GPU #Token/s

LLaMA (7B) 2 8 3.0h 1 80 3.5h 1 36.6 1 24.3 1 7.5
LLaMA (13B) 4 8 3.1h 1 48 5.1h 1 26.8 2 9.9 1 4.5
LLaMA (30B) 8 4 6.1h 1 24 14.3h 1 17.7 4 3.8 2 2.6
LLaMA (65B) 16 2 11.2h 1 4 60.6h 2 8.8 8 2.0 4 1.5

objectives, and model adaptation methods [69]. In practice,
instruction tuning offers a general approach to enhancing
the abilities of existing language models [69] (including
small-sized PLMs). Also, it is much less costly than pre-
training, since the amount of instruction data required by
LLMs is significantly smaller than pre-training data.

Task Generalization. Instruction tuning encourages the
model to understand natural language instructions for task
completion. It endows LLMs with the ability (often con-
sidered as an emergent ability) to follow human instruc-
tions [31] to perform specific tasks without demonstrations,
even on unseen tasks [69]. A large number of studies
have confirmed the effectiveness of instruction tuning to
achieve superior performance on both seen and unseen
tasks [95, 345]. Also, instruction tuning has been shown to
be useful in alleviating several weaknesses of LLMs (e.g.,
repetitive generation or complementing the input without
accomplishing a certain task) [66, 69], leading to a superior
capacity to solve real-world tasks for LLMs. Furthermore,
LLMs trained with instruction tuning can generalize to re-
lated tasks across languages. For example, BLOOMZ-P3 [94]
is fine-tuned based on BLOOM [78] using English-only task
collection P3 [167]. Interestingly, BLOOMZ-P3 can achieve
a more than 50% improvement in multilingual sentence
completion tasks compared to BLOOM, which shows that
instruction tuning can help LLMs acquire general task skills
from English-only datasets and transfer such skills into
other languages [94]. In addition, it has been found that
using English-only instructions can produce satisfactory
results on multilingual tasks [94], which helps reduce the
effort of instruction engineering for a specific language.

Domain Specialization. Existing LLMs have showcased su-
perior capabilities in traditional NLP tasks (e.g., generation
and reasoning) and daily questions. However, they may
still lack domain knowledge to accomplish specific tasks,
such as medicine, law, and finance (See Section 8 for a
detailed discussion of LLMs in different applications). In-
struction tuning is an effective approach to adapting existing
general LLMs to be domain-specific experts. For instance,
researchers propose to fine-tune Flan-PaLM [69] using medi-
cal datasets to create Med-PaLM [356], a medical knowledge
assistant that achieves performance levels comparable to

those of expert clinicians. Furthermore, a recent study [357]
fine-tunes FLAN-T5 to support e-commerce recommender
systems with natural language instructions, showing strong
performance in a variety of recommendation tasks. There
are also several open-sourced medical models instruction-
tuned based on LLaMA [57], such as BenTsao [358]. Also,
researchers explore instruction tuning on law [359], fi-
nance [360], and arithmetic computation [361].

5.1.4 Empirical Analysis for Instruction Tuning
Fine-tuning LLMs with different instruction sets tend to lead
to model variants with varied performance on downstream
tasks. In this section, we will explore the effect of different
types of instructions in fine-tuning LLMs (i.e., LLaMA (7B)
and LLaMA (13B)25), as well as examine the usefulness of
several instruction improvement strategies.

Instruction Datasets. According to the discussion in Sec-
tion 5.1.1, we mainly consider three common kinds of in-
structions as follows:

• Task-specific instructions. For the first type of instruc-
tions, we adopt the most commonly-used multi-task instruc-
tion dataset, FLAN-T5 [69], which contains 1,836 tasks and
over 15M instructions by combining four data mixtures from
prior work.

• Daily chat instructions. This type of instructions are con-
versations posed by users about daily life, which are more
closely related to real-life scenarios. We adopt the ShareGPT
instruciton set, consisting of 63K real-user instructions. It
has been used as the core instructions for Vicuna.

• Synthetic instructions. In addition to reusing existing
instructions, we can also automatically synthesize massive
instructions using LLMs. We adopt the popular synthetic
instruction dataset Self-Instruct-52K [143], consisting of 52K
instructions paired with about 82K instance inputs and
outputs. These generated instructions have a similar data
distribution as the human-written seed tasks (e.g., grammar
checking, brainstorming).

As the original FLAN-T5 dataset is very large (i.e., over
15M), we randomly sample 80,000 instructions from it for
conducting a fair comparison with other instruction datasets

25. Due to the limit of computational resources, we cannot conduct
large-scale experiments on larger LLaMA variants right now, which
would be scheduled in a future version.
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TABLE 9: Results of instruction-tuning experiments (all in a single-turn conversation) based on the LLaMA (7B) and LLaMA
(13B) model under the chat and QA setting. We employ four instruction improvement strategies on the Self-Instruct-52K
dataset, i.e., enhancing the complexity (w/ complexity), increasing the diversity (w/ diversity), balancing the difficulty (w/
difficulty), and scaling the instruction number (w/ scaling). ∗Since we select the LLaMA (7B)/(13B) model fine-tuned on
Self-Instruct-52K as the baseline, we omit the win rate of the fine-tuned model with Self-Instruct-52K against itself.

Models Dataset
Mixtures

Instruction
Numbers

Lexical
Diversity

Chat QA

AlpacaFarm MMLU BBH3k

LLaMA (7B) ① FLAN-T5 80,000 48.48 23.77 38.58 32.79
② ShareGPT 63,184 77.31 81.30 38.11 27.71
③ Self-Instruct-52K 82,439 25.92 /∗ 37.52 29.81
② + ③ 145,623 48.22 71.36 41.26 28.36
① + ② + ③ 225,623 48.28 70.00 43.69 29.69

③ Self-Instruct-52K 82,439 25.92 /∗ 37.52 29.81
w/ complexity 70,000 70.43 76.96 39.73 33.25
w/ diversity 70,000 75.59 81.55 38.01 30.03
w/ difficulty 70,000 73.48 79.15 32.55 31.25
w/ scaling 220,000 57.78 51.13 33.81 26.63

LLaMA (13B) ① FLAN-T5 80,000 48.48 22.12 34.12 34.05
② ShareGPT 63,184 77.31 77.13 47.49 33.82
③ Self-Instruct-52K 82,439 25.92 /∗ 36.73 25.43
② + ③ 145,623 48.22 72.85 41.16 29.49
① + ② + ③ 225,623 48.28 69.49 43.50 31.16

③ Self-Instruct-52K 82,439 25.92 /∗ 36.73 25.43
w/ complexity 70,000 70.43 77.94 46.89 35.75
w/ diversity 70,000 75.59 78.92 44.97 36.40
w/ difficulty 70,000 73.48 80.45 43.15 34.59
w/ scaling 220,000 57.78 58.12 38.07 27.28

(i.e., ShareGPT and Self-Instruct-52K) at a similar scale. In
our experiments, we test on each individual instruction
set to explore their own effects and also examine their
combinatorial effects on model performance.

Improvement Strategies. Although real-world instructions
from human users are more suitable for fine-tuning LLMs,
it is difficult to collect them at a large scale. As alternatives
to human-generated instructions, most existing research
mainly adopts synthetic instructions generated by LLMs.
However, there are some potential problems with synthetic
instructions, such as poor topic diversity and uneven in-
struction difficulty (either too simple or too difficult). Thus,
it is necessary to improve the quality of the synthetic in-
structions. Next, we summarize four major improvement
strategies widely used in existing work as follows:

• Enhancing the instruction complexity. As discussed in
existing work [346], enhancing the complexity of instruc-
tions can improve the model capacity of LLMs in following
complex instructions, e.g., including more task demands or
requiring more reasoning steps. To validate this strategy,
we follow WizardLM [346] by gradually increasing the
complexity levels, e.g., adding constraints, increasing rea-
soning steps, and complicating the input. We leverage the
publicly released WizardLM-70K instructions [346] as the
complexity-enhanced instruction dataset, which has been
generated via the above enhancement approach based on
the Self-Instruct-52K dataset [346].

• Increasing the topic diversity. In addition to the complex-
ity, improving the topic diversity of the instruction dataset
can help elicit different abilities of LLMs on diverse tasks in
real world [347]. However, it is difficult to directly control
the self-instruct process for generating diverse instructions.

Following YuLan-Chat [352], we employ ChatGPT to rewrite
the instructions from Self-Instruct-52K dataset for adapting
them into 293 topics via specific prompts. Finally, we obtain
70K instructions as the diversity-increased dataset.

• Scaling the instruction number. In addition to the above
aspects, the number of instructions is also an important
factor that may affect the model performance. Specially,
using more instructions can extend the task knowledge and
improve the ability of instruction following for LLMs [69].
To examine this strategy, we sample new instructions from
the synthesized instruction set released from the MOSS
project [362], as they are also synthesized using the same
self-instruct method [143]. We mix them with the Self-
Instruct-52K dataset to compose a larger one containing
220K instructions.

• Balancing the instruction difficulty. As the synthetic
instructions tend to contain too easy or too hard ones, it
is likely to result in training instability or even overfitting
for LLMs. To explore the potential effects, we leverage
the perplexity score of LLMs to estimate the difficulty of
instructions and remove too easy or too hard instructions. To
generate the same scale of instructions for fair comparison,
we adopt a LLaMA (7B) model to compute the perplexity for
the 220K instructions from the large instruction dataset, and
then keep 70K instructions of moderate perplexity scores as
the difficulty-balanced dataset.

Experimental Setup. To conduct the experiments on the
effect of instruction data, we leverage these new instruction
datasets for tuning LLaMA, a popular LLM backbone that
has been widely used for instruction-tuning. We use the
code from YuLan-Chat [352] for our experiments, and train
LLaMA 7B and 13B on a server of 8 A800-80G GPUs. All
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the hyper-parameters settings remain the same as Stanford
Alpaca. To better evaluate the instruction following ability
of fine-tuned models, we consider two settings, namely
Chat setting and QA setting. The chat setting mainly utilizes
user instructions and queries from daily chat, whereas the
QA setting mainly employs question answering examples
from existing NLP datasets. The evaluation on the chat
setting is conducted based on the AlpacaFarm evaluation
set [363]. Instead of using a full pairwise comparison, we
select the LLaMA 7B and 13B models fine-tuned on Self-
Instruct-52K as the reference baselines, and then compare
them with other fine-tuned LLaMA 7B and 13B models
using different instructions, respectively. Since our focus is
to examine the usefulness of different strategies to generate
the instructions, the model fine-tuned on Self-Instruct-52K
can serve as a good reference. Following AlpacaFarm [363],
for each comparison, we employ ChatGPT to automatically
annotate which response from two compared models each
time is the best for the user query, and report the win
rate (%) as the evaluation metric. For the QA setting, we
select two benchmarks, MMLU [364] and BBH [365], and
evaluate the accuracy based on their default settings by
using heuristic rules to parse the answers from these LLMs.

For both instruction tuning and evaluation, we adopt
the following prompt: “The following is a conversation be-
tween a human and an AI assistant. The AI assistant gives
helpful, detailed, and polite answers to the user’s questions.\n
[|Human|]:{input}\n[|AI|]:”. To reproduce our results, we
release the code and data at the link: https://github.com/
RUCAIBox/LLMSurvey/tree/main/Experiments.

Results and Analysis. The results using different instruction
datasets based on 7B and 13B LLaMA are in Table 9. Next,
we summarize and analyze our findings in detail.

• Task-formatted instructions are more proper for the QA
setting, but may not be useful for the chat setting. By comparing
the performance of instruction tuning using FLAN-T5 with
that of ShareGPT and Self-Instruct-52K, we can observe
that FLAN-T5 mostly achieves a better performance on QA
benchmarks while underperforms ShareGPT on the chat set-
ting. The reason is that FLAN-T5 is composed of a mixture
of instructions and examples from existing NLP tasks, e.g.,
translation and reading comprehension. As a result, LLaMA
fine-tuned with FLAN-T5 performs better on QA tasks, but
poorly on user queries. In contrast, ShareGPT consists of
real-world human-ChatGPT conversations, which is able to
better elicit LLaMA to follow user instructions in daily life,
while may not be suitable for accomplishing the QA tasks.

• A mixture of different kinds of instructions are helpful to
improve the comprehensive abilities of LLMs. After mixing the
three kinds of instructions for fine-tuning, we can see that
the derived LLaMA variant (with FLAN-T5, ShareGPT and
Self-Instruct-52K) performs well in both task settings. In
MMLU, the performance of LLaMA (7B) can surpass the
ones using individual instruction set by a large margin, i.e.,
43.69 vs. 38.58 (FLAN-T5). It shows that mixing multiple
sources of instruction datasets is helpful to improve the
performance of instruction-tuned LLMs, which scales the
instruction number as well as increases the diversity.

• Enhancing the complexity and diversity of instructions
leads to an improved model performance. By increasing the

complexity and diversity of the Self-Instruct-52K dataset
respectively, the chat and QA performance of LLaMA can
be consistently improved, e.g., from 37.52 to 39.73 in MMLU
for LLaMA (7B). It demonstrates that both strategies are
useful to improve the instruction following ability of LLMs.
Further, we can see that improving the complexity yields a
larger performance improvement on QA tasks. The reason
is that the QA tasks mostly consist of difficult questions for
evaluating LLMs, which can be better solved by LLMs that
have learned complex instructions at the fine-tuning stage.

• Simply increasing the number of instructions may not be
that useful, and balancing the difficulty is not always helpful.
As the results shown in Table 9, balancing the difficulty
and increasing the number of fine-tuning instructions are
not very helpful in our experiments. Especially for scaling
the instruction number, it even hurts the performance, e.g.,
a decrease from 29.81 to 26.63 in BBH for LLaMA (7B).
It shows that simply scaling the number of synthesized
instructions without quality control may not be effective to
improve the performance. Furthermore, fine-tuning with the
instructions of moderate difficulty also performs well in the
chat setting, while slightly decreasing the performance in
the QA setting. A possible reason is that we filter complex
and hard instructions with large perplexity scores, hurting
the model performance in answering complex questions.

• A larger model scale leads to a better instruction following
performance. By comparing the performance of LLaMA (7B)
and LLaMA (13B) models fine-tuned with the same set
of instruction data, we can see that LLaMA (13B) mostly
achieves a better performance. It indicates that scaling the
model size is helpful for improving the instruction following
capability. Besides, we can see that the QA performance has
been improved a lot, e.g., from 38.11 to 47.49 in MMLU. It is
likely because that the larger models generally have better
knowledge utilization and reasoning capability [33, 55],
which can accurately answer more complex questions.

Instruction Tuning Suggestions

To conduct instruction tuning on LLMs, one can
prepare the computational resources according to
the basic statistics about the required number of
GPUs and tuning time in Table 8. After setting
up the development environment, we recommend
beginners to follow the code of Alpaca reposi-
tory [137] for instruction tuning. Subsequently, one
should select the base model and construct the
instruction datasets as we discuss in this section.
When computational resources for training are con-
strained, users can utilize LoRA for parameter-
efficient tuning (see Section 5.3). As for inference,
users can further use quantization methods to de-
ploy LLMs on fewer or smaller GPUs (see Sec-
tion 5.4).

5.2 Alignment Tuning

This part first presents the background of alignment with
its definition and criteria, then focuses on the collection
of human feedback data for aligning LLMs, and finally

https://github.com/RUCAIBox/LLMSurvey/tree/main/Experiments
https://github.com/RUCAIBox/LLMSurvey/tree/main/Experiments
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discusses the key technique of reinforcement learning from
human feedback (RLHF) for alignment tuning.

5.2.1 Background and Criteria for Alignment

Background. LLMs have shown remarkable capabilities
in a wide range of NLP tasks [55, 56, 67, 90]. However,
these models may sometimes exhibit unintended behav-
iors, e.g., fabricating false information, pursuing inaccurate
objectives, and producing harmful, misleading, and biased
expressions [66, 366]. For LLMs, the language modeling
objective pre-trains the model parameters by word predic-
tion while lacking the consideration of human values or
preferences. To avert these unexpected behaviors, human
alignment has been proposed to make LLMs act in line with
human expectations [66, 367]. However, unlike the original
pre-training and adaptation tuning (e.g., instruction tuning),
such an alignment requires considering very different crite-
ria (e.g., helpfulness, honesty, and harmlessness). It has been
shown that alignment might harm the general abilities of
LLMs to some extent, which is called alignment tax in related
literature [368].

Alignment Criteria. Recently, there is increasing attention
on developing multifarious criteria to regulate the behav-
iors of LLMs. Here, we take three representative alignment
criteria (i.e., helpful, honest, and harmless) as examples for
discussion, which have been widely adopted in existing
literature [66, 368]. In addition, there are other alignment
criteria for LLMs from different perspectives including be-
havior, intent, incentive, and inner aspects [366], which
are essentially similar (or at least with similar alignment
techniques) to the above three criteria. It is also feasible to
modify the three criteria according to specific needs, e.g.,
substituting honesty with correctness [116]. Next, we give
brief explanations about the three representative alignment
criteria:
• Helpfulness. To be helpful, the LLM should demon-

strate a clear attempt to assist users in solving their tasks
or answering questions in a concise and efficient manner
as possible. At a higher level, when further clarification
is needed, the LLM should demonstrate the capability of
eliciting additional relevant information through pertinent
inquiries and exhibit suitable levels of sensitivity, percep-
tiveness, and prudence [368]. Realizing the alignment of
helpful behavior is challenging for LLMs since it is difficult
to precisely define and measure the intention of users [366].
• Honesty. At a basic level, a LLM aligned to be honest

should present accurate content to users instead of fabri-
cating information. Additionally, it is crucial for the LLM
to convey appropriate degrees of uncertainty in its output,
in order to avoid any form of deception or misrepresen-
tation of information. This requires the model to know
about its capabilities and levels of knowledge (e.g., “know
unknowns”). According to the discussion in [368], honesty
is a more objective criterion compared to helpfulness and
harmlessness, hence honesty alignment could potentially be
developed with less reliance on human efforts.
• Harmlessness. To be harmless, it requires that the lan-

guage produced by the model should not be offensive or
discriminatory. To the best of its abilities, the model should
be capable of detecting covert endeavors aimed at soliciting

requests for malicious purposes. Ideally, when the model
was induced to conduct a dangerous action (e.g., commit-
ting a crime), the LLM should politely refuse. Nonetheless,
what behaviors are deemed harmful and to what extent vary
amongst individuals or societies [368] highly depend on
who is using the LLM, the type of the posed question, and
the context (e.g., time) at which the LLM is being used.

As we can see, these criteria are quite subjective, and are
developed based on human cognition. Thus, it is difficult
to directly formulate them as optimization objectives for
LLMs. In existing work, there are many ways to fulfill these
criteria when aligning LLMs. A promising technique is red
teaming [369], which involves using manual or automated
means to probe LLMs in an adversarial way to generate
harmful outputs and then updates LLMs to prevent such
outputs.

5.2.2 Collecting Human Feedback

During the pre-training stage, LLMs are trained using the
language modeling objective on a large-scale corpus. How-
ever, it cannot take into account the subjective and qualita-
tive evaluations of LLM outputs by humans (called human
feedback in this survey). High-quality human feedback is
extremely important for aligning LLMs with human pref-
erences and values. In this part, we discuss how to select a
team of human labelers for feedback data collection.

Human Labeler Selection. In existing work, the dominant
method for generating human feedback data is human
annotation [66, 116, 367]. This highlights the critical role
of selecting appropriate human labelers. To provide high-
quality feedback, human labelers are supposed to have a
qualified level of education and excellent proficiency in En-
glish. For example, Sparrow [116] requires human labelers
to be UK-based native English speakers who have obtained
at least an undergraduate-level educational qualification.
Even then, several studies [367] have found that there still
exists a mismatch between the intentions of researchers
and human labelers, which may lead to low-quality human
feedback and cause LLMs to produce unexpected output.
To address this issue, InstructGPT [66] further conducts a
screening process to filter labelers by assessing the agree-
ment between human labelers and researchers. Specifically,
researchers first label a small amount of data and then
measure the agreement between themselves and human
labelers. The labelers with the highest agreement will be
selected to proceed with the subsequent annotation work.
In some other work [370], “super raters” are used to ensure
the high quality of human feedback. Researchers evaluate
the performance of human labelers and select a group of
well-performing human labelers (e.g., high agreement) as
super raters. The super raters will be given priority to
collaborate with the researchers in the subsequent study.
When human labelers annotate the output of LLMs, it is
helpful to specify detailed instructions and provide instant
guidance for human labelers, which can further regulate the
annotation of labelers.

Human Feedback Collection. In existing work, there are
mainly three kinds of approaches to collecting feedback and
preference data from human labelers.
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• Ranking-based approach. In early work [367], human
labelers often evaluate model-generated outputs in a coarse-
grained manner (i.e., only selecting the best) without taking
into account more fine-grained alignment criteria. Nonethe-
less, different labelers may hold diverse opinions on the
selection of the best candidate output, and this method
disregards the unselected samples, which may lead to inac-
curate or incomplete human feedback. To address this issue,
subsequent studies [116] introduce the Elo rating system
to derive the preference ranking by comparing candidate
outputs. The ranking of outputs serves as the training signal
that guides the model to prefer certain outputs over others,
thus inducing outputs that are more reliable and safer.
• Question-based approach. Further, human labelers can

provide more detailed feedback by answering certain ques-
tions designed by researchers [81], covering the alignment
criteria as well as additional constraints for LLMs. Specially,
in WebGPT [81], to assist the model in filtering and utiliz-
ing relevant information from retrieved documents, human
labelers are required to answer questions with multiple
options about whether the retrieved documents are useful
for answering the given input.
• Rule-based approach. Many studies also develop rule-

based methods to provide more detailed human feedback.
As a typical case, Sparrow [116] not only selects the response
that labelers consider the best but also uses a series of
rules to test whether model-generated responses meet the
alignment criteria of being helpful, correct, and harmless.
In this way, two kinds of human feedback data can be ob-
tained: (1) the response preference feedback is obtained by
comparing the quality of model-generated output in pairs,
and (2) the rule violation feedback is obtained by collecting
the assessment from human labelers (i.e., a score indicating
to what extent the generated output has violated the rules).
Furthermore, GPT-4 [46] utilizes a set of zero-shot classifiers
(based on GPT-4 itself) as rule-based reward models, which
can automatically determine whether the model-generated
outputs violate a set of human-written rules.

In the following, we focus on a well-known technique,
reinforcement learning from human feedback (RLHF),
which has been widely used in the recent powerful LLMs
such as ChatGPT. As discussed below, the alignment criteria
introduced in Section 5.2.1 can be fulfilled by learning from
human feedback on the responses of LLMs to users’ queries.

5.2.3 Reinforcement Learning from Human Feedback
To align LLMs with human values, reinforcement learning
from human feedback (RLHF) [79, 367] has been proposed
to fine-tune LLMs with the collected human feedback data,
which is useful to improve the alignment criteria (e.g.,
helpfulness, honesty, and harmlessness). RLHF employs
reinforcement learning (RL) algorithms (e.g., Proximal Pol-
icy Optimization (PPO) [128]) to adapt LLMs to human
feedback by learning a reward model. Such an approach
incorporates humans in the training loop for developing
well-aligned LLMs, as exemplified by InstructGPT [66].

RLHF System. The RLHF system mainly comprises three
key components: a pre-trained LM to be aligned, a reward
model learning from human feedback, and a RL algorithm
training the LM. Specifically, the pre-trained LM is typically
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Fig. 12: The workflow of the RLHF algorithm.

a generative model that is initialized with existing pre-
trained LM parameters. For example, OpenAI uses 175B
GPT-3 for its first popular RLHF model, InstructGPT [66],
and DeepMind uses the 280 billion parameter model Go-
pher [64] for its GopherCite model [370]. Further, the reward
model (RM) provides (learned) guidance signals that reflect
human preferences for the text generated by the LM, usually
in the form of a scalar value. The reward model can take on
two forms: a fine-tuned LM or a LM trained de novo using
human preference data. Existing work typically employs
reward models having a parameter scale different from that
of the aligned LM [66, 370]. For example, OpenAI uses 6B
GPT-3 and DeepMind uses 7B Gopher as the reward model,
respectively. Finally, to optimize the pre-trained LM using
the signal from the reward model, a specific RL algorithm
is designed for large-scale model tuning. Specifically, Prox-
imal Policy Optimization (PPO) [128] is a widely used RL
algorithm for alignment in existing work [66, 116, 370].

Key Steps for RLHF. Figure 12 illustrates the overall three-
step process of RLHF [66] as introduced below.
• Supervised fine-tuning. To make the LM initially perform

desired behaviors, it usually needs to collect a supervised
dataset containing input prompts (instruction) and desired
outputs for fine-tuning the LM. These prompts and outputs
can be written by human labelers for some specific tasks
while ensuring the diversity of tasks. For example, Instruct-
GPT [66] asks human labelers to compose prompts (e.g.,
“List five ideas for how to regain enthusiasm for my career”) and
desired outputs for several generative tasks such as open
QA, brainstorming, chatting, and rewriting. Note that the
first step is optional in specific settings or scenarios.
• Reward model training. The second step is to train the

RM using human feedback data. Specifically, we employ
the LM to generate a certain number of output texts using
sampled prompts (from either the supervised dataset or
the human-generated prompt) as input. We then invite
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attention and feed-forward networks in the Transformer layer, respectively.

human labelers to annotate the preference for these pairs.
The annotation process can be conducted in multiple forms,
and a common approach is to annotate by ranking the
generated candidate texts, which can reduce the inconsis-
tency among annotators. Then, the RM is trained to predict
the human-preferred output. In InstructGPT, labelers rank
model-generated outputs from best to worst, and the RM
(i.e., 6B GPT-3) is trained to predict the ranking. Note that, in
recent work [371], the annotation of preference on response
pairs has been conducted by an AI agent (usually an aligned
LLM) instead of humans, which is called “reinforcement
learning from AI feedback (RLAIF)”. LLMs trained with typical
RLHF algorithms tend to generate harmless responses with
less helpfulness, which is called evasion problem [371]. To
guarantee both the harmlessness and helpfulness, RLAIF
generates the AI feedback based on pre-set alignment prin-
ciples in instructions [371, 372], which can also reduce the
efforts of human annotation.
• RL fine-tuning. At this step, aligning (i.e., fine-tuning)

the LM is formalized as an RL problem. In this setting,
the pre-trained LM acts as the policy that takes as input
a prompt and returns an output text, the action space of
it is the vocabulary, the state is the currently generated
token sequence, and the reward is provided by the RM. To
avoid eviating significantly from the initial (before tuning)
LM, a penalty term is commonly incorporated into the
reward function. For example, InstructGPT optimizes the
LM against the RM using the PPO algorithm. For each input
prompt, InstructGPT calculates the KL divergence between
the generated results from the current LM and the initial
LM as the penalty. It is noted that the second and final steps
can be iterated in multiple turns for better aligning LLMs.
Due to the instability of the RL algorithm, recent work [373]
replaces the RL tuning with another supervised fine-tuning
by reusing the best ranked samples with higher rewards.

Practical Strategies for RLHF. Although RLHF is promising
to effectively improve the alignment of LLMs with humans,
it is practically challenging for researchers to successfully
implement it. In this part, we focus on discussing several
useful strategies and tricks for improving the effectiveness
and efficiency of RLHF. Concretely, we focus on the effective
training of reward models, efficient and effective RL train-
ing, respectively.
• Effective reward model training. Despite that InstructGPT

used a small reward model (6B GPT model), increasing
work [99] has shown it is often more effective to use a
large reward model (e.g., equal or greater than the original

model size), since large reward models generally perform
better in judging the quality of the LLM generated outputs.
In LLaMa 2 [99], pretrained chat model checkpoints are
used to initialize the reward model, they argue that such an
approach can effectively reduce the information mismatch
between the model to be aligned and the reward model
by sharing the same pre-training knowledge. Whereas, it is
common to encounter the overfitting problem when train-
ing large-scale reward models. As a simple yet effective
solution, existing work [374, 375] has introduced the LM
loss on the preferred response of the input prompt from
the human-annotated alignment dataset as a regularizer,
which alleviates the overfitting of the reward model on the
binary classification task. In addition, as there are multiple
criteria for alignment (e.g., helpfulness and honesty), it is
often difficult to train a single reward model that can satisfy
all the alignment criteria. Therefore, it is useful to train
multiple reward models that focus on different alignment
criteria [99], and compute the final reward based on the
produced ones from them via special combination strategies
(e.g., mean pooling and weighted sum). Such a way enables
more flexible rules or standards on multiple criteria, e.g.,
relaxing the requirement on helpfulness while posing more
strict limits on harmfulness.

• Effective RL training. As the RL training process tends to
be unstable and hyper-parameter sensitive, it is suggested
that the language model should be well supervised fine-
tuned before RL training, so as to reaching a good model
capacity. A commonly-used way is to fine-tune the LLM
on its best outputs of the prompts (referred to as rejec-
tion sampling or best-of-N ) from the alignment dataset until
convergence before RL. Given a prompt, the LLM would
first produce N outputs via the sampling algorithm, and
then the best candidate from the model will be selected
by the reward model for learning. After fine-tuning the
LLM on the best samples until convergence, the RL process
will be performed to further improve the performance.
LLaMA 2 [99] has successively trained five versions of RLHF
models, where the LLM has been progressively improved
with the improvement of the reward models. In this way,
the collected prompts and annotations of human preference
data can better reflect the issues of the current model check-
point, thus making special tuning to address these issues. In
addition, LLaMA 2 also adds samples from prior iterations
into the subsequent ones, to alleviate the possible capacity
regression issue during iterative optimization.

• Efficient RL training. As the RL training requires to
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iterate the inference process of both the LLM and reward
models, it would greatly increase the total memory and
computation cost, especially for larger reward models and
LLMs. As a practical trick, we can deploy the reward model
on a separate server, and invoke the corresponding API
to work with the LLM on its own server. In addition, as
RLHF requires the LLM to generate multiple candidate
outputs, instead of calling the sample decoding procedure
for multiple times, it is more efficient to utilize the beam
search decoding algorithm26. It only needs to perform one-
pass decoding for response generation, meanwhile such a
strategy can also enhance the diversity of the generated
candidate responses.

Process-Supervised RLHF. In existing literature of
RLHF [376], the supervision signals for RL training can be
generally classified into two distinct categories: outcome-
supervision signals and process-supervision signals. The
outcome-supervised RLHF employs a quantitative score to
assess the quality of the whole text generated by LLMs.
In contrast, process-supervised RLHF offers an evalua-
tion of each individual component (e.g., sentence, word,
or reasoning step) within the generated content, which
can provide fine-grained supervision signals to guide the
training, helping LLMs refine the undesired generation
contents [376, 377]. OpenAI has proposed a fine-grained
annotation dataset named PRM800k [377] consisting of
12K process-annotated mathematical problems (i.e., MATH
dataset [378]) and 75K solutions generated by LLMs of
these problems, where each reasoning step of mathemat-
ical problems is labeled as positive, negative or neutral in
PRM800k. This fine-grained dataset has been utilized in
existing work [377, 379] to train the process-supervised re-
ward models (PRM), and the probability from the prediction
of each label can be considered as the supervision signals
during RLHF procedure. To effectively leverage process-
supervision signals from PRMs, existing work [376] has
utilized expert iteration [380, 381], an effective RL algo-
rithm to improve the base policy via learning from expert
policy. Typically, expert iteration contains two main stages:
policy improvement and distillation [376]. In the policy
improvement stage, expert policy processes the systematic
search procedure to produce the samples. PRMs provide
process-supervision signals to guide expert policy in the
search procedure and enhance the quality of samples. Subse-
quently, during the distillation stage, the samples generated
by expert policy in the first stage are utilized to improve
the base policy through supervised fine-tuning. In addition
to expert iteration, PRMs can also be utilized to re-rank the
candidates of the final answers generated by LLMs [377] or
to select better intermediate reasoning steps during step by
step reasoning [379, 382].

5.2.4 Alignment without RLHF
Although RLHF has achieved great success in aligning the
behaviors of LLMs with human values and preferences, it
also suffers from notable limitations. First, RLHF needs to
train multiple LMs including the model being aligned, the

26. https://huggingface.co/docs/transformers/v4.31.0/en/main
classes/text generation#transformers.GenerationMixin.group beam
search

reward model, and the reference model at the same time,
which is tedious in algorithmic procedure and memory-
consuming in practice. Besides, the commonly-used PPO
algorithm in RLHF is rather complex and often sensitive
to hyper-parameters. As an alternative, increasing studies
explore to directly optimize LLMs to adhere to human pref-
erences, using supervised fine-tuning without reinforcement
learning [349].

Overview. The basic idea of non-RL alignment approaches
is to directly fine-tune LLMs with supervised learning on
high-quality alignment dataset. It basically assumes that re-
sponse feedback or golden rules to avert unsafe behaviors
have been injected or included in the specially curated align-
ment dataset, so that LLMs can directly learn aligned behav-
iors from these demonstration data via suitable fine-tuning
strategies. Thus, to implement this approach, two key issues
are the construction of alignment dataset and the design of
fine-tuning loss. For the first issue, the alignment dataset
can be automatically constructed by an aligned LLMs ac-
cording to human-written safety principles [347] or refining
existing examples using edits operations [383]. In addition,
we can also reuse existing reward models to select high-
rated responses from existing human feedback data [373].
For the second issue, non-RL alignment approaches mainly
fine-tune LLMs in a supervised learning way (the same
as the original instruction tuning loss) on a high-quality
alignment dataset, meanwhile auxiliary learning objectives
can be used to enhance the alignment performance, e.g.,
ranking responses or contrasting instruction-response pairs.

Alignment Data Collection. The construction of alignment
data is important to effectively align the behaviors of LLMs
with human preferences. To collect high-quality alignment
data, some work tries to reuse existing reward models to
select high-rated responses, and others explore to leverage
powerful LLMs (e.g., ChatGPT) or build a simulated envi-
ronment to generate synthetic alignment examples. Next,
we will discuss these three lines of research.

• Reward model based approaches. The reward model in
RLHF has been trained to measure the alignment degree
on the responses of LLMs. It is straightforward to leverage
existing reward models to select high-quality responses as
alignment data for subsequent fine-tuning. Based on this
idea, RAFT [373] adopts reward models trained on human
preference data to rank the responses of LLMs and collect
those with higher rewards for supervised fine-tuning. In
addition, the reward model can be also used to score model
responses and assign them to different quality groups.
Quark [384] sorts the responses of LLMs into different quan-
tiles based on the reward scores. Each quantile is attached
with a special reward token to represent the reward level
of the quantile. Conditioned on the highest-reward tokens,
LLMs are subsequently prompted to generate high-quality
responses. Given an initial answer and the corresponding
human feedback, ILF [385] first adopts LLMs to generate
refined answers, then utilizes the reward model to select
the answer that best matches the feedback for further
training. As valuable resources for aligning LLMs, several
reward models have been released, including DeBERTa-

https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/text_generation#transformers.GenerationMixin.group_beam_search
https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/text_generation#transformers.GenerationMixin.group_beam_search
https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/text_generation#transformers.GenerationMixin.group_beam_search
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base/large/xxlarge from OpenAssistant27, Moss-7B from
Fudan28, and Flan-T5-xl from Stanford29.
• LLM based generative approaches. Reward models help

to select aligned data from model responses. However,
training reward models itself necessitates substantial high-
quality human-labeled data, which is typically expensive
and in short supply. In addition, although existing reward
models can be reused, they might not be able to accurately
capture the nonalignment behaviors in another separately
trained LLM. Therefore, some work explores leveraging
powerful LLMs to automatically generate human-aligned
data. As a representative work, constitutional AI [371] pro-
poses that human supervision comes from a set of principles
(i.e., natural language instructions) governing AI behaviors.
Based on these principles, LLMs will critique their own
harmful responses and revise them repeatedly into finally
aligned responses. Similarly, Self-Align [347] first adopts
self-instruct [143] to generate instructions focusing on cov-
ering diverse topics. Then, the model is also prompted
with multiple human-written principles that describe the
rules of expected model behaviors (also with several in-
context exemplars), to generate helpful, ethical, and reliable
responses as alignment data. To mitigate the limit that the
original SFT method can only learn from positive responses,
FIGA [386] develops an improved supervised alignment
approach, where both negative (the original output of low
quality) and positive (the refined output by LLMs) re-
sponses are leveraged in a contrastive way, to enable LLMs
to deeply understand what fine-grained revisions actually
lead to good response.
• LLM based interactive approaches. Most existing ap-

proaches train LLMs in isolation, where LLMs are not
present in actual environments to improve themselves
through external feedback signals. As a comparison, hu-
mans learn social norms and values from interactions with
others in social environments [387]. To mimic such a learn-
ing approach, Stable Alignment [179] builds a simulated
interaction environment consisting of a number of LLM
agents, where AI agents keep interacting with and each
other, receiving feedback on improvement. Once a central
agent receives an instruction, it produces a response and
shares it with nearby agents. These critic agents generate
feedback comprising ratings about the response and re-
vision suggestions. Then the central agent would revise
the original response following these suggestions. Such
an alignment approach can be also extended to real-world
environment with humans.

Supervised Alignment Tuning. After obtaining alignment
data, it is also key to design suitable fine-tuning strategies
for direct alignment. A straightforward approach is to op-
timize LLMs using the conventional sequence-to-sequence
objective based on the alignment data. In addition to the
conventional optimization objective, several studies further
explore auxiliary losses that enhance the learning from the
alignment data.
• Primary training objective. Since the alignment data

typically consists of an input instruction and an output re-

27. https://huggingface.co/OpenAssistant
28. https://github.com/OpenLMLab/MOSS-RLHF
29. https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-xl

sponse, the primary training loss is still the traditional cross-
entropy loss for sequence-to-sequence learning. Based on
this loss, many studies propose a number of improvement
variants for enhancing the supervised alignment tuning.
For example, CoH [388] constructs the training data by
prepending “A helpful answer:” and “An unhelpful answer:”
to the annotated good and bad responses, respectively, and
only compute losses for those response tokens with special
masking. Quark [384] sorts model responses into different
quantiles with varying alignment quality, it prepends a
special reward token to each model response to represent
the reward level of the response. Further, to enable the
preference modeling via the maximum likelihood objective,
DPO [389] first reparameterizes the response rewards using
the policy model (i.e., the language model being optimized),
and then the original reward modelling objective can be
reformulated only based on the policy model. In this way,
DPO removes the explicit reward modeling step, and opti-
mizing the new learning objective only involving the policy
model is equivalent to optimizing the rewards. Furthermore,
FIGA [386] designs a fine-grained contrastive loss that aims
to encourage desirable tokens, penalize undesirable ones,
and disregard trivial tokens.
• Auxiliary optimization objectives. Besides the primary

cross-entropy loss, several studies propose auxiliary train-
ing loss to enhance the learning from the alignment data.
First, since the responses of each instruction can be scored
by the reward model, the ranking loss can be used to train
the model to preserve the ranking order of these responses.
For example, RRHF [390] samples responses from multi-
ple sources, including model-generated responses, such as
those derived from the model itself, ChatGPT, and GPT-4,
as well as human-written responses, spanning both high-
quality and low-quality instances. To align with the scores
from reward models, it further optimizes the ranking loss
by encouraging the model to have a higher conditional log
probability for the response with a higher ranking. SLiC-
HF [391] proposes to assess the similarity between model
outputs and human preference via the distance in the latent
space, and introduces specific calibration and regularization
loss to calibrate the candidate sequences based on human-
preference data. Second, to enhance the relatedness be-
tween the response and the instruction, some work adopts
contrastive learning to push up the probability of correct
instruction-response pairs while pushing down incorrect
instruction-response pairs. Specifically, for an output re-
sponse, the proposed approach in [392] contrasts the target
instruction to the other irrelevant instructions. By doing so,
it can enable the model to learn the right correlation between
instructions and responses.

5.2.5 Remarks on SFT and RLHF
As discussed in Section 5.1, instruction tuning is the process
of training pre-trained language models with formatted
demonstration data (instructions paired with desired out-
puts). At early exploration, instruction data was mainly col-
lected from NLP tasks [67], while it has been now extended
to more diverse supervision data that pairs input and
output texts (e.g., the utterances of open-ended dialogues).
Training with such paired texts is also called supervised fine-
tuning (SFT) in the context of LLMs [66]. In this part, we
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mainly use the abbreviation SFT for discussion but not
instruction tuning, due to the simplicity and popularity.

Since SFT and RLHF are two major adaptation tuning
methods for LLMs, it is important to understand the con-
nections and difference between them. Next, we make some
discussions on this issue30.

Overall Comparison with RL Formulation. Following the
discussion in Section 5.2.3 (the part related to RL training),
the text generation problem can be formulated as a decision-
making process based on RL. Taking a prompt as input,
the task of a LLM is to generate a text completion that
appropriately responds to the prompt. This task would be
completed step by step. At each step, an agent (i.e., LLM)
will perform an action (i.e., generating a token) according
to the policy (i.e., the generative probability distribution of
LLM) conditioned on the current state (currently generated
token sequence and other available context information).
It is expected that a high-quality output text would be
produced by the LLM, which can earn a large reward score
based on the entire response. Overall, RLHF and SFT can be
considered as two different training approaches to optimiz-
ing the above decision making process for LLMs. Specially,
RLHF firstly learns the reward model, and then employs
it to improve the LLM with RL training (e.g., PPO). As a
comparison, SFT adopts a teacher-forcing approach, which
directly optimizes the likelihood of a demonstration output.
Such a token-level training way essentially does behavior
cloning (a special algorithm of imitation learning [393]): it
utilizes the expert’s action (i.e., the target token at each step)
as the supervision label and directly learns to imitate the
demonstrations from experts without specifying a reward
model as in typical RL algorithms. To learn the desired
policies, SFT adopts a “local” optimization way (i.e., token-
level loss) based on demonstration data, while RLHF takes a
“global” optimization way (i.e., text-level loss) by involving
human preference. More theoretical analysis about imitation
learning and reinforcement learning can be referred to the
related RL literature [393, 394].

Pros and Cons of SFT. SFT has been shown to be an
effective approach to boosting the performance of LLMs
on various benchmarks [67, 69, 137, 138], which can largely
enhance the task generalization ability and flexibly endow
specific functions (e.g., establishing the chatbot’s identity).
More discussions about the usefulness of SFT can be found
in Section 5.1.3. It has been widely recognized that SFT
mainly unlocks the abilities but not inject new abilities into
LLMs. Thus, it might become problematic when one tries
to stimulate the non-endogenous abilities of LLMs via SFT.
As a concrete scenario, it would potentially advocate the
hallucination behaviors when demonstration data is beyond
the knowledge or ability scope of LLMs, e.g., training a LLM
to answer questions about its unknown facts. An interesting
viewpoint from John Schulman’s talk on RLHF [395] is that
distilling superior models to train less capable models (e.g.,
prompting GPT-4 to generate the response as fine-tuning
data) might increase the possibilities of generating the hal-

30. This part would be somehow subjective, mainly based on the au-
thors’ opinions and experiences. Comments or corrections are welcome
to enhance this part.

lucinated texts, thus likely affecting the factual accuracy
of LLMs. Furthermore, as a behavior cloning method, SFT
aims to imitate the behaviors (without explorations) of the
experts who construct the demonstration data. However,
there often exist variations among different annotators on
the writing styles, quality, and preferences of demonstration
data, which tends to affect the learning performance of SFT.
Thus, high-quality instruction data (but not the quantity) is
the primary factor for effective training of LLMs during the
SFT stage [99].

Pros and Cons of RLHF. RLHF was early explored in the
literature of deep RL [79], then borrowed to improve the
capacity of language models (e.g., summarization [129]),
and subsequently adopted as the fundamental technique to
develop InstructGPT [66]. Recently, increasing evidence [99,
371] has demonstrated the effectiveness of RLHF in miti-
gating the harmful responses and enhancing the model ca-
pacity. Specially, LLaMA 2 has demonstrated that RLHF can
improve both the helpfulness and harmlessness scores [99],
and attributed this to a better human-LLM synergy for data
annotation. They explain this reason in two major aspects
as follows. First, since human annotators mainly provide
preference annotations for RLHF, it can largely alleviate the
discrepancies of annotators as that in SFT. Secondly, pref-
erence annotation is much easier than writing the demon-
stration data, and annotators can even judge the quality of
more superior generations than those they create, making it
possible to explore a broader state space beyond what can
be demonstrated by human annotators. Another key point
is that RLHF essentially encourages LLMs to learn correct
policies by contrasting the self-generated responses (dis-
criminating between good and bad responses). It no longer
forces the model to imitate external demonstration data,
and thus can mitigate the hallucination issues with SFT as
discussed above31. Actually, RLHF has been demonstrated
to be an important approach to reduce the hallucination
behaviors in GPT-4 [46]. However, RLHF inherits the draw-
backs of classic RL algorithms, e.g., sample inefficiency and
training instability. When adapted to LLMs, RLHF further
relies on a strong SFT model as initial model checkpoint for
efficiently achieving good performance. In addition, human
annotators are involved in a complex iterative optimization
process, in which a number of important details (e.g., the
prompt selection, the schedule of reward model training and
PPO training, and the settings of hyper-parameters) have
important impact on the whole model performance.

Overall, SFT is particularly useful to increase the model
capacity of pre-trained model checkpoints right after pre-
training, while RLHF is promising to further improve the
model capacity of SFT models. However, RLHF has been
difficult to implement, and far from well explored (ac-
cording to public literature), and more improvements (e.g.,
efficient and reliable annotation [371] and simplified opti-
mization [389]) are still needed for further research.

31. In RLHF, it seems to be also important that reward models
should be aware of the knowledge or ability of a LLM to be aligned.
For example, LLaMA 2 adopts pre-trained chat model checkpoints to
initialize reward models [99].
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5.3 Parameter-Efficient Model Adaptation

In the above, we have discussed the approaches of instruc-
tion tuning and alignment tuning to adapt LLMs according
to specific goals. Since LLMs consist of a huge amount of
model parameters, it would be costly to perform the full-
parameter tuning. In this section, we will discuss how to
conduct efficient tuning on LLMs. We first review several
representative parameter-efficient fine-tuning methods for
Transformer language models, and then summarize existing
work on parameter-efficient fine-tuned LLMs.

5.3.1 Parameter-Efficient Fine-Tuning Methods

In existing literature, parameter-efficient fine-tuning [145,
396, 397] has been an important topic that aims to reduce
the number of trainable parameters while retaining a good
performance as possible. In what follows, we briefly re-
view four parameter-efficient fine-tuning methods for Trans-
former language models, including adapter tuning, prefix
tuning, prompt tuning and LoRA. The illustration of these
four methods are shown in Figure 13.

Adapter Tuning. Adapter tuning incorporates small neural
network modules (called adapter) into the Transformer mod-
els [398]. To implement the adapter module, a bottleneck
architecture has been proposed in [398, 399], which first
compresses the original feature vector into a smaller di-
mension (followed by a nonlinear transformation) and then
recovers it to the original dimension. The adapter modules
would be integrated into each Transformer layer, typically
using a serial insertion after each of the two core parts (i.e.,
attention layer and feed-forward layer) of a Transformer
layer. Alternatively, parallel adapters [400] can be also used
in Transformer layers, where it places two adapter modules
in parallel with the attention layer and feed-forward layer
accordingly. During fine-tuning, the adapter modules would
be optimized according to the specific task goals, while the
parameters of the original language model are frozen in this
process. In this way, we can effectively reduce the number
of trainable parameters during fine-tuning.

Prefix Tuning. Prefix tuning [396] prepends a sequence of
prefixes, which are a set of trainable continuous vectors, to
each Transformer layer in language models. These prefix
vectors are task-specific, which can be considered as virtual
token embeddings. To optimize the prefix vectors, a repa-
rameterization trick [396] has been proposed by learning a
MLP function that maps a smaller matrix to the parameter
matrix of prefixes, instead of directly optimizing the pre-
fixes. It has been shown that this trick is useful for stable
training. After optimization, the mapping function would
be discarded, and only the derived prefix vectors are kept
to enhance task-specific performance. Since only the prefix
parameters would be trained, it can lead to a parameter-
efficient model optimization. Similar to prefix tuning, p-
tuning v2 [401] incorporates layer-wise prompt vectors into
the Transformer architecture specially for natural language
understanding, which also utilizes multi-task learning for
jointly optimizing shared prompts. It has been shown to
be useful in improving the model performance of different
parameter scales on natural language understanding tasks.

Prompt Tuning. Different from prefix tuning, prompt tun-
ing [397, 402] mainly focuses on incorporating trainable
prompt vectors at the input layer32. Based on the discrete
prompting methods [404, 405], it augments the input text
by including a group of soft prompt tokens (either in a
free form [402] or a prefix form [397]), and then takes
the prompt-augmented input to solve specific downstream
tasks. In implementation, task-specific prompt embeddings
are combined with the input text embeddings, which are
subsequently fed into language models. P-tuning [402] has
proposed a free form to combine the context, prompt and
target tokens, which can be applied to the architectures for
both natural language understanding and generation. They
further learn the representations of soft prompt tokens by a
bidirectional LSTM. Another representative approach [397]
named prompt tuning directly prepends prefix prompts to
the input. During training, only the prompt embeddings
would be learned according to task-specific supervisions.
Since this method only includes a small number of trainable
parameters at the input layer, it has been found that the
performance highly relies on the model capacity of the
underlying language models [397].

Low-Rank Adaptation (LoRA). LoRA [145] imposes the
low-rank constraint for approximating the update matrix at
each dense layer, so as to reduce the trainable parameters
for adapting to downstream tasks. Consider the case of
optimizing a parameter matrix W. The update process can
be written in a general form as: W←W +∆W. The basic
idea of LoRA is to freeze the original matrix W ∈ Rm×n

while approximating the parameter update ∆W by low-
rank decomposition matrices, i.e., ∆W = A · B⊤, where
A ∈ Rm×k and B ∈ Rn×k are the trainable parameters for
task adaptation and k ≪ min(m,n) is the reduced rank. The
major merit of LoRA is that it can largely save the memory
and storage usage (e.g., VRAM). Further, one can only keep
a single large model copy, while maintaining a number of
task-specific low-rank decomposition matrices for adapting
to different downstream tasks. Further, several studies have
also discussed how to set the rank in a more principled
approach, e.g., importance score based allocation [406] and
search-free optimal rank selection [407].

Besides the above methods, there is extensive research
on efficient tuning of Transformer language models. How-
ever, a more comprehensive discussion of efficient tuning is
beyond the scope of this article, which can be found in the
related papers on this topic [400, 408].

5.3.2 Parameter-Efficient Fine-Tuning on LLMs
With the rising of LLMs, efficient tuning has attracted
increasing research attention for developing a more
lightweight adaptation approach in downstream tasks.

In particular, LoRA [145] has been widely applied
to open-source LLMs (e.g., LLaMA and BLOOM) for

32. Here, prompt tuning denotes a category of related efficient tuning
methods exemplified by the work [397, 402, 403], instead of a spe-
cific method as used in [397]. Indeed, the prefix based tuning meth-
ods [396, 401] can be also considered as prompting methods, which
are called deep prompting tuning in [401]. In this survey, prompt tuning
specially refer to the methods that only include the prompt tokens at
the input layer, in the context of LLMs. We assign p-tuning v2 [401] to
the category of prefix tuning, because it incorporates layerwise prompts
in langauge models.
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parameter-efficient fine-tuning. Among these research at-
tempts, LLaMA and its variants have gained much atten-
tion for parameter-efficient tuning. For example, Alpaca-
LoRA [144] has been trained using LoRA as a lightweight
tuned version of Alpaca [142] (a fine-tuned 7B LLaMA
model with 52K human demonstrations of instruction fol-
lowing). There are extensive explorations of Alpaca-LoRA
ranging in different languages or model sizes, which can
be found in the collection page33. A recent study LLaMA-
Adapter [409] inserts learnable prompt vectors into each
Transformer layer, in which zero-initialized attention has
been proposed to improve the training by mitigating the
influence of under-fitted prompt vectors. They also extend
this approach to a multi-modal setting, e.g., visual question
answering.

Further, an empirical study [399] has been conducted
to examine the effect of different tuning methods on lan-
guage models. They compare four efficient tuning methods
including serial adapter tuning [398], parallel adapter tun-
ing [400, 410], and LoRA [145], on three open-source LLMs,
namely GPT-J (6B), BLOOM (7.1B) and LLaMA (7B), for
evaluation. Based on the experimental results on six math
reasoning datasets, they show that these efficient-tuning
methods under-perform the reference baseline GPT-3.5 on
difficult tasks, while achieving a comparable performance
on simple tasks. Overall, LoRA performs relatively well
among these comparison methods, using significantly fewer
trainable parameters.

As an important resource, the library PEFT [411] (stand-
ing for parameter-efficient fine-tuning) has been released on
GitHub34. It has included several widely used efficient tun-
ing methods, including LoRA [145]/AdaLoRA [406], prefix-
tuning [396, 401], P-Tuning [402], and prompt-tuning [397].
Further, it supports a number of language models such as
GPT-2 and LLaMA, and also covers several representative
vision Transformer models (e.g., ViT and Swin Transformer).

As discussed in Section 5.3.1, there have been a large
number of efficient tuning methods proposed in the existing
literature. However, most of these approaches are tested
on small-sized pre-trained language models, instead of the
LLMs. So far, there still lacks a thorough investigation on
the effect of different efficient tuning methods on large-sized
language models at different settings or tasks.

5.4 Memory-Efficient Model Adaptation

Due to the huge number of model parameters, LLMs take a
significant memory footprint for inference, making it very
costly to be deployed in real-world applications. In this
section, we discuss how to reduce the memory footprint
of LLMs via a popular model compression approach (i.e.,
model quantization), so that large-sized LLMs can be used
in resource-limited settings, which also likely reduces the
inference latency.

5.4.1 Background for Quantization
In this part, we present a general introduction of quantiza-
tion techniques for neural networks.

33. https://github.com/tloen/alpaca-lora
34. https://github.com/huggingface/peft

In neural network compression, quantization often refers
to the mapping process from floating-point numbers to
integers [412], especially the 8-bit integer quantization (i.e.,
INT8 quantization). For neural network models, there are
typically two kinds of data to be quantized, namely weights
(model parameters) and activations (hidden activations),
which are originally represented in floating-point num-
bers. To illustrate the essential idea of model quantization,
we introduce a simple yet popular quantization function:
xq = R(x/S)−Z , which transforms a floating number x into
a quantized value xq . In this function, S and Z denote the
scaling factor (involving two parameters α and β that deter-
mine the clipping range) and zero-point factor (determining
symmetric or asymmetric quantization), respectively, and
R(·) denotes the rounding operation that maps a scaled
floating value to an approximate integer.

As the reverse process, dequantization recovers the orig-
inal value from the quantized value accordingly: x̃ =
S · (xq + Z). The quantization error is calculated as the
numerical difference between the original value x and the
recovered value x̃. The range parameters α and β have a
large impact on the quantization performance, which often
need to be calibrated according to real data distributions, in
either a static (offline) or dynamic way (runtime).

For more details, we refer to the readers to the excel-
lent survey [412] about quantization methods on neural
networks.

5.4.2 Quantization Methods for LLMs
There are generally two major model quantization ap-
proaches, namely quantization-aware training (QAT) (requir-
ing additional full model retraining) and post-training quanti-
zation (PTQ) (requires no model retraining). Compared with
small-sized language models, two major differences need
to be considered when designing or selecting quantization
methods for LLMs. Firstly, LLMs consist of a huge number
of parameters, and thus PTQ methods are more preferred
due to a much lower computational cost than QAT methods.
Secondly, LLMs exhibit very different activation patterns
(i.e., large outlier features), and it becomes more difficult
to quantize LLMs, especially hidden activations. Next, we
will briefly review several representative PTQ methods35 for
LLMs.

Post-Training Quantization (PTQ). We first introduce the
PTQ methods for LLMs.
• Mixed-precision decomposition. As observed in [413],

extreme large values occur in hidden activations (called
the emergence of outliers) when the model size reaches 6.7B
parameters or above. Interestingly, these outliers are mainly
distributed in some specific feature dimensions at Trans-
former layers. Based on this finding, a vector-wise quan-
tization approach, called LLM.int8(), has been proposed in
[413], which separates the feature dimensions with outliers
and the rest dimensions in matrix multiplication. Then,
the calculations for the two parts are performed with 16-
bit floating numbers and 8-bit integers, respectively, so as to
recover these outliers in a high precision.

35. Since we mainly focus on discussing quantization methods in the
context of LLMs, the line of quantization work on small-sized language
models (e.g., BERT) has not been included in this survey.
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• Fine-grained quantization. For Transformer models,
weights and activations are usually represented in the
form of tensors. A straightforward approach is to use
coarse-grained quantization parameters for the whole ten-
sor (i.e., per-tensor quantization) [414]. However, it usu-
ally leads to inaccurate reconstruction results. Thus, fine-
grained methods are proposed to reduce the quantization
error. ZeroQuant [415] adopts a token-wise quantization
approach with dynamic calibration for compressing acti-
vations. Whereas for weights (easier to be quantized), it
uses a group-wise quantization. In practice, a group size
of 128 [415, 416] is commonly used for model quantization.
• Balancing the quantization difficulty. Considering that

weights are easier to be quantized than activations,
SmoothQuant [414] proposes to migrate the difficulty from
activations to weights. Specially, they incorporate a scaling
transformation to balance the difficulty between weights
and activations in a linear layer: Y = (Xdiag(s)−1) ·
(diag(s)W). By introducing an mathematically equivalent
transformation, this formula controls the quantization diffi-
culty through the scaling factor s. To set s, it incorporates
a migration strength parameter α to balance the difficulties,
where each entry sj = max(xj)

α/max(wj)
(1−α) is deter-

mined by the migration strength.
• Layerwise quantization. This approach finds optimal

quantized weights that minimize a layerwise reconstruction
loss: argminŴ ∥WX−ŴX ∥22. To efficiently optimize this
objective, GPTQ [417] improves the original optimal brain
quantization (OBQ) [418] method by fixing the quantiza-
tion order of weights for all rows. Further, with specially
designed methods (i.e., lazy batch-updates and Cholesky
reformulation), GPTQ is feasible to quantize very large
models (e.g., 175B OPT) in 3 or 4 bit precision. More recently,
AWQ [416] further simplifies the optimization form by
incorporating activation-aware scaling for weights, which
resembles the idea of SmoothQuant [414]: weights corre-
sponding to outlier activations are more important to be
precisely quantized. It does not directly optimize the recon-
struction loss, but instead performs simple hyper-parameter
search to achieve the minimal loss on calibration data.

These strategies in the above methods can be jointly
used to improve the quantization performance. In order to
achieve high-efficiency implementation, quantization meth-
ods also rely on hardware- or system-level support (e.g., ef-
ficient GPU kernels or hardware-friendly group partition).

Other Quantization Methods. In the above, we mainly fo-
cus on PTQ methods, and next introduce two recent studies
that explore efficient fine-tuning methods or QAT methods
for quanitizing LLMs.
• Efficient fine-tuning enhanced quantization. For post-

training quantization, direct low-bit quantization (e.g., INT4
quantization) often results in large performance degrada-
tion. To overcome this challenge, QLoRA [419] incorporates
additional small tunable adapters (16-bit precision) into the
quantized models, to achieve an efficient, high-precision
model fine-tuning. It combines the merits of LoRA (See
Section 5.3.1) and quantization methods. The experiment
results show that 4-bit quantized models can achieve the
full 16-bit fine-tuning performance by QLoRA.
• Quantization-aware training (QAT) for LLMs. A recent

study [420] explores the effect of QAT methods by applying
a data-free distillation method to compress the weights,
activations as well as key-value cache. By conducting exten-
sive experiments based on LLaMA, they show promising
results with 4-bit quantization on both weights and key-
value cache, but not on 4-bit activation quantization, which
still needs more exploration.

5.4.3 Empirical Analysis and Findings
Quantization has currently become a common technique
to reduce the memory footprint and latency of LLMs in
deployment. In particular, it is important to understand
what level of precision (e.g., INT8 or INT4) can be applied
to quantize different parts of LLMs (e.g., weights or acti-
vations), while retaining a high accuracy. In this part, we
first summarize the major findings about the quantization of
LLMs in existing literature, and then present some empirical
analysis with quantization experiments.

Important Findings from Existing Work. Recently, a very
comprehensive evaluation [421] has been conducted about
the impact of multiple factors (e.g., model size and sensi-
tivity) on the post-training quantization methods. Another
study [422] examines the scaling law of k-bit quantiza-
tion in inference performance. In addition to the overall
performance, the study [423] specifically focuses on the
potential impact of quantification on emergent capabilities,
as well as the levels of performance that can be achieved
across various levels of bit precision. Also, prior work (e.g.,
LLM.int8() [424], GPTQ [417], QLoRA [419], and GLM [93])
has also extensively examined the performance of quanti-
zation methods in various settings. Next, we summarize
several important findings from these studies, which will
be useful for those who may not want to delve into the
technical details of quantization methods.
• INT8 weight quantization can often yield very good re-

sults on LLMs, while the performance of lower precision weight
quantization depends on specific methods [414, 416, 417, 421]. In
most cases, INT8 weight quantization can be effectively ap-
plied to reduce the memory footprint without performance
degradation. While for INT4 (or INT3) weight quantization,
existing methods rely on specific strategies to reduce the
performance degradation, e.g., layerwise method [415, 417],
activation-aware scaling [416] and low-rank adapter tun-
ing [419]. Interestingly, LLMs seem to be less sensitive
to low-bit weight quantization than small-sized language
models [421]. In practice, with the same memory cost, it
is suggested to use a larger language model with a lower
quantization precision rather than a smaller language model
with a higher quantization precision. For example, a 4-bit
60GB LLM is demonstrated to have better performance than
a 8-bit 30GB LLM [422]. Moreover, focusing on emergent
capabilities, the study [423] finds that in-context learning,
step-by-step reasoning, and instruction following all seem
to be seldom affected with 4-bit weight quantization. This
result suggests that INT4 quantization exhibits a favorable
trade-off in terms of both total bits and performance of
emergent abilities.
• Activations are more difficult to be quantized than

weights [413, 414, 421]. It has been found that large outliers
would occur for Transformer language models having a
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size of 6.7B or above [413]. This issue has been one of
the most fundamental difficulties to quantize LLMs. To
overcome this issue, various methods, e.g., mixed-precision
decomposition [413], fine-grained quantization [413, 425]
and difficulty migration [414], can be applied to alleviate the
influence of outlier values. Since large outliers mainly exist
in the activations of LLMs, small language models are more
resistant to activation quantization [421, 423]. In practice,
high-quality INT8 activation quantization is still a difficult
task, though several methods can attain satisfying results.
Further, lower precision activation quantization has still not
been successfully explored, even for QAT methods [420].
• Efficient fine-tuning enhanced quantization is a good op-

tion to enhance the performance of quantized LLMs [145, 419].
The benefits of efficient fune-tuning methods in quanti-
zation can be twofold. Firstly, it can directly compensate
the performance degradation suffered from low-bit quan-
tization [421, 423], by increasing the fitting capacity by
updating high precision adapters. Secondly, it is flexible to
support task-specific or goal-specific fine-tuning of LLMs
in a lightweight way [419], e.g., instruction tuning or chat-
oriented tuning, by only tuning the small adapters. Overall,
it makes a good trade-off between the effectiveness and
training cost, which provides a promising approach to en-
hancing the performance of quantized LLMs.

Empirical Analysis on Quantization Experiments. To fur-
ther help readers understand the impact of quantization on
LLMs, we also conduct a group of experiments to investi-
gate the inference performance of quantized models here.
Specifically, we focus on the fine-tuned LLaMA models (i.e.,
7B and 13B) using popular SFT datasets, including FLAN-
v2 [69], Alpaca-52K [137] and ShareGPT [148]. For evalua-
tion, we utilize the same tasks in Table 9, and follow the
quantization settings in the study [423] examining the per-
formance of quantized language models at three precision
levels: 4-bit, 8-bit and 16-bit. The results are summarized
in Table 10. As can be observed from Table 10, the results
obtained with 8-bit and 4-bit weight quantization are close
to the performance of 16-bit models while significantly
reducing memory consumption. In practice, it is recom-
mended to first examine the performance of 4-bit weight
quantization for LLMs if reducing memory usage is a critical
consideration for deployment.

5.4.4 Open-source Libraries and Quantized LLMs
In this part, we briefly introduce the available open-source
quantization libraries and quantized LLMs.

Quantization Libraries. Next, we introduce three major
quantization libraries for LLMs, including:
• Bitsandbytes36 is developed based on the methods intro-

duced in the papers of LLM.int8() [413] and 8-bit optimiz-
ers [426]. It focuses on the quantization of both activations
and weights for LLMs, including the support on 8-bit and
4-bit (NF4,FP4) matrix multiplication for efficient inference,
as well as an 8-bit optimizer for efficient training.
• GPTQ-for-LLaMA37 is developed specially for quantiz-

ing LLaMA models. It enables 4-bit quantization of LLaMA

36. https://github.com/TimDettmers/bitsandbytes
37. https://github.com/qwopqwop200/GPTQ-for-LLaMa

models of varied sizes based on the GPTQ algorithm [417].
Also, it provides a comparison with bitsandbytes in both
memory and performance (PPL) on the project website.
• AutoGPTQ38 is a quantization package developed

based on the GPTQ algorithm [417], which supports INT4
quantization for LLMs. It includes a number of quantized
models in the library, and supports LoRA by integrating
with HuggingFace PEFT library.
• llama.cpp39 makes it feasible to run quantized LLaMA

models on a MacBook device. It supports INT4, INT5 and
INT8 quantization, which is developed in efficient C/C++
implementation. It also supports a number of LLaMA based
models, such as Alpaca and Vicuna.

Quantized LLMs. Compared with original models, quan-
tized language models take a smaller memory footprint,
and likely have a faster inference speed [93, 413, 427].
Recently, a nubmer of quantized model copies of several
publicly available language models have been released on
HuggingFace, including BLOOM, GPT-J, and ChatGLM. In
particular, GPTQ [417] has been widely used to quantize
generative language models, leading to various quantized
variants for LLaMA and OPT. Further, it has been also
applied to quantize instruction-tuned models, such as Vi-
cuna and WizardLM. Due to the large number of quantized
LLMs, we do not directly incorporate the corresponding
links of these models. The readers can easily find them by
searching on HuggingFace.

6 UTILIZATION

After pre-training or adaptation tuning, a major approach
to using LLMs is to design suitable prompting strategies
for solving various tasks. In existing literature, task-specific
prompts can be effectively learned through manual creation
and automatic optimization. A representative prompting
method is in-context learning [50, 55], which formulates the
task description and/or demonstrations in the form of natu-
ral language text. In addition, chain-of-thought prompting [33]
can be employed to enhance in-context learning by involv-
ing a series of intermediate reasoning steps in prompts.
Furthermore, planning [439] is proposed for solving complex
tasks, which first breaks them down into smaller sub-tasks
and then generates a plan of action to solve these sub-tasks
one by one. We summarize representative work for these
prompting approaches in Table 11. Next, we will elaborate
on the details of the four techniques.

6.1 Prompting

As discussed in previous work [36], prompting is the major
approach to utilizing LLMs for solving various tasks. Since
the quality of prompts will largely influence the perfor-
mance of LLMs in specific tasks, there have been a series of
studies proposed to generate suitable task prompts through
manual creation or automatic optimization, which will be
introduced in this section.

38. https://github.com/PanQiWei/AutoGPTQ
39. https://github.com/ggerganov/llama.cpp



48

TABLE 10: Evaluation results for quantized LLaMA models (7B and 13B). We employ existing model checkpoints provided
by [353] for quantization experiments, which have been fine-tuned on FLAN-v2, Alpaca-52K, and ShareGPT, respectively.
Specifically, we report the performance with AlpacaFarm, MMLU, and BBH, as well as the memory usage of the loaded
model (Mem.). For quantization, we employ bitesandbytes to quantize the 16-bit models to 8/4 bits by specifying the
commands load_in_8bit and load_in_4bit when loading the weights. It is worth noting that we select text-davinci-
003 as the baseline model for the AlpacaFarm dataset.

Models SFT Dataset
16-bit 8-bit 4-bit

AlpacaFarm MMLU BBH Mem.(GiB) AlpacaFarm MMLU BBH Mem.(GiB) AlpacaFarm MMLU BBH Mem.(GiB)

LLaMA (7B) FLAN-v2 6.65 47.34 35.05 12.58 6.15 47.02 35.17 6.65 7.83 46.23 34.77 3.94
Alpaca-52K 32.55 40.87 33.66 12.58 33.60 39.98 34.38 6.65 29.57 39.24 32.80 3.94
ShareGPT 72.05 41.30 32.90 12.58 72.86 39.34 32.71 6.65 70.31 40.08 32.11 3.94

LLaMA (13B) FLAN-v2 8.14 51.67 41.46 24.40 7.64 51.02 41.25 12.53 7.52 50.48 40.68 7.34
Alpaca-52K 33.60 47.63 36.10 24.40 31.43 47.04 35.98 12.53 30.87 46.20 36.16 7.34
ShareGPT 75.59 47.58 38.00 24.40 73.79 47.71 38.31 12.53 71.99 45.77 36.97 7.34

TABLE 11: Typical LLM utilization methods and their key points for ICL, CoT, and planning. Note that the key points only
highlight the most important technical contribution.

Approach Representative Work Key Point

In-context
Learning (ICL)

KATE [428] Demonstration selection (similar; k-NN)
EPR [429] Demonstration selection (dense retrieval; constrative learning)
SG-ICL [430] Demonstration selection (LLM as the demonstration generator)
APE [431] Demonstration format (automatic generation & selection)
Structured Prompting [296] Demonstration format (grouped context encoding; rescaled attention)
GlobalE & LocalE [432] Demonstration order (entropy-based metric; probing set generation with LLM)

Chain-of-thought
Prompting (CoT)

Complex CoT [433] Demonstration (complexity-based selection)
Auto-CoT [434] Demonstration (automatic generation)
Selection-Inference [435] Generation (alternate between selection and inference)
Self-consistency [436] Generation (diverse paths; self-ensemble)
DIVERSE [437] Generation (diverse paths); Verification (step-wise voting)
Rationale-augmented ensembles [438] Generation (rationale sampling)

Planning

Least-to-most prompting [439] Plan generation (text-based; problem decomposition)
DECOMP [440] Plan generation (text-based; problem decomposition)
PS [441] Plan generation (text-based)
Faithful CoT [442] Plan generation (code-based)
PAL [443] Plan generation (code-based; Python)
HuggingGPT [444] Plan generation (code-based; models from HuggingFace)
AdaPlanner [445] Plan refinement (skill memory)
TIP [446] Feedback acquisition (visual perception)
RAP [447] Feedback acquisition (LLM as the world model); Plan refinement (Monte Carlo Tree Search)
ChatCoT [448] Feedback acquisition (tool); Plan refinement (conversation between LLM and tools)
ReAct [449] Feedback acquisition (tool); Plan refinement (synergizing reasoning and acting)
Reflexion [450] Feedback acquisition (text-based self-reflection); Plan refinement (dynamic memory)
Tree of Thoughts [451] Feedback acquisition (vote comparison); Plan refinement (tree-based search)

6.1.1 Prompt Creation

The process of manually creating a suitable prompt is also
called prompt engineering [452, 453]. A well-designed prompt
is very helpful to elicit the abilities of LLMs for accomplish-
ing specific tasks. In this part, we will first introduce the
key components of prompts and discuss several principles
for prompt design. Then, we evaluate ChatGPT with differ-
ent prompts to show the results on several representative
tasks. We are aware that there have been several existing
papers [453, 454] and websites [455–457] that present the
suggestions and guidelines to design good prompts. As a
comparison, we mainly aim to discuss the key factors (ingre-
dients and principles) that are useful for prompt creation,
and provide experimental results and analysis on popular
tasks as the reference to the beginners.

Key Ingredients. Typically, there are four key ingredients
that depict the functionality of a prompt for eliciting the
abilities of LLMs to complete the tasks, including task
description, input data, contextual information, and prompt
style. To have an intuitive understanding of our discussion,
we also present three prompt examples for question answer-

ing, meta-review generation, and text-to-SQL in Table 13.
• Task description. A task description is typically a specific

instruction that LLMs are expected to follow. In general, one
should clearly describe the task goal in natural language.
For the tasks with special input or output format, detailed
clarifications are often needed, and one can further utilize
keywords to highlight the special settings for better guiding
LLMs in task completion.

• Input data. In common cases, it is straightforward to
describe input data (e.g., an instance to be responded by
LLMs) in natural language. For special input data, such
as knowledge graph and table, it is necessary to apply an
appropriate and convenient way to make them readable
for LLMs. For structured data, linearization is commonly
used to transform the original records (e.g., knowledge
triples) into sequences [458] due to the simplicity. Further,
the programming language (e.g., executable code) has also
been utilized to formulate the structured data, which can
also support using external tools (e.g., program executor) to
produce the precise results [459, 460].

• Contextual information. In addition to the task descrip-
tion and input data, contextual or background information
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is also essential for specific tasks. For example, retrieved
documents are highly useful for open-domain question
answering as supporting evidence. Both the quality of the
retrieved documents and their relevance to the question
have an impact on the generated answers [461]. Thus, it
needs to include such information in a proper prompt
pattern or expression format. Furthermore, in-context task
exemplars are also helpful for eliciting LLMs to accomplish
a complex task, which can better depict the task goal, the
special output formats, and the mapping relation between
input and output.

• Prompt style. For different LLMs, it is important to
design a suitable prompt style for eliciting their abilities to
solve specific tasks. Overall, one should express the prompt
as a clear question or detailed instruction that can be well
understood and answered. In some cases, it is also useful to
add the prefix or suffix to better guide LLMs. For example,
using the prefix “Let us think step by step” can help elicit
LLMs perform step-by-step reasoning, and using the prefix
“You are an expert on this task (or in this domain)” can boost
the performance of LLMs in some specific tasks. Further, for
chat-based LLMs (e.g., ChatGPT), instead of directly feeding
a long or complex task prompt, it is suggested to decompose
it into multiple prompts for the sub-tasks and then feed
them into LLMs via a multi-turn conversation [448].

Design Principles. Based on the key ingredients of prompts,
we summarize several critical design principles that can
help create more effective prompts for solving various tasks.

• Expressing the task goal clearly. Task descriptions should
not be ambiguous or unclear, which likely lead to in-
accurate or inappropriate responses. This highlights the
need for clear and unambiguous directives when utilizing
these models [66]. A clear and detailed description should
contain various elements to explain a task, including task
objective, input/output data (e.g., “Given a long document, I
want you to generate a concise summary.”), and the response
constraints (e.g., “the length of the summary cannot exceed 50.”).
By providing a well-clarified task description, LLMs can
more effectively understand the target task and generate the
desired output.

• Decomposing into easy, detailed sub-tasks. To solve com-
plex tasks, it is important to decompose the difficult task
into several more easier, detailed sub-tasks for helping
LLMs accomplish the goal step by step, which is closely re-
lated to the planning technique in Section 6.4. For example,
following the suggestion [454], we can explicitly list the sub-
tasks in the form of multiple numbered items (e.g., “Braid a
coherent narrative by performing the following tasks: 1. ...; 2. ...; 3.
...”). By decomposing a target task into sub-tasks, LLMs can
focus on solving easier sub-tasks and finally achieve more
accurate results for complex tasks.

• Providing few-shot demonstrations. As discussed in Sec-
tion 6.2, LLMs can benefit from in-context learning for
solving complex tasks, where the prompts contain a small
number of task examples of the desired input-output pairs,
i.e., few-shot demonstrations. Few-shot demonstrations can
help LLMs learn the semantic mapping between input and
output without parameter tuning. In practice, it is suggested
that one should generate a few high-quality demonstrations
for the target task, which would highly benefit the final task

performance.
• Utilizing model-friendly format. Since LLMs are pre-

trained on specially constructed datasets, there are some
prompt formats that can make LLMs better understand
the instruction. For example, as the OpenAI documentation
suggests, we can use ### or """ as a stop symbol to
separate the instruction and context, which can be better
understood by LLMs. As a general guideline, most existing
LLMs perform a task better in English, thus it is useful to
employ English instructions to solve difficult tasks based on
machine translation.

Useful Tips. In addition to the design principles, we also
present a collection of useful prompt tips based on existing
work or our empirical experiences in Table 12. Note that
these tips are suggested in a general manner, it does not
indicate that they are the best prompts for the corresponding
tasks. This part will be continuously updated with more
guidelines or tips. We welcome readers to contribute to this
collection of prompt tips. We present the detailed procedure
to contribute to the prompt tips, at the link: https://github.
com/RUCAIBox/LLMSurvey/tree/main/Prompts.

Empirical Analysis. We further conduct empirical studies
to present the impact of prompts on task performance. To
conduct the experiments, we select a variety of tasks that
span language generation, knowledge utilization, complex
reasoning, structure data generation, and information re-
trieval. For each task, we manually write a prompt that
follows general guidelines introduced above. Note that the
tested prompts may not be the optimal for these tasks,
since they mainly aim to help readers understand how to
write an effective prompt for solving different tasks. Also,
we add a simplified prompt as the comparison for most
tasks. Following the experimental settings in Section 7.4, we
examine the 3-shot performance of ChatGPT on complex
reasoning tasks (Colored Objects and GSM8k), and zero-
shot performance on other tasks. We report the experimental
results in Table 17, where we also include the supervised
performance in existing papers as reference.
• Carefully designed prompts can boost the zero-shot or few-

shot performance of ChatGPT. By comparing the results of
using different prompts on the same task, we can see that
using the carefully designed prompts can achieve better per-
formance than the simpler ones. In the carefully designed
prompts, we provide a more clearly expressed task de-
scription (e.g., WMT and WikiFact), or use a model-friendly
format (e.g., GSM8k and OBQA). For example, for WikiFact
task, the prompt with a more detailed task description leads
to a performance increase from 29.25 to 31.21.
• More complex tasks can benefit more from careful prompt

engineering on ChatGPT. In the WikiFact and Colored Objects
tasks, the designed prompts have greatly improved the per-
formance of ChatGPT, i.e., from 23.61 to 28.47 on WikiFact
and from 53.20 to 66.75 on Colored Objects. It indicates
the necessity of prompt engineering for LLMs to perform
well on complex tasks, since these tasks typically have
specific output formats or require background knowledge.
Our example prompts provide more detailed task descrip-
tion (e.g., output format and task goal), which can help
ChatGPT better understand the complex task requirement
for fulfilling it.

https://github.com/RUCAIBox/LLMSurvey/tree/main/Prompts
https://github.com/RUCAIBox/LLMSurvey/tree/main/Prompts
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TABLE 12: A collection of useful tips for designing prompts that are collected from online notes [453–456] and experiences
from our authors, where we also show the related ingredients and principles (introduced in Section 6.1.1). We abbreviate
principles as Prin. and list the IDs of the related principles for each prompt. 1⃝: expressing the task goal clearly; 2⃝:
decomposing into easy, detailed sub-tasks; 3⃝: providing few-shot demonstrations; 4⃝: utilizing model-friendly format.

Ingredient Collected Prompts Prin.

Task Description

T1. Make your prompt as detailed as possible, e.g., “Summarize the article into a short paragraph within 50 words. The major
storyline and conclusion should be included, and the unimportant details can be omitted.”

1⃝

T2. It is helpful to let the LLM know that it is an expert with a prefixed prompt, e.g., “You are a sophisticated expert in the
domain of compute science.”

1⃝

T3. Tell the model more what it should do, but not what it should not do. 1⃝
T4. To avoid the LLM to generate too long output, you can just use the prompt: “Question: Short Answer: ”. Besides, you can
also use the following suffixes, “in a or a few words”, “in one of two sentences”.

1⃝

Input Data I1. For the question required factual knowledge, it is useful to first retrieve relevant documents via the search engine, and
then concatenate them into the prompt as reference.

4⃝

I2. To highlight some important parts in your prompt, please use special marks, e.g., quotation (””) and line break (\n). You
can also use both of them for emphasizing.

4⃝

Contextual Information

C1. For complex tasks, you can clearly describe the required intermediate steps to accomplish it, e.g., “Please answer the
question step by step as: Step 1 - Decompose the question into several sub-questions, · · · ”

2⃝

C2. If you want LLMs to provide the score for a text, it is necessary to provide a detailed description about the
scoring standard with examples as reference.

1⃝

C3. When LLMs generate text according to some context (e.g., making recommendations according to purchase history),
instructing them with the explanation about the generated result conditioned on context is helpful to improve the quality
of the generated text.

2⃝

C4. An approach similar to tree-of-thoughts but can be done in one prompt: e.g., Imagine three different experts are answering
this question. All experts will write down one step of their thinking, then share it with the group of experts. Then all experts will go on
to the next step, etc. If any expert realizes they’re wrong at any point then they leave. The question is

2⃝

Demonstration

D1. Well-formatted in-context exemplars are very useful, especially for producing the outputs with complex formats. 3⃝
D2. For few-shot chain-of-thought prompting, you can also use the prompt “Let’s think step-by-step”, and the few-shot
examples should be separated by “\n” instead of full stop.

1⃝ 3⃝

D3. You can also retrieve similar examples in context to supply the useful task-specific knowledge for LLMs. To retrieve
more relevant examples, it is useful to first obtain the answer of the question, and then concatenate it with the question for
retrieval.

3⃝ 4⃝

D4. The diversity of the in-context exemplars within the prompt is also useful. If it is not easy to obtain diverse questions,
you can also seek to keep the diversity of the solutions for the questions.

3⃝

D5. When using chat-based LLMs, you can decompose in-context exemplars into multi-turn messages, to better match the
human-chatbot conversation format. Similarly, you can also decompose the reasoning process of an exemplars into multi-turn
conversation.

3⃝

D6. Complex and informative in-context exemplars can help LLMs answer complex questions. 3⃝
D7. As a symbol sequence can typically be divided into multiple segments (e.g., i1, i2, i3 −→ i1, i2 and i2, i3), the preceding
ones can be used as in-context exemplars to guide LLMs to predict the subsequent ones, meanwhile providing historical
information.

2⃝ 3⃝

D8. Order matters for in-context exemplars and prompts components. For very long input data, the position of the question
(first or last) may also affect the performance.

3⃝

D9. If you can not obtain the in-context exemplars from existing datasets, an alternative way is to use the zero-shot
generated ones from the LLM itself.

3⃝

Other Designs

O1. Let the LLM check its outputs before draw the conclusion, e.g., “Check whether the above solution is correct or not.” 2⃝
O2. If the LLM can not well solve the task, you can seek help from external tools by prompting the LLM to manipulate
them. In this way, the tools should be encapsulated into callable APIs with detailed description about their functions, to
better guide the LLM to utilize the tools.

4⃝

O3. The prompt should be self-contained, and better not include pronouns (e.g., it and they) in the context. 1⃝
O4. When using LLMs for comparing two or more examples, the order affects the performance a lot. 1⃝
O5. Before the prompt, assigning a role for the LLM is useful to help it better fulfill the following task instruction, e.g., “I
want you to act as a lawyer”.

1⃝

O6. OpenAI models can perform a task better in English than other languages. Thus, it is useful to first
translate the input into English and then feed it to LLMs.

4⃝

O7. For multi-choice questions, it is useful to constrain the output space of the LLM. You can use a more detailed explanation
or just imposing constraints on the logits.

1⃝

O8. For sorting based tasks (e.g., recommendation), instead of directly outputting the complete text of each item after sorting,
one can assign indicators (e.g., ABCD) to the unsorted items and instruct the LLMs to directly output the sorted indicators.

1⃝

• For mathematical reasoning tasks, it is more effective to
design specific prompts based on the format of programming
language. For GSM8k, the designed prompt employs code-
formatted few-shot demonstrations to convert this mathe-
matical reasoning task into code generation task, which can
leverage the strong code synthesis ability of ChatGPT for
solving mathematical problems. Further, with the help of an
external program executor, we are able to obtain more pre-
cise results instead of using LLMs for arithmetic operation.
As we can see, the performance is boosted from 78.47 to
79.30 on GSM8k, indicating the usefulness of programming

language in mathematical reasoning tasks.

• In knowledge utilization and complex reasoning tasks,
ChatGPT with proper prompts achieves comparable performance
or even outperforms the supervised baselines methods. In knowl-
edge utilization and complex reasoning tasks, ChatGPT
with proper zero-shot or few-shot prompts can achieve
comparable performance or even outperform the super-
vised methods, e.g., 31.21 (ChatGPT) v.s. 34.20 (supervised
baseline) on WikiFact. Despite that, ChatGPT still performs
worse than supervised baseline models on some specific
tasks (e.g., ARC and WikiFact), since these supervised mod-
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els have been specially optimized with task-specific data.
• Through suitable prompt engineering, LLMs can handle

some non-traditional NLP tasks. With the help of specific
prompts, ChatGPT can also accomplish non-traditional NLP
tasks, i.e., the general recommendation and conversational
recommendation. A key point is that these tasks can be
well expressed or described in natural language. However,
the performance of ChatGPT is still far from the referenced
performance in these tasks, as LLMs cannot directly fit these
tasks, which require specific domain knowledge and task
adaptation [357, 462].

6.1.2 Prompt Optimization

Although manually creating task prompts is more intuitive,
it is time consuming and, more importantly, models are
highly sensitive to the crafted prompts—improper prompts
will lead to low task performance (as shown in Table 17).
Therefore, a large body of studies propose automatic opti-
mization approaches for discrete prompts and continuous
prompts to achieve the optimal performance [396, 405]. In
this part, we will detail these studies from two perspectives,
i.e., discrete prompts and continuous prompts.

Discrete Prompt Optimization. Discrete prompt is typically
composed of a sequence of natural language tokens. Despite
that the form is simple and flexible, optimizing prompts in
discrete space is a challenging problem due to the combina-
torial huge search space. To automatically search effective
prompts for downstream tasks, existing studies propose a
wide spectrum of discrete prompt approaches, which are
detailed as follows.
• Gradient-based approaches. This kind of approaches

aims to optimize the prompt search process by maximizing
the output likelihood via gradient update [405, 464–466].
As a representative work, Auto-Prompt [405] proposes a
gradient-guided method to greedily searches the optimal
token for each position of the prompt, leveraging the gra-
dient approximated by the change in the log-likelihood
when replacing a prompt token with another candidate
token from vocabulary. However, such a search process
can be extremely expensive since it needs to evaluate each
candidate token for each position of the prompt, leading to a
number of additional forward passes. Therefore, improved
gradient method [464] has been proposed by transforming
discrete tokens into continuous embeddings and computing
the gradient on continuous space during optimization.
• RL-based approaches. Since discrete prompts are difficult

to be learned through gradient back-propagation, a num-
ber of studies propose to formulate the discrete prompt
optimization as a reinforcement learning (RL) problem and
leverage RL algorithms for optimization [467, 468]. For ex-
ample, RLPrompt [467] trains a policy network to generate
desired prompts with multiple reward functions. In this
approach, several effective reward stabilization strategies
are also proposed to enhance the RL training efficiency.
Compared to previous work that requires sufficient data
for training, TEMPERA [468] proposes to directly generate
prompts at test time by utilizing a pre-trained RL agent
to sequentially edit different parts of an manually-written
initial prompt.

• Edit-based approaches. For the above methods, gradient-
based and RL-based tuning can be extremely computation-
ally demanding for ever larger models, and may not be fea-
sible for API-based model calls (e.g., ChatGPT). Therefore,
another line of work aims to directly edit existing prompts
based on the task performance. Specifically, GPS [469] bor-
rows an idea from the genetic algorithm and proposes
a genetic prompt search method that utilizes a language
model (i.e., T5) to edit prompts by taking the cloze task form.
In addition to model based edit methods, human-defined
operations can be also employed for prompt editing [470],
including delete, swap, paraphrase, and addition. Based
on these operations, they iteratively edit the prompts and
greedily search for the best prompt guided by the model
performance on a small pool of examples.
• LLM-based approaches. Due to the exceptional capacities

of LLMs, an increasing number of studies directly leverage
LLMs as prompt generator [471–473]. Specifically, APE [471]
utilizes an LLM to generate initial prompts, then selects
the best prompt with the highest accuracy, and finally im-
proves the best candidate through an iterative Monte Carlo
search method. Similarly, APO [472] instructs the LLM to
generate text feedback on how to refine an old prompt
into new improved prompts. However, their search in the
prompt space might be inefficient without fully considering
the whole refinement trace of previous prompts, thus po-
tentially leading to sub-optimal results. Therefore, another
study [473] incorporates the previous prompts with their
scores to instruct LLMs for progressively generating better
new prompts. However, these approaches still struggle in
exploring the vast space of effective prompts. Inspired by
human-like trial-and-error, prompt optimization is further
formulated as a strategic planning problem [474] and uses
Monte Carlo tree search to navigate the vast prompt space.

Continuous Prompt Optimization. Different from discrete
prompts, continuous prompts consist of a set of continuous
embeddings, which can be directly optimized through the
gradient update based on the loss of downstream tasks.
Note that continuous prompt optimization has been mainly
studied in PLMs, but draws limited attention in era of LLMs
due to their massive magnitudes of parameters. We include
the discussion of this part for content completeness. In prior
work, most studies typically rely on supervised learning to
train continuous prompts based on task data. Furthermore,
in data-scarce scenarios, transfer learning methods can be
employed to alleviate the lack of labeled data on target tasks.
These two approaches are detailed below.
• Prompt learning with sufficient data. In this approach,

most existing methods regard continuous prompts as train-
able model parameters and then leverage supervised learn-
ing to optimize the continuous prompts by minimizing
the cross-entropy loss based on sufficient downstream task
data [396, 397, 401, 475]. As discussed in Section 5.3.1,
prefix tuning [396] prepends a sequence of prefixes (i.e.,
a set of trainable continuous vectors) to each Transformer
layer in language models, while prompt tuning [397] only
incorporates trainable prompt vectors at the input layer. By
fixing the large-scale parameters of LLMs and only tuning
continuous prompt vector, this kind of approaches can be
extremely parameter-efficient (Section 5.3). However, these
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TABLE 13: Example instructions collected from [454, 463]. The blue text denotes the task description, the red text denotes
the contextual information, the green text denotes the demonstrations, and the gold text denotes the prompt style.

Use the provided articles delimited by triple quotes to answer questions. If the answer cannot be found in the articles, write “I could not find an
answer.”
Articles: “““Joao Moutinho is a Portuguese footballer who last played as a central midfielder for Premier League club Wolverhampton Wanderers
and the Portugal national team.”””
Question: Is the following sentence plausible? ’Joao Moutinho was out at third.’
Answer: Let’s think step by step. Joao Moutinho is a soccer player. Being out at third is part of baseball, not soccer. So the answer is No.
...
<Demonstrations>

Articles: <insert articles, each delimited by triple quotes>
Question: <insert question>
Answer:

Prepare a meta-review by answering the following questions from the reviewer comments (provided after the questions).
1. Based on the reviewer’s comments, what are the core contributions made by this manuscript?
2. What are the common strengths of this work, as mentioned by multiple reviewers?
3. What are the common weaknesses of this work, as highlighted by multiple reviewers?
4. What suggestions would you provide for improving this paper?
5. What are the missing references mentioned by the individual reviews?
The review texts are below: <insert three comments R1, R2, R3 from the reviewers>
Meta-review: <insert meta-review>
...
<Demonstrations>

Provide justification for your response in detail by explaining why you made the choices you actually made. A good output should be coherent,
highlight major strengths/issues mentioned by multiple reviewers, be less than 400 words in length, and finally, the response should be in English
only.

The review texts are below: <insert three comments R1, R2, R3 from the reviewers>
Meta-review:

CREATE TABLE Highschooler (
ID int primary key,
name text,
grade int
);
/*
3 example rows:
SELECT * FROM Highschooler LIMIT 3;
ID name grade
1234 Janie 8
5678 Mary 8
9012 Mike 9
*/
Using valid SQLite, answer the following questions for the tables provided above.
Question: What is Kyle’s id?
SQL: SELECT ID FROM Highschooler WHERE name=“Kyle”;
...
<Demonstrations>

Question: <insert question>
SQL:

approaches are typically independent of the inputs, lacking
sufficient consideration of input semantics. Therefore, the
authors in [475] propose context tuning, where the continu-
ous prompts are derived based on the input text and learned
through the downstream task losses.

• Prompt transferring with scarce data. Supervised learn-
ing approaches demand in sufficient training data to learn
optimal continuous prompts, which may not work well
in data-scarce domains and tasks. To address this prob-
lem, SPoT [476] proposes a prompt-based transfer learning
approach, which first learns a single continuous prompt
for several representative source tasks and then uses this
prompt to initialize the prompt for a target task. However,

this approach leverages the same prompt for solving all
instances of the target task. For a single task, even a well-
learned prompt may not be suitable for all the data instances
from a large population. To address this issue, an improved
method [477] designs an adaptive attention mechanism dur-
ing the prompt transfer process to derive the target prompts,
considering both task- and instance-level information. The
prompt transfer paradigm can leverage the knowledge of
data-sufficient source tasks encoded in source prompts for
solving data-scarce target tasks.
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6.2 In-Context Learning
As a special prompting form, in-context learning (ICL) is
first proposed along with GPT-3 [55], which has become a
typical approach to utilizing LLMs.

6.2.1 ICL Formulation
As stated in [55], ICL uses a formatted natural language
prompt, consisting of the task description and/or a few task
examples as demonstrations. Figure 14 presents an illustra-
tion of ICL. First, starting with a task description, a few ex-
amples are selected from the task dataset as demonstrations.
Then, they are combined in a specific order to form nat-
ural language prompts with specially designed templates.
Finally, the test instance is appended to the demonstration
as the input for LLMs to generate the output. Based on task
demonstrations, LLMs can recognize and perform a new
task without explicit gradient update.

Formally, let Dk = {f(x1, y1), . . . , f(xk, yk)} represent
a set of demonstrations with k examples, where f(xk, yk) is
the prompt function that transforms the k-th task example
into natural language prompts. Given the task description
I , demonstration Dk, and a new input query xk+1, the
prediction of the output ŷk+1 generated from LLMs can be
formulated as follows40:

LLM
(
I, f(x1, y1), . . . , f(xk, yk)︸ ︷︷ ︸

demonstrations

, f(xk+1︸ ︷︷ ︸
input

, ︸︷︷︸
answer

)
)
→ ŷk+1.

(12)
where the actual answer yk+1 is left as a blank to be
predicted by the LLM. Since the performance of ICL heavily
relies on demonstrations, it is important to properly design
them in the prompts. According to the construction process
in Equation (12), we focus on three major aspects of for-
matting demonstrations in the prompts, including how to
select examples that make up demonstrations, format each
example into the prompt with the function f(·), and arrange
demonstrations in a reasonable order.

A comprehensive review of ICL has been presented in
the survey paper [50], and we suggest the readers refer-
ring to it for a more general, detailed discussion on this
topic. Compared with this survey, we specially focus on the
discussion of applying ICL to LLMs in two major aspects,
i.e., demonstration design and the underlying mechanism
of ICL. Also, ICL has a close connection with instruction
tuning (discussed in Section 5.1) in that both utilize nat-
ural language to format the task or instances. However,
instruction tuning needs to fine-tune LLMs for adaptation,
while ICL only prompts LLMs for utilization. Furthermore,
instruction tuning can enhance the ICL ability of LLMs to
perform target tasks, especially in the zero-shot setting (only
using task descriptions) [69].

6.2.2 Demonstration Design
Several studies have shown that the effectiveness of ICL
is highly affected by the design of demonstrations [432,

40. When ICL was introduced in the GPT-3’s paper [55], it was
originally defined to be a combination of the task description and
demonstration examples, wherein either component is dispensable.
Following this definition, when a LLM is required to solve an unseen
task by using only task descriptions, it can be also considered to
perform ICL for task solving, whereas the ICL ability can be enhanced
by instruction tuning.

478, 479] Following the discussion in Section 6.2.1, we will
introduce the demonstration design of ICL from three major
aspects, i.e., demonstration selection, format, and order.

Demonstration Selection. The performance of ICL tends
to have a large variance with different demonstration exam-
ples [428], so it is important to select a subset of examples
that can effectively leverage the ICL capability of LLMs.
There are two main demonstration selection approaches,
namely heuristic and LLM-based approaches:
• Heuristic approaches. Due to their simplicity and low

costs, existing work widely adopts heuristic methods to
select demonstrations. Several studies employ a k-NN based
retriever to select examples that are semantically relevant to
the query [428, 480]. However, they perform the selection
individually for each example, rather than evaluating the
example set as a whole. To resolve this issue, diversity-
based selection strategies are proposed to choose the most
representative set of examples for specific tasks [481, 482].
Furthermore, in [483], both relevance and diversity are taken
into consideration when selecting demonstrations.
• LLM-based approaches. Another line of work selects

demonstrations by making use of LLMs. For example, LLMs
can be utilized to directly measure the informativeness
of each example according to the performance gain after
adding the example [484]. In addition, EPR [429] proposes
a two-stage retrieval approach that first recalls similar ex-
amples with an unsupervised method (e.g., BM25) and then
ranks them using a dense retriever (trained with positive
and negative examples labeled by LLMs). As an alterna-
tive approach, the task of demonstration selection can be
formulated into a RL problem, where LLMs serve as the
reward function to provide feedback for training the policy
model [485]. Since LLMs perform well for text annota-
tion [486], some recent studies employ LLM itself as the
demonstration generator without human intervention [487].

To summarize, as discussed in [488], the selected demon-
stration examples in ICL should contain sufficient informa-
tion about the task to solve as well as be relevant to the test
query, for the above two selection approaches.

Demonstration Format. After selecting task examples, the
next step is to integrate and format them into a natural
language prompt for LLMs. A straightforward method is to
instantiate a pre-defined template with the corresponding
input-output pairs [36]. To construct more informative tem-
plates, recent studies consider adding task descriptions [69]
or enhancing the reasoning capability of LLMs with chain-
of-thought prompts [33]. For instance, in [166], the authors
collect a large-scale dataset with task descriptions written by
humans. After tuning with this dataset, the performance on
seen tasks can be boosted, and LLMs can also generalize to
unseen tasks to some extent. To reduce the annotation costs,
a semi-automated approach has been proposed in [143]
by employing a seed set consisting of human-written task
descriptions to guide LLMs to generate task descriptions
for new tasks. Since it is costly to manually annotate
demonstration formats for different tasks, some work also
studies how to automatically generate high-quality ones.
As two representative methods, Auto-CoT [434] leverages
LLMs with the zero-shot prompt “Let’s think step by step”
for generating intermediate reasoning steps, while least-to-
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Answer the following mathematical reasoning questions:

Q:    Sam has 12 marbles. He gives 1/4 of them to his sister. 
How many marbles does Sam have left?

N x 

If a rectangle has a length of 6 cm and a width of 3 cm, 
what is the perimeter of the rectangle?

For a rectangle, add up the length and width and double it. 
So, the perimeter of this rectangle is (6 + 3) x 2 = 18 cm.

The answer is 18 cm.

Q:

A:

LLMA: The answer is 9.
A: He gives (1 / 4) x 12 = 3 marbles. 
So Sam is left with 12 – 3 = 9 marbles. 
The answer is 9.

: Chain-of-Thought: Task description : Demonstration : Query

In-Context Learning Chain-of-Thought Prompting

Q:

A:

Q:

A:

Answer the following mathematical reasoning questions:

Q:     Sam has 12 marbles. He gives 1/4 of them to his sister. 
How many marbles does Sam have left?

N x The answer is 8.
If a rectangle has a length of 6 cm and a width of 3 cm, 
what is the perimeter of the rectangle?
The answer is 18 cm.

If you have 12 candies and you give 4 candies to your friend, 
how many candies do you have left?

Fig. 14: A comparative illustration of in-context learning (ICL) and chain-of-thought (CoT) prompting. ICL prompts LLMs
with a natural language description, several demonstrations, and a test query, while CoT prompting involves a series of
intermediate reasoning steps in prompts.

most prompting [439] first queries LLMs to perform prob-
lem decomposition and then utilizes LLMs to sequentially
solve sub-problems based on the intermediate answers to
previously solved ones.

Demonstration Order. LLMs are shown to sometimes suffer
from the recency bias, i.e., they are prone to repeat answers
that are near the end of demonstrations [479]. Thus, it is
important to arrange demonstrations (i.e., task examples)
in a reasonable order. Early work proposes several heuris-
tic methods to quickly find a good order. For example,
demonstrations can be directly organized according to their
similarity to the query in the embedding space [428]: the
more similar, the closer to the end. In addition, global
and local entropy metrics can be used to score different
demonstration orders [432]. To integrate more task infor-
mation, some recent studies propose to minimize the code
length required to compress and transmit task labels, which
is inspired by information theory [489]. However, these
methods need additional labeled data as the validation
set to evaluate the performance of specific demonstration
orders. To eliminate this need, the authors in [432] propose
to sample the validation data from the LLM itself.

6.2.3 Underlying Mechanism

After pre-training, LLMs can exhibit intriguing ICL capabil-
ity without being updated. In what follows, we discuss two
key questions about the ICL ability of LLMs, i.e., “how does
pre-training affect the ICL ability” and “how do LLMs perform
ICL during inference”.

How Pre-Training Affects ICL? ICL is first proposed in
GPT-3 [55], and it has been shown that the ICL ability
becomes more significant with a larger model size. Further,
some studies reveal that small-scale PLMs can also demon-
strate a strong ICL ability by continual pre-training [490]
or fine-tuning [491] on specially designed training tasks,
which typically involve additional task examples in the

input during the training process. It suggests that the design
of training tasks is an important influence factor on the ICL
capability of LLMs. Besides training tasks, recent studies
have also investigated the relationship between ICL and
pre-training corpora [488, 492]. For example, ICL can be
theoretically explained as the product of pre-training on
documents that exhibit long-range coherence [488]. Fur-
ther, another study [492] theoretically analyzes that when
scaling parameters and data, LLMs based on next-word
prediction can emerge the ability of ICL by learning from
the compositional structure (e.g., how words and phrases
are combined to form larger linguistic units like sentences)
present in language data.

How LLMs Perform ICL? At the inference stage, researchers
focus on analyzing how the ICL capability operates based
on given demonstrations since no explicit learning or updat-
ing is involved. According to the discussion in [493], there
are two main ways for LLMs to utilize demonstrations: task
recognition and task learning.
• Task recognition. In the first way, LLMs recognize the

task from demonstrations and utilize the prior knowledge
obtained from pre-training to solve new test tasks. A Proba-
bly Approximately Correct (PAC) framework [494] has been
proposed to assess the learnability of ICL. It assumes that
there exists a latent variable representing the task in the pre-
training data, and LLMs have been shown to be capable
of capturing this variable from demonstrations, enabling
them to recognize the task in ICL. Also, the interpretation
of ICL as task recognition is supported by several empir-
ical studies [478, 495]. For example, it has been observed
that replacing the inputs or labels of demonstrations with
random ones sampled from the input or label space does
not seriously hurt the performance of LLMs, indicating that
LLMs mainly recognize the target task from demonstrations
instead of learning from them [478, 493]. Similarly, LLMs
can exhibit decent performance even if the prompt template
is irrelevant or misleading [495].
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• Task learning. In the second way, LLMs learn new tasks
unseen in the pre-training stage only through demonstra-
tions. Specially, task learning is analyzed mainly from the
perspective of gradient descent and considered as implicit
fine-tuning [65, 496]. Then, ICL can be explained as follows:
by means of forward computation, LLMs generate meta-
gradients with respect to demonstrations and implicitly per-
form gradient descent via the attention mechanism. Exper-
iments also show that certain attention heads in LLMs are
capable of performing task-agnostic atomic operations (e.g.,
copying and prefix matching), which are closely related to
the ICL ability [497]. Furthermore, some studies abstract
ICL as an algorithm learning process [498]. For example, the
authors in [498] find that LLMs essentially encode implicit
models through their parameters during pre-training. With
the examples provided in ICL, LLMs can implement learn-
ing algorithms such as gradient descent or directly compute
the closed-form solution to update these models during
forward computation. Under this explanation framework,
it has been shown that LLMs can effectively learn simple
linear functions and even some complex functions like deci-
sion trees with ICL [498].

As discussed in a recent study [493], LLMs exhibit the
abilities of both task recognition and task learning in ICL,
but the two abilities seem to be possessed with different
model scales. As shown in the experiments [493], the ability
of task recognition is easier to obtain, and even a small LM
with only 350M parameters can exhibit this ability, while
task learning can only emerge for LLMs with at least 66B
parameters. Another study [499] also supports this find-
ing with specially designed experiments. They set up the
tasks with flipped and semantically unrelated labels in the
experiment, which require task learning when performing
ICL. The results suggest that small LMs tend to disregard
the labels and mainly depend on their prior knowledge
to accomplish the task, while LLMs have the ability to
surpass their prior knowledge and acquire new knowledge
from demonstrations, resulting in better outcomes. Further-
more, to improve the task learning ability, Meta-In-Context
Learning [500] proposes to include multiple related tasks
instead of just a single one in the prompt. In addition,
Symbol Tuning [501] fine-tunes LLMs on demonstrations
with semantically unrelated labels (e.g., foo/bar instead of
positive/negative for sentiment analysis), forcing LLMs to
learn the task from demonstrations instead of relying on
prior knowledge.

6.3 Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting [33, 502] is an improved
prompting strategy to boost the performance of LLMs on
complex reasoning tasks, such as arithmetic reasoning [503],
commonsense reasoning [504], and symbolic reasoning [33].
Instead of simply constructing the prompts with input-
output pairs like ICL, CoT prompting further incorporates
intermediate reasoning steps, which serve as the bridge be-
tween inputs and outputs. Figure 14 presents an illustration
of CoT. In the following part, we will first elaborate on the
basic CoT prompting approach and its improved strategies,
then discuss when and why CoT prompting works.

6.3.1 Basic CoT Prompting Approach

CoT prompting is first proposed as an extension of ICL [33],
which augments each demonstration ⟨input, output⟩ as
⟨input, CoT, output⟩. A CoT is a series of intermediate
reasoning steps for connecting the input and output. With
these augmented demonstrations, LLMs can follow them to
generate CoTs and the answer for a new input. However,
unlike ⟨input, output⟩ pairs in ICL, CoTs are difficult to
obtain and usually require human annotation. Fortunately,
it has been found that LLMs can be triggered to generate
CoTs through simple instructions like “Let’s think step by
step.” [505], making CoT prompting easy to use. There are
also alternative magic prompts that can elicit the ability
of CoT reasoning and further improve the performance of
LLMs, such as “Take a deep breath and work on this problem
step-by-step.” [473].

As illustrated in Figure 15, the generation process of
CoT follows a chain structure in the basic CoT prompt-
ing approach, where LLMs generate CoTs step by step.
Typically, CoT takes the format of natural language text.
However, textual CoTs may not work well on complex tasks
that require rigorous logic for reasoning. Considering this,
some work uses code [506, 507] due to its structured and
precise nature. Furthermore, the authors in [508] propose
to dynamically select text or code as the format of CoTs to
combine their advantages.

6.3.2 Improved CoT Prompting Strategies

Despite the performance improvement in complex reason-
ing tasks, CoT prompting still suffers from problems like
incorrect reasoning and instability. In this part, we first
introduce how to design better CoT prompts and enhanced
CoT generation strategies, and then introduce the extension
of the basic chain structure of CoT. Figure 15 illustrates the
evolution of representative CoT prompting strategies.

Better Prompt Design. Since CoT prompting relies on
prompts to elicit the reasoning capabilities of LLMs, the
design of prompts is critical to its performance. As a di-
rect approach, it is shown that using diverse CoTs (i.e.,
multiple reasoning paths for each problem) can effectively
enhance the performance [437]. Another intuitive idea is
that prompts with more complex reasoning paths are more
likely to elicit the reasoning ability of LLMs [433], which
can result in higher accuracy in generating correct an-
swers. However, all these approaches rely on annotated CoT
datasets, which limits their use in practice. To overcome
this limitation, magic instructions such as “Let’s think step
by step” can be used to automatically construct CoTs by
prompting LLMs [434].

Enhanced CoT Generation. Since LLMs are prone to
producing incorrect reasoning steps and exhibiting insta-
bility in the generation process, there are a number of
studies [436, 509] to improve the generation of CoT. In this
part, we will introduce two typical approaches to enhancing
the generation of CoT: sampling- and verification-based
methods.
• Sampling-based methods. LLMs are known to suffer

from instability during inference, which can lead to un-
faithfulness in the generated reasoning steps. To address
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Fig. 15: An illustration of the evolution of CoT prompting strategies. It begins with the basic CoT approach and progresses
to enhanced CoT generation techniques, including sampling-based and verification-based methods. Finally, it extends to
variations of the chain structure, such as trees and graphs. Here, “thought” refers to an intermediate reasoning step as
stated in [33, 451].

this issue, some work proposes to sample multiple rea-
soning paths instead of using greedy decoding. As a rep-
resentative solution, self-consistency [436] first generates
several reasoning paths and then takes an ensemble over
the corresponding answers, selecting the most consistent
one through majority voting. However, such a method can
still lead to wrong answers when most of the reasoning
paths are misled. Considering this, the authors in [433] only
vote on the k most complex reasoning paths based on their
observation that reasoning paths with higher complexity
(e.g., more reasoning steps) usually have better performance.
Furthermore, MCR [510] proposes referring to the steps
from other reasoning paths when generating the next step,
and performs reasoning across multiple reasoning paths to
generate the final answer.
• Verification-based methods. The sequential nature of rea-

soning steps in CoTs can lead to the accumulation of errors
in the generated CoTs when certain steps are incorrect. To
mitigate this problem, recent studies propose to verify the
correctness of generated reasoning steps with either trained
verifiers or LLMs themselves. For example, DIVERSE [509]
trains solution-level and step-level verifiers respectively to
examine the reasoning steps at different granularities. An-
other approach [511] utilizes LLMs to verify the correctness
of reasoning steps through step-by-step self-verification
with a specially designed reasoning format. In addition,
several studies propose backward reasoning for verification:
it first deduces the necessary question conditions [512, 513]
or variables [514] from the model’s predictions, and then
compares them with the original ones.

Reasoning Structure Extension. Despite the generality, the
chain reasoning structure of basic CoT prompting limits its
effectiveness in solving complex tasks, which require ex-
ploration like foresight and backtracking during inference.
Therefore, many studies have been devoted to extending
the reasoning structure by designing more intricate thought

processes, e.g., tree- and graph-structured reasoning.
• Tree-structured reasoning. This approach (exemplified by

Tree of Thoughts (ToT) [451, 515]) formulates the reasoning
process in a hierarchical tree structure, where intermediate
thoughts are nodes. In this way, it enables LLMs to explore
multiple reasoning paths in parallel and further supports
the operation of lookahead and backtracking to facilitate
more comprehensive decisions. In addition, TouT [516] takes
the uncertainty of intermediate thoughts into account for
thought evaluation based on Monte Carlo Dropout.
• Graph-structured reasoning. Although the tree structure

facilitates parallel reasoning, it also imposes restrictions on
the reasoning process. With more complex topological struc-
tures, graphs offer greater flexibility in reasoning, enabling
the characterization of more intricate relationships and in-
teractions. For instance, Graph of Thoughts (GoT) [517, 518]
conceptualizes the reasoning process as an arbitrary graph,
where vertices denote intermediate thoughts and edges
denote the interdependence between these thoughts. Com-
pared with ToT, it can further utilize thoughts from other
reasoning paths when generating new thoughts. However,
such an approach requires a large number of interactions
with LLMs, making the thought exploration process highly
inefficient. To reduce potentially meaningless thought
exploration, XoT [519] further proposes to guide the search
of thoughts with pre-trained policy and value networks.

6.3.3 Further Discussion on CoT Prompting
In this part, we present discussions regarding two funda-
mental questions related to CoT prompting, i.e., “when does
CoT prompting work for LLMs” and “why can LLMs perform
CoT reasoning”.

When CoT Prompting Works For LLMs? Since CoT reason-
ing is an emergent ability [31], it only has a positive effect
on sufficiently large models (typically containing 10B or
more parameters [33]) but not on small models. Moreover,
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since CoT prompting augments the standard prompting
with intermediate reasoning steps, it is mainly effective
for the tasks that require step-by-step reasoning [33], e.g.,
arithmetic reasoning, commonsense reasoning, and sym-
bolic reasoning. Whereas, for other tasks that do not rely
on complex reasoning, CoT prompting might lead to worse
performance than standard prompting [438], e.g., MNLI-
m/mm, SST-2, and QQP from GLUE [260]. Interestingly, it
seems that the performance gain brought by CoT prompting
could be significant only when standard prompting yields
poor results [33].

Why LLMs Can Perform CoT Reasoning? As the second
question, we discuss the underlying mechanism of CoT
prompting in the following two aspects.
• The source of CoT reasoning ability. Regarding the source

of CoT reasoning capability, it is widely hypothesized that it
can be attributed to training on code since models trained on
it show a strong reasoning ability [47, 520, 521]. Intuitively,
code data is well organized with algorithmic logic and
programming flow, which may be useful to improve the rea-
soning performance of LLMs. However, this hypothesis still
lacks publicly reported evidence of ablation experiments
(with and without training on code). In addition, instruction
tuning seems not to be the key reason for obtaining the CoT
reasoning ability, since it has been empirically shown that
instruction tuning on non-CoT data does not improve the
performance on held-out CoT reasoning benchmarks [69].
• The effect of CoT prompting components. The major dis-

tinction between CoT prompting and standard prompting
is the incorporation of reasoning paths prior to the final
answer. Thus, some researchers investigate the effects of
different components in the reasoning paths. Specifically,
a recent study identifies three key components in CoT
prompting, namely symbols (e.g., numerical quantities in
arithmetic reasoning), patterns (e.g., equations in arithmetic
reasoning), and text (i.e., the rest of tokens that are not
symbols or patterns) [522]. It is shown that the latter two
parts (i.e., patterns and text) are essential to the model
performance, and removing either one would lead to a
significant performance drop. However, the correctness of
symbols and patterns does not seem critical. Further, there
exists a symbiotic relationship between text and patterns:
the text helps LLMs to generate useful patterns, and patterns
aid LLMs to understand tasks and generate texts that help
solve them [522].

In summary, CoT prompting provides a general and
flexible approach to eliciting the reasoning ability of LLMs.
There are also some preliminary attempts to extend this
technique to solve multimodal [523] and multilingual
tasks [524].

6.4 Planning for Complex Task Solving

Prompting with ICL and CoT is a conceptually simple yet
general approach to solving various tasks. However, this
approach struggles with complex tasks like mathematical
reasoning [525] and multi-hop question answering [526]. As
an enhanced approach, prompt-based planning has been
proposed to break down complex tasks into smaller sub-
tasks and generate a plan of actions to accomplish the task.

Plan ExecutorTask Planner
(LLM)

Environment

Task Result

Plan

(generate & refine)

Feedback Action

Internal External

LLM World

…

Others

Planning
Framework

Memory Tool

Human

Fig. 16: An illustration of the formulation for prompt based
planning by LLMs for solving complex tasks.

6.4.1 The Overall Framework

In this part, we first formulate the general planning
paradigm of LLMs for solving complex tasks, which is
illustrated in Figure 16.

In this paradigm, there are typically three components:
task planner, plan executor, and environment41. Specifically,
task planner, which is played by LLMs, aims to generate the
whole plan to solve a target task. The plan can be presented
in various forms, e.g., an action sequence in the form of
natural language [439] or an executable program written in
programming language [443]. The LLM-based task planner
can be enhanced with the memory mechanism for plan
storage and retrieval, which is helpful for long-horizon
tasks. Then, plan executor is responsible for executing the
actions in the plan. It can be implemented by models like
LLMs for textual tasks [441] or by tools like code interpreters
for coding tasks [450]. Furthermore, environment refers to
where the plan executor carries out the actions, which can
be set differently according to specific tasks, e.g., the LLM
itself [527] or an external virtual world like Minecraft [528].
It provides feedback about the execution result of the action to
the task planner, either in the form of natural language [450]
or from other multimodal signals [446].

For solving a complex task, the task planner first needs to
clearly understand the task goal and generate a reasonable
plan based on the reasoning of LLMs (See Section 6.4.2).
Then, the plan executor acts according to the plan in the
environment, and the environment will produce feedback
for the task planner (See Section 6.4.3). The task planner
can further incorporate the feedback obtained from the
environment to refine its initial plan and iteratively perform
the above process to get better results as the task solution
(See Section 6.4.4).

41. Despite the similarity with RL, our formulation decouples the
planning and execution phases, whereas in RL, they are typically
interleaved in the agent. This paradigm is defined in a general yet
slightly loose way, and it mainly aims to help readers understand the
key idea underlying the planning approaches of LLMs.
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6.4.2 Plan Generation
Plan generation focuses on directly generating action se-
quences by prompting LLMs. Based on the format of the
generated plans, existing work can be divided into two
groups: text-based and code-based approaches.

Text-based Approaches. It is straightforward for LLMs to
generate plans in the form of natural language. In this
approach, LLMs are prompted to generate a sequence of
actions for the plan executor to perform and solve the com-
plex task. For example, Plan-and-Solve [441] adds explicit
instructions like “devise a plan” to directly prompt
the LLM for planning in a zero-shot manner, while Self-
planning [529] and DECOMP [440] add demonstrations in
the prompt to guide the LLM to devise a plan through ICL.
Following this way, some work further considers incorpo-
rating extra tools or models when planning. For example,
ToolFormer [80] first annotates a pre-training corpus with
potential API calls using LLMs, and then fine-tunes LLMs
on it, so that LLMs can learn when and how to call APIs
and incorporate the results returned by APIs during gener-
ation. HuggingGPT [444] introduces the models available in
HuggingFace and regards LLMs as the controller to select
suitable models based on their descriptions and aggregate
their results as the final solution.

Code-based Approaches. Although text-based approaches
sound intuitive, they cannot guarantee faithful execution of
the plan, which may lead to failure even when the plan is
sound. To address this issue, code-based approaches have
been proposed to generate more verifiable plans in the
form of executable code in programming languages, e.g.,
Python or PDDL. In this way, LLMs are first prompted
to generate the program and then utilize a deterministic
solver to execute it. For example, Faithful CoT [442] and
PAL [443] decompose a reasoning task into two stages: at
the first stage, the LLM generates a plan conditioned on the
query; at the second stage, a deterministic solver executes
the plan to derive the final answer. Furthermore, code-based
approaches can be applied to embodied agents in a similar
way. For example, PROGPROMPT [530] and LLM+P [531]
first utilize LLMs to generate plans in the form of python
functions or PDDL files, and then leverage a virtual agent
or classical planner to solve the problem according to the
code-based plans.

6.4.3 Feedback Acquisition
After executing the generated plan, the environment would
produce the feedback signal to the LLM-based task planner,
which can be used to refine its initial plan for better results.
In existing work, there are typically two sources of feedback
from the environment, depending on their relationship with
the LLM-based task planner: internal (i.e., the LLM itself)
and external (e.g., tools or virtual worlds) feedback.

Internal Feedback. The LLM itself can be utilized as a
feedback provider. One straightforward way is to directly
evaluate the quality of the generated plans through prompt-
ing. For example, RAP [447] evaluate the likelihood that
each candidate plan can lead to task success, while Tree of
Thoughts [527] proposes to vote across plans by making
comparisons between them. Further, LLMs can provide

feedback based on the intermediate results from the plan
executor. For example, Reflexion [450] utilizes LLMs to
transform sparse result signals (e.g., success or failure) into
concrete text-based feedback (e.g., “You should recommend
comedies that the user mentions in the query instead of horror
movies”) and stores this feedback in long-term memory for
future planning.

External Feedback. In addition to LLMs, external objects
can also provide feedback signals. For example, tools like
code interpreters are widely used in programming tasks to
provide real-time error messages [450], models like stable
diffusion [532] can be used in multimodal tasks to provide
visual perception [446], and virtual worlds like Minecraft
can provide immersive experiences [528]. Besides, some
work (e.g., Generative Agents [533]) explores multi-agent
collaboration in simulated environments, where each agent
receives feedback not only from interaction with the envi-
ronment but also from communication with other agents.

6.4.4 Plan Refinement

With access to feedback from the environment, the task
planner can accordingly refine its current plan and itera-
tively go through the “planning – execution – refinement” loop
for better results. In this part, we summarizes three major
refinement approaches in existing work.

Reasoning. The feedback data from the environment may
not be directly suitable to be utilized by LLMs for plan
refinement, e.g., containing irrelevant information or taking
a non-language form. To solve this, some work adds the
explicit reasoning process to extract critical information
from feedback [448, 449]. For example, React [449] prompts
LLMs with demonstrations to generate reasoning traces
over feedback. It has been widely used in autonomous agent
projects, such as AutoGPT [534], which can automatically
reason over the observed feedback to revise the initial
plan for solving various user requests. However, these ap-
proaches typically fix the order of reasoning and planning.
To support flexible switching between the two processes for
better performance, ChatCoT [448] further unifies the tool-
augmented reasoning process into a multi-turn conversation
between the LLM-based task planner and the tool-based
environment.

Backtracking. Early methods mainly consider planning
forward actions while maintaining the existing plan, thus
likely leading to local optimal plans based on a short-term
evaluation. To solve this, Tree of Thoughts [527] allows back-
tracking with search algorithms like breadth-first and depth-
first search to make global planning. It refines the plan
step by step by backtracking to the last state in the initial
plan and choosing the next unexplored action. Furthermore,
some studies [446, 535] utilize feedback signals to revise the
entire plan. For example, DEPS [535] selects a better plan
according to feedback signals, while TIP [446] adds feedback
signals to prompts for the LLM-based planner to revise each
step in the initial plan.

Memorization. In order to handle long-horizon tasks, it has
become a key approach to aid plan refinement with long-
term memory in addition to utilizing the short-term memory of
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LLMs through ICL. For example, Reflexion [450] stores the
feedback from self-reflection into the memory, so previous
feedback can be retrieved for plan refinement. Generative
Agents [533] designs the memory stream mechanism as the
core component of agents for action planning and reflection.
Further, the skill library mechanism [445, 528] is proposed
to store successful plans in the library, which can be reused
and synthesized as complex plans for novel tasks. To imple-
ment the long-term memory mechanism, tools like vector
databases (e.g., milvus [536]) can be used to encode plans or
feedbacks into high-dimensional vectors for efficient storage
and retrieval at a large scale. MemoryBank [537] further
proposes the memory updating mechanism to allow mem-
ory forgetting and strengthening following the Ebbinghaus
Forgetting Curve theory.

7 CAPACITY AND EVALUATION

To examine the effectiveness and superiority of LLMs, a
surge of tasks and benchmarks have been proposed for
conducting empirical ability evaluation and analysis. In this
section, we first introduce three types of basic ability evalu-
ation of LLMs for language generation and understanding,
then present several advanced ability evaluations with more
complicated settings or goals, and finally discuss existing
benchmarks, evaluation approaches, and empirical analysis.

7.1 Basic Ability
In this part, we mainly focus on three basic types of ability
evaluation for LLMs, i.e., language generation, knowledge
utilization, and complex reasoning. It is noted that we do not
intend to have complete coverage of all the related tasks, but
instead only focus on the most widely discussed or studied
tasks for LLMs. Next, we introduce these tasks in detail.

7.1.1 Language Generation
According to the task definition, existing tasks about lan-
guage generation can be roughly categorized into language
modeling, conditional text generation, and code synthesis
tasks. Note that code synthesis is not a typical NLP task, we
include it for discussion because it can be directly solved
by a number of LLMs (trained on code data) in a similar
generation approach as natural language text.

Language Modeling. As the most fundamental ability of
LLMs, language modeling aims to predict the next token
based on the previous tokens [1], which mainly focuses
on the capacity of basic language understanding and gen-
eration. For evaluating such an ability, typical language
modeling datasets that existing work uses include Penn
Treebank [538], WikiText-103 [539], and the Pile [161], where
the metric of perplexity is commonly used for evaluating the
model performance under the zero-shot setting. Empirical
studies [55, 93] show that LLMs bring substantial per-
formance gains over the previous state-of-the-art methods
on these evaluation datasets. To better test the modeling
capacity of long-range dependencies in text, the LAMBADA
dataset [233] has been introduced, where LLMs are required
to predict the last word of sentences based on a paragraph of
context. Then, the accuracy and perplexity of the predicted
last words are employed to evaluate LLMs. As shown in

existing work, the performance on the language modeling
tasks typically follows the scaling law [30], which means
that scaling language models would improve the accuracy
and reduce the perplexity.

Conditional Text Generation. As an important topic in
language generation, conditional text generation [48] fo-
cuses on generating texts satisfying specific task demands
based on the given conditions, typically including machine
translation [624], text summarization [548], and question
answering [557]. To measure the quality of the generated
text, automatic metrics (e.g., Accuracy, BLEU [625] and
ROUGE [626]) and human ratings have been typically used
for evaluating the performance. Due to the powerful lan-
guage generation capabilities, LLMs have achieved remark-
able performance on existing datasets and benchmarks. For
instance, GPT-4 exhibits comparable performance as com-
mercial translation products, even for the translation task of
languages that are with significant linguistic distance [627].
On news summarization tasks (i.e., CNN/DM and XSUM),
LLMs also demonstrate comparable performance with hu-
man freelance writers [628]. Despite the rapid progress
on model capacity, there are increasing concerns on the
feasibility of existing automatic metrics to faithfully assess
the performance of LLMs in conditional text generation
tasks [628–630]. As the alternatives to automatic metrics,
recent studies also propose to incorporate LLMs as gener-
ation evaluators to examine the quality of the generated
content [138, 631, 632]. Moreover, researchers also explore
more challenging language generation tasks for LLMs, such
as structured data generation [458] and long text genera-
tion [46, 633, 634].

Code Synthesis. In addition to generating high-quality nat-
ural language text, existing LLMs also show strong abilities
to generate formal language, especially computer programs
(i.e., code) that satisfy specific conditions, called code syn-
thesis [635]. Unlike natural language generation, as the gen-
erated code can be directly checked by execution with cor-
responding compilers or interpreters, existing work mostly
evaluates the quality of the generated code from LLMs by
calculating the pass rate against the test cases, i.e., pass@k42.
Recently, several code benchmarks focusing on functional
correctness are proposed to assess the code synthesis abil-
ities of LLMs, such as APPS [378], HumanEval [105], and
MBPP [208]. Typically, they consist of diverse programming
problems, with text specification and test cases for cor-
rectness checking. To improve such an ability, it is key to
fine-tuning (or pre-training) LLMs on code data, which can
effectively adapt LLMs to code synthesis tasks [86]. In addi-
tion, existing work has proposed new strategies to generate
code, e.g., sampling multiple candidate solutions [208] and
planning-guided decoding [636], which can be considered
as the imitation of bug-fixing and code-planning processes
by programmers. Impressively, LLMs have recently shown
competitive performance with humans by achieving a rank-
ing of the top 28% among users on the programming contest
platform Codeforces [114]. Further, GitHub Copilot has been
released to assist programming in coding IDEs (e.g., Visual

42. Given k programs generated by the LLM, pass@k is computed as
1 when at least one program passes all test cases, or else 0
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TABLE 14: Representative basic and advanced abilities and corresponding representative datasets for evaluating.

Level Ability Task Dataset

Basic

Language Generation

Language Modeling Penn Treebank [538], WikiText-103 [539], the Pile [161], LAMBADA [233]

Conditional Text Generation
WMT’14,16,19,20,21,22 [540–545], Flores-101 [546], DiaBLa [547],

CNN/DailyMail [548], XSum [549], WikiLingua [550]
OpenDialKG [551]

Code Synthesis APPS [378], HumanEval [105], MBPP [208], CodeContest [114], MTPB [86],
DS-1000 [552], ODEX [553]

Knowledge Utilization

Closed-Book QA
Natural Questions [554], ARC [555], TruthfulQA [556], Web Questions [557],
TriviaQA [558], PIQA [559], LC-quad2.0 [560], GrailQA [561], KQApro [562],

CWQ [563], MKQA [564], ScienceQA [565]

Open-Book QA
Natural Questions [554], OpenBookQA [566], ARC [555], TriviaQA [558],

Web Questions [557], MS MARCO [567], QASC [568], SQuAD [569],
WikiMovies [570]

Knowledge Completion WikiFact [571], FB15k-237 [572], Freebase [573], WN18RR [574],
WordNet [575], LAMA [576], YAGO3-10 [577], YAGO [578]

Complex Reasoning

Knowledge Reasoning

CSQA [504], StrategyQA [185], HotpotQA [579], ARC [555], BoolQ [580],
PIQA [559], SIQA [581], HellaSwag [582], WinoGrande [583], COPA [584],

OpenBookQA [566], ScienceQA [565], proScript [585], ProPara [586],
ExplaGraphs [587], ProofWriter [588], EntailmentBank [589],

ProOntoQA [590]

Symbolic Reasoning
CoinFlip [33], ReverseList [33], LastLetter [33], Boolean Assignment [591],

Parity [591], Colored Object [70], Penguins in a Table [70],
Repeat Copy [443], Object Counting [443]

Mathematical Reasoning
MATH [364], GSM8k [184], SVAMP [592], MultiArith [593], ASDiv [503],

MathQA [594], AQUA-RAT [595], MAWPS [596], DROP [597],
NaturalProofs [598], PISA [599], miniF2F [600], ProofNet [601]

Advanced

Human Alignment

Honestness TruthfulQA [556], HaluEval [602]

Helpfulness HH-RLHF [170]

Harmlessness HH-RLHF [170], Crows-Pairs [603]
WinoGender [604], RealToxicityPrompts [605]

Interaction with
External Environment

Household VirtualHome [606], BEHAVIOR [607], ALFRED [608],ALFWorld [609]

Website Environment WebShop [610], Mind2Web [611]

Open World MineRL [612], MineDojo [613]

Tool Manipulation

Search Engine HotpotQA [579], TriviaQA [558], Natural Questions [554]

Code Executor GSM8k [184], TabMWP [614], Date Understanding [70]

Calculator GSM8k [184], MATH [364], CARP [615]

Model Interface GPT4Tools [616], Gorilla [617]

Data Interface WebQSP [618], MetaQA [619], WTQ [620]
WikiSQL [621], TabFact [622], Spider [623]

Studio and JetBrains IDEs), which can support a variety
of languages including Python, JavaScript, and Java. A
viewpoint article entitled “The End of Programming” [637] in
Communications of the ACM has discussed the impact of AI
programming in the field of computer science, emphasizing
an important shift towards the highly adaptive LLM as a
new atomic unit of computation.

Major Issues. Although LLMs have achieved splendid per-
formance in generating human-like text, they are susceptible
to suffering from two major issues in language generation
as discussed below.

• Unreliable generation evaluation. With the advancement
of language generation ability of LLMs, existing studies
find that the generated texts from LLMs have reached a
comparable quality to the reference texts on a variety of text
generation tasks. However, due to the intrinsic weakness
of existing evaluation benchmarks, there exists pronounced

inconsistency between human evaluation and automatic
reference-based metrics [628–630, 638]. For example, in
OpenDialKG [551], ChatGPT underperforms a fine-tuned
GPT-2 on BLEU and ROUGE-L metrics, while earning more
favor from human judgment [638]. Furthermore, existing
work argues that even human evaluation may not be robust
enough [628, 629, 639, 640]. In some cases, it is difficult
to achieve a high level of consensus among human an-
notators [629], and there is also a large gap between the
annotation quality of crowdworkers and experts [639, 640].
Thus, how to conduct reliable evaluation for language gen-
eration tasks in the era of LLMs has become a fundamental
yet challenging research topic. Recently, increasing research
work proposes to leverage LLMs to improve the evaluation
quality of the generated texts. Specially, LLMs can be used
to improve the evaluation quality of existing metrics. For ex-
ample, Para-Ref [641] augments various automatic metrics
by leveraging LLMs to paraphrase existing references into
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semantically equivalent references with diverse expressions.
Further, LLMs are widely employed as the evaluators of text
generation in a reference-free manner, including evaluating
a single prediction [631, 632, 642] or comparing several
candidates [138, 643–645]. Nevertheless, LLMs may expose
bias (e.g., order bias or preference for LLM-generated texts
over human-written texts) as language generation evalua-
tors, demonstrating disparities when compared to human
evaluation [632, 646, 647].

Unreliable Generation Evaluation

LLMs have been capable of generating texts with
a comparable quality to human-written texts,
which however might be underestimated by au-
tomatic reference-based metrics. As an alterna-
tive evaluation approach, LLMs can serve as lan-
guage generation evaluators to evaluate a single
text, compare multiple candidates, and improve
existing metrics. However, this evaluation ap-
proach still needs more inspections and exami-
nations in real-world tasks.

• Underperforming specialized generation. Although LLMs
have learned general language patterns to generate coherent
text, their proficiency in generation might be constrained
when dealing with a specialized domain or task. For in-
stance, a language model that has been trained on gen-
eral web articles may face challenges when generating a
medical report which involves many medical jargon and
methods. Intuitively, domain knowledge should be critical
for model specialization. However, it is not easy to inject
such specialized knowledge into LLMs. As discussed in
recent analyses [47, 648], when LLMs are trained to exhibit
some specific ability that allows them to excel in some areas,
they might struggle in others. Such an issue is related to
catastrophic forgetting [649, 650] in training neural networks,
which refers to the conflict phenomenon of integrating new
and old knowledge. Similar cases also occur in human align-
ment of LLMs, where “alignment tax” [66] (e.g., a potential
loss in the in-context learning ability) has to be paid for
aligning to human values and needs. Moreover, due to
the limitations of sequence modeling architecture, LLMs
still face challenges in the understanding and generation
of structured data. Consequently, they often fall behind
task-specific models on complex structured data tasks, such
as knowledge-base question answering and semantic pars-
ing [458, 651]. Therefore, it is important to develop effective
model specialization methods that can flexibly adapt LLMs
to various task scenarios, meanwhile retaining the original
abilities as possible.

Underperforming Specialized Generation

LLMs may fall short in mastering generation
tasks that require domain-specific knowledge or
generating structured data. It is non-trivial to
inject specialized knowledge into LLMs, mean-
while maintaining the original abilities of LLMs.

7.1.2 Knowledge Utilization
Knowledge utilization is an important ability of intelligent
systems to accomplish knowledge-intensive tasks (e.g., com-
monsense question answering and fact completion) based
on supporting factual evidence. Concretely, it requires LLMs
to properly utilize the rich factual knowledge from the pre-
training corpus or retrieve external data when necessary. In
particular, question answering (QA) and knowledge com-
pletion have been two commonly used tasks for evaluating
this ability. According to the test tasks (question answering
or knowledge completion) and evaluation settings (with or
without external resources), we categorize existing knowl-
edge utilization tasks into three types, namely closed-book
QA, open-book QA43, and knowledge completion.

Closed-Book QA. Closed-book QA tasks [652] test the
acquired factual knowledge of LLMs from the pre-training
corpus, where LLMs should answer the question only based
on the given context without using external resources. For
evaluating this ability, there are several datasets that can
be leveraged, including Natural Questions [554], Web Ques-
tions [557], and TriviaQA [558], where the accuracy metric is
widely adopted. Empirical results have revealed that LLMs
can perform well in this setting and even match the per-
formance of state-of-the-art open-domain QA systems [56].
Also, the performance of LLMs on closed-book QA tasks
shows a scaling law pattern in terms of both model size
and data size: scaling the parameters and training tokens
can increase the capacity of LLMs and help them learn (or
memorize) more knowledge from the pre-training data [56].
Further, under a similar parameter scale, LLMs with more
pre-training data relevant to the evaluated tasks would
achieve better performance [81]. Also, the closed-book QA
setting provides a testbed for probing the accuracy of the
factual knowledge encoded by LLMs. However, as shown
in existing work [55], LLMs might perform less well on QA
tasks relying on fine-grained knowledge, even when it exists
in the pre-training data.

Open-Book QA. Unlike closed-book QA, in open-book QA
tasks, LLMs can extract useful evidence from the external
knowledge base or document collections, and then answer
the question based on the extracted evidence [653–656]. Typ-
ical open-book QA datasets (e.g., Natural Questions [554],
OpenBookQA [566], and SQuAD [569]) have overlap with
closed-book QA datasets, but they incorporate external data
sources, e.g., Wikipedia. The metrics of accuracy and F1
score are widely used in open-book QA tasks for evalua-
tion. To select relevant knowledge from external resources,
LLMs are often paired with a text retriever (or even a
search engine), which is trained independently or jointly
with LLMs [81, 653, 657]. Also, previous work [658–660]
has indicated that retrievers can assist LLMs in verifying
and rectifying the reasoning path. In evaluation, existing
studies mainly focus on testing how LLMs utilize the ex-
tracted knowledge to answer the question and show that

43. In this part, open-book QA refers to the QA tasks that require
to extract and utilize useful information from external knowledge
resources, as the antithesis of closed-book QA (only using the encoded
information from pre-training corpus). Note that there is a dataset also
named OpenBookQA [566], which follows the settings of open-book
QA tasks by extracting and utilizing external science facts.
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(b) Extrinsic hallucination(a) Intrinsic hallucination

Explain RLHF for LLMs.

RLHF stands for "Rights, Limitations, Harms, and 
Freedoms" and is a framework for …… models like 
LLMs (Large Language Models).

Bob’s wife is Amy. Bob’s daughter is Cindy.
Who is Cindy to Amy?

Cindy is Amy’s daughter-in-law.

Fig. 17: Examples of intrinsic and extrinsic hallucination for a public LLM (access date: March 19, 2023). As an example
of intrinsic hallucination, the LLM gives a conflicting judgment about the relationship between Cindy and Amy, which
contradicts the input. For extrinsic hallucination, in this example, the LLM seems to have an incorrect understanding of
the meaning of RLHF (reinforcement learning from human feedback), though it can correctly understand the meaning of
LLMs (in this context).

the retrieved evidence can largely improve the accuracy
of the generated answers, even enabling a smaller LLM to
outperform 10× larger ones [653, 657]. Further, open-book
QA tasks can be also employed to evaluate the recency
of knowledge information. Pre-training or retrieving from
outdated knowledge resources may cause LLMs to generate
incorrect answers for time-sensitive questions [653].

Knowledge Completion. In knowledge completion tasks,
LLMs might be (to some extent) considered as a knowledge
base [576], which can be leveraged to complete or predict the
missing parts of knowledge units (e.g., knowledge triples).
Such tasks can probe and evaluate how much and what kind
of knowledge LLMs have learned from the pre-training
data. Existing knowledge completion tasks can be roughly
divided into knowledge graph completion tasks (e.g., FB15k-
237 [572] and WN18RR [574]) and fact completion tasks (e.g.,
WikiFact [571]), which aim to complete the triples from a
knowledge graph and incomplete sentences about specific
facts, respectively. Empirical studies have revealed that it
is difficult for existing LLMs to accomplish knowledge
completion tasks related to specific relation types [520].
As shown in the evaluation results on WikiFact, LLMs
perform well on several frequent relations that occur in
the pre-training data (e.g., currency and author), while
not well on rare ones (e.g., discoverer_or_inventor
and place_of_birth). Interestingly, under the same eval-
uation settings (e.g., in-context learning), InstructGPT (i.e.,
text-davinci-002) outperforms GPT-3 in all subsets of
WikiFact.

Major Issues. Although LLMs have achieved key progress
in capturing and utilizing knowledge information, they
suffer from two major issues as discussed below.
• Hallucination. In generating factual texts, a challeng-

ing issue is hallucination generations [638, 661], where the
generated information is either in conflict with the existing
source (intrinsic hallucination) or cannot be verified by the
available source (extrinsic hallucination), which are illustrated
by two examples in Figure 17. Hallucination widely occurs
in existing LLMs, even the most superior LLMs such as
GPT-4 [46]. Furthermore, existing work shows that LLMs
encounter difficulties in recognizing the hallucinated con-
tent in text [602], even the powerful ChatGPT. Additionally,

beyond language tasks, a recent study has shown that large
vision-language models (LVLM) also face challenges with
hallucination, i.e., generating objects that are not present in
the accompanying images [662]. In essence, LLMs seem
to “unconsciously” utilize the knowledge in task solving,
which still lack an ability to accurately control the use
of internal or external knowledge. Hallucinations would
mislead LLMs to generate undesired outputs and mostly
degrade the performance, leading to potential risks when
deploying LLMs in real-world applications. To alleviate
this problem, alignment tuning strategies (as discussed in
Section 5.2) have been widely utilized in existing work [66],
which rely on tuning LLMs on high-quality data or using
human feedback. Moreover, the integration of external
tools for the provision of credible information sources can
help alleviate the hallucination issue [81, 602, 659]. Another
line of research work leverages uncertainty estimation of
LLMs to identify hallucinations [663, 664]. For instance,
considering that hallucinated facts are prone to exhibit
inconsistency across different sampled outputs, SelfCheck-
GPT [664] detects hallucination by measuring information
inconsistency within sampled outputs. For the evaluation
of the hallucination problem, a set of hallucination de-
tection tasks have been proposed, e.g., TruthfulQA [556]
for detecting human falsehood mimicked by models. More
recently, HaluEval [602] creates a large-scale LLM-generated
and human-annotated hallucinated samples to evaluate the
ability of language models to recognize hallucination in both
task-specific and general scenarios.

Hallucination

LLMs are prone to generate untruthful informa-
tion that either conflicts with the existing source
or cannot be verified by the available source.
Even the most powerful LLMs such as ChatGPT
face great challenges in migrating the hallucina-
tions of the generated texts. This issue can be
partially alleviated by special approaches such as
alignment tuning and tool utilization.

• Knowledge recency. As another major challenge, LLMs
would encounter difficulties when solving tasks that require
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the latest knowledge beyond the training data. To tackle
this issue, a straightforward approach is to regularly update
LLMs with new data. However, it is very costly to fine-tune
LLMs, and also likely to cause the catastrophic forgetting
issue when incrementally training LLMs. Therefore, it is
necessary to develop efficient and effective approaches that
can integrate new knowledge into existing LLMs, making
them up-to-date. Existing studies have explored how to
utilize the external knowledge source (e.g., search engine)
to complement LLMs, which can be either jointly optimized
with LLMs [653] or used as a plug-and-play module [659].
For instance, ChatGPT utilizes a retrieval plugin to access
up-to-date information sources [665]. By incorporating the
extracted relevant information into the context [666–668],
LLMs can acquire new factual knowledge and perform
better on relevant tasks. However, such an approach seems
to be still at a superficial level. In addition, existing studies
also explore editing parameters of language models to up-
date intrinsic knowledge [669–671]. Nevertheless, previous
work [672] has shown that several parameter editing meth-
ods perform not well on LLMs, though they can improve
the performance of small language models. Therefore, it
is still difficult to directly amend intrinsic knowledge or
inject specific knowledge into LLMs, which remains an
open research problem [672]. Recently, a useful framework
EasyEdit [673] has been released to facilitate the research of
knowledge editing for LLMs.

Knowledge Recency

The parametric knowledge of LLMs is hard to be
updated in a timely manner. Augmenting LLMs
with external knowledge sources is a practical
approach to tackling the issue. However, how
to effectively update knowledge within LLMs
remains an open research problem.

7.1.3 Complex Reasoning
Complex reasoning refers to the ability of understanding
and utilizing supporting evidence or logic to derive con-
clusions or make decisions [51, 52]. According to the type
of involved logic and evidence in the reasoning process,
we consider dividing existing evaluation tasks into three
major categories, namely knowledge reasoning, symbolic
reasoning, and mathematical reasoning.

Knowledge Reasoning. The knowledge reasoning tasks
rely on logical relations and evidence about factual
knowledge to answer the given question. Existing work
mainly uses specific datasets to evaluate the reasoning
capacity of the corresponding type of knowledge, e.g.,
CSQA [504]/StrategyQA [185] for commonsense knowledge
reasoning and ScienceQA [565] for science knowledge rea-
soning. In addition to the accuracy of the predicted results,
existing work [565] has also evaluated the quality of the
generated reasoning process, via automatic metrics (e.g.,
BLEU) or human evaluation. Typically, these tasks require
LLMs to perform step-by-step reasoning based on factual
knowledge, until reaching the answer to the given ques-
tion. To elicit the step-by-step reasoning ability, chain-of-
thought (CoT) prompting strategy [33] has been proposed

for enhancing the complex reasoning capacity of LLMs.
As discussed in Section 6.3, CoT involves the intermediate
reasoning steps, which can be manually created [33] or
automatically generated [674], into the prompts to guide
LLMs to perform multi-step reasoning. Such a way largely
improves the reasoning performance of LLMs, leading to
new state-of-the-art results on several complex knowledge
reasoning tasks [33, 56, 526]. Further, after reformulating
knowledge reasoning tasks into code generation tasks, re-
searchers have found that the performance of LLMs can
be further improved [211], especially with the LLMs pre-
trained on code. However, due to the complexity of knowl-
edge reasoning tasks, the performance of current LLMs still
lags behind human results on tasks such as commonsense
reasoning [33, 56, 675]. As a common type of mistakes, LLMs
might generate inaccurate intermediate steps, leading to a
wrong final result. To address this issue, existing work has
proposed special decoding or ensemble strategies to im-
prove the accuracy of the whole reasoning chain [436, 437].

Symbolic Reasoning44. The symbolic reasoning tasks
mainly focus on manipulating the symbols in a formal rule
setting to fulfill some specific goal [51], where the operations
and rules may have never been seen by LLMs during pre-
training. Existing work [33, 439, 505] commonly evaluates
LLMs on the task of last letter concatenation and coin flip,
where the evaluation examples require the same reasoning
steps as the in-context examples (called in-domain test) or
more steps (called out-of-domain test). For an example of
the out-of-domain test, LLMs could only see the examples
with two words in context, but it requires LLMs to concate-
nate the last letters of three or more words. Typically, the
accuracy of the generated symbols is adopted to evaluate
the performance of LLMs on these tasks. Thus, LLMs need
to understand the semantic relations among the symbolic
operations and their composition in complex scenarios.
However, under the out-of-domain setting, as LLMs have
not seen the complex compositions of symbolic operations
and rules (e.g., twice the number of operations in context
examples), it is hard for LLMs to capture their accurate
meanings. To solve this issue, existing studies incorporate
scratchpad [591, 676] and tutor [677] strategies to help
LLMs better manipulate symbolic operations, for generating
longer and more complex reasoning processes. Another
line of research work utilizes the formal programming
language to represent the symbolic operations and rules,
which requires LLMs to generate code and perform the
reasoning process by executing it with external interpreters.
Such a way can decompose the complex reasoning process
into code synthesis and program execution for LLMs and
interpreters, respectively, leading to a simplified reasoning
process with yet more accurate results [443].

Mathematical Reasoning. The mathematical reasoning
tasks need to comprehensively utilize mathematical knowl-
edge, logic, and computation for solving problems or gen-
erating proof statements. Existing mathematical reasoning
tasks can be mainly categorized into math problem solv-

44. Following [33], we mainly discuss symbolic reasoning tasks spe-
cially designed for evaluating LLMs. We do not consider symbolic
reasoning methods in traditional NLP tasks, such as deducing logical
rules from the knowledge graphs in KBQA.
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ing and automated theorem proving. For math problem
solving tasks, SVAMP [592], GSM8k [184] and MATH [364]
datasets are commonly used for evaluation, where LLMs
need to generate accurate concrete numbers or equations
to answer the mathematical problem. As these tasks also
require multi-step reasoning, the CoT prompting strategy
has been widely adopted for LLMs to improve the reasoning
performance [33]. As another practical strategy, continu-
ally pre-training LLMs on large-scale mathematical corpora
can largely boost their performance on mathematical rea-
soning tasks [35, 203, 678]. Further, since math problems
in different languages share the same mathematical logic,
researchers also propose a multilingual math word problem
benchmark [524] to evaluate the multilingual mathematical
reasoning capacity of LLMs. As another challenging task,
automated theorem proving (ATP) [598, 600, 679] requires
the reasoning model to strictly follow the reasoning logic
and mathematical skills. To evaluate the performance on
this task, PISA [599] and miniF2F [600] are two typical ATP
datasets with the proof success rate as the evaluation metric.
As a typical approach, existing work on ATP utilizes LLMs
to aid the search for proofs using an interactive theorem
prover (ITP), such as Lean, Metamath, and Isabelle [680–
682]. A major limitation of ATP research is the lack of related
corpora in formal language. To tackle it, several studies
utilize LLMs to convert informal statements into formal
proofs for augmenting new data [683] or generate drafts and
proof sketches to reduce the search space of the proofs [684].

Major Issues. In spite of the advancements, LLMs still have
several limitations in solving complex reasoning tasks.
• Reasoning inconsistency. With improved reasoning

strategies (e.g., CoT prompting), LLMs can solve some com-
plex reasoning tasks, by performing step-by-step reasoning
based on the supporting logic and evidence. Despite the
effectiveness, the reasoning inconsistency issue often occurs in
the decomposed reasoning process. Concretely, LLMs may
generate the correct answer following an invalid reasoning
path, or produce a wrong answer after a correct reason-
ing process [33, 442], leading to inconsistency between the
derived answer and the reasoning process. To alleviate
this problem, existing work has proposed to guide the
whole generation process of LLMs via external tools or
models [437, 451, 636], to re-check the reasoning process
and final answer for correcting the potential errors [685–687]
or fine-tune LLMs with process-based feedback [688, 689].
For instance, Tree of Thoughts (ToT) [451] empowers LLMs
to engage in the decision-making process by concurrently
exploring and self-evaluating various reasoning paths. To
refine the reasoning processes, Self-Refine [685] elicits feed-
back from LLMs on self-generated solutions, enabling the
iterative refinement of solutions based on the feedback.
Moreover, several studies improve the consistency in the
reasoning chain of LLMs through the integration of process-
based supervision during training [688, 689]. As a promis-
ing solution, recent approaches reformulate the complex
reasoning tasks into code generation tasks, where the strict
execution of the generated code ensures the consistency
between the reasoning process and the outcome. Also,
it has been revealed that there might exist inconsistency
between tasks with similar inputs, where small changes

in the task description may cause the model to produce
different results [49, 592]. To mitigate this problem, self-
consistency [436] adopts the ensemble of multiple reasoning
paths to enhance the decoding process of LLMs.

Reasoning Inconsistency

LLMs may generate the correct answer following
an invalid reasoning path, or produce a wrong
answer after a correct reasoning process, leading
to inconsistency between the derived answer and
the reasoning process. The issue can be alleviated
by fine-tuning LLMs with process-level feedback,
using an ensemble of diverse reasoning paths,
and refining the reasoning process with self-
reflection or external feedback.

• Numerical computation. For complex reasoning tasks,
LLMs still face difficulties in the involved numerical com-
putation, especially for the symbols that are seldom en-
countered during pre-training, such as arithmetic with large
numbers [49, 677, 690]. To tackle this issue, a direct way is
to tune LLMs on synthesized arithmetic problems [361, 691].
Also, a surge of studies improve the numerical computation
performance by tracing intermediate calculation steps in
training and inference stages [361, 676, 692], e.g., scratchpad
tracing. In addition, existing work [80] has also incorpo-
rated external tools (e.g., calculator), especially for handling
arithmetic operations. More recently, ChatGPT has provided
a plugin mechanism to use external tools [665]. In this
way, LLMs need to learn how to properly manipulate the
tools. For this purpose, researchers have augmented the
examples using tools (even the LLM itself) for tuning the
LLM [80, 693], or devised instructions and exemplars for
in-context learning [443]. In addition to the aid of ex-
ternal tools, recent studies find that tokenizing digits into
individual tokens (e.g., LLaMA and Galactica tokenizers)
is a useful approach to enhancing the inherent arithmetic
ability of LLMs [361, 690]. One possible explanation is that
subword tokenization techniques can result in inconsistent
sequences when tokenizing numbers. For instance, with
a subword tokenizer the integer 7481 may be tokenized
as 7 481, while 74815 may be tokenized as 748 15 (the
same numerical substrings with different splits) [361]. As a
comparison, digit-based tokenization for numbers can avoid
such an inconsistency, thus likely improving the numerical
computation ability of LLMs.

Numerical Computation

LLMs face difficulties in numerical computation,
especially for the symbols that are seldom en-
countered during pre-training. In addition to us-
ing mathematical tools, tokenizing digits into in-
dividual tokens is also an effective design choice
for improving the arithmetic ability of LLMs.

7.2 Advanced Ability

In addition to the above basic evaluation tasks, LLMs also
exhibit some superior abilities that require special consider-
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ations for evaluation. In this part, we discuss several rep-
resentative advanced abilities and the corresponding eval-
uation approaches, including human alignment, interaction
with the external environment, and tool manipulation. Next,
we discuss these advanced abilities in detail.

7.2.1 Human Alignment
It is desired that LLMs could well conform to human values
and needs, i.e., human alignment, which is a key ability for
the broad use of LLMs in real-world applications.

To evaluate this ability, existing studies consider multiple
criteria for human alignment, such as helpfulness, honesty,
and safety [46, 170, 368]. For helpfulness and honesty, adver-
sarial question answering tasks (e.g., TruthfulQA [556]) can
be utilized to examine LLM’s ability in detecting possible
falsehood in the text [46, 81]. Furthermore, harmlessness
can be also evaluated by several existing benchmarks, e.g.,
CrowS-Pairs [603] and Winogender [604]. Despite the auto-
matic evaluation with the above datasets, human evaluation
is still a more direct way to effectively test the human
alignment ability of LLMs. OpenAI invites many experts
in domains related to AI risks to evaluate and improve the
behaviors of GPT-4 when encountering risky contents [46].
In addition, for other aspects of human alignment (e.g.,
truthfulness), several studies propose to use specific instruc-
tions and devise annotation rules to guide the annotation
process [81]. Empirical studies have revealed that these
strategies can greatly improve the human alignment ability
of LLMs [170]. For instance, after alignment tuning on data
collected through interactions with experts, the incorrect
behavior rate of GPT-4 can be largely reduced when it deals
with sensitive or disallowed prompts. In addition, high-
quality pre-training data can reduce the effort required for
alignment [46]. For instance, Galactica is potentially more
harmless due to the less biased contents in the scientific
corpus [35].

7.2.2 Interaction with External Environment
In addition to standard evaluation tasks, LLMs have the
ability to receive feedback from the external environment
and perform actions according to the behavior instruction,
e.g., generating action plans in natural language to manip-
ulate agents [694, 695]. Such an ability is also emergent in
LLMs that can generate detailed and highly realistic action
plans, while smaller models (e.g., GPT-2) tend to generate
shorter or meaningless plans [694].

To test this ability, several embodied AI environments
and benchmarks can be used for evaluation, described
as follows. VirtualHome [606] builds a 3D simulator for
household tasks such as cleaning and cooking, in which
the agent can execute natural language actions generated
by LLMs. ALFRED [608] includes more challenging tasks
that require LLMs to accomplish compositional targets. BE-
HAVIOR [607] focuses on everyday chores in simulation
environments and requires LLMs to generate complex so-
lutions, e.g., changing the internal status of objects. Apart
from restricted environments such as household tasks, a
line of research work investigates the proficiency of LLM-
based agents to explore open-world environments, such as
Minecraft and the Internet [696, 697]. Voyager [697] intro-
duces an automatic curriculum module that enables LLMs

to continuously acquire new skills based on feedback from
the environment. GITM [696] focuses on solving various
challenges in Minecraft based on LLM, through task de-
composition, planning, and invocation of interfaces. Based
on the generated action plans or task completions, existing
work either adopts the regular metrics (e.g., executability
and correctness of the generated action plans) [694] in the
benchmark or directly conducts real-world experiments and
measures the success rate [698], to evaluate such ability. It
has been shown that LLMs are capable in interacting with
the external environment and generating accurate action
plans [699]. Recently, several improvement methods have
been proposed to enhance the interaction ability of LLMs,
e.g., designing code-like prompts [530] and providing real-
world grounding [698].

In addition, recent work also explores multi-agent col-
laboration based on LLMs in simulated environments [533,
700, 701]. These studies simulate human social behaviors
by instantiating multiple LLM-based agents with observa-
tions, planning, and memories in a sandbox environment.
In controlled evaluation, the abilities of generative agents
to search, plan, and think are evaluated by humans in an
interview-like manner. Further, they also conduct descrip-
tive measurements on multiple agents within a simulated
environment to examine emergent social behaviors.

7.2.3 Tool Manipulation

When solving complex problems, LLMs can turn to external
tools if they determine it is necessary. By encapsulating
available tools with API calls, existing work has involved
a variety of external tools, e.g., search engine [81], calcula-
tor [80], and compiler [443], to enhance the performance of
LLMs on several specific tasks. Recently, OpenAI has sup-
ported the use of plugins in ChatGPT [665], which can equip
LLMs with broader capacities beyond language modeling.
For example, the web browser plugin enables ChatGPT
to access fresh information. Further, incorporating third-
party plugins is particularly key for creating a prosperous
ecosystem of applications based on LLMs.

To examine the ability of tool manipulation, existing
work mostly adopts complex reasoning tasks for evaluation,
such as mathematical problem solving (e.g., GSM8k [184]
and SVAMP [592]) or knowledge question answering (e.g.,
TruthfulQA [556]), where the successful utilization of tools is
very important for enhancing the required skills that LLMs
are incapable in (e.g., numerical calculation). In this way, the
evaluated performance on these tasks can reflect the ability
of LLMs in tool manipulation. To teach LLMs to utilize tools,
existing studies add exemplars using tools in context to elicit
LLMs [443], or fine-tune LLMs on simulated data about
tool utilization [80, 693]. It has been found that with the
help of tools, LLMs become more capable of handling the
issues that they are not good at, e.g., equation calculation
and answering timely questions [80, 448]. However, as
the number of available tools increases, the limited context
length of LLMs may pose challenges in describing and
demonstrating extensive tool APIs. To address this issue,
existing work retrieves the usage of relevant tools, or en-
coding tool information as tokens within the embedding
space [702–704].
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In addition to existing tools developed by humans,
LLMs possess the capability to make their own tools for
specific tasks autonomously [705]. This enables the models
to independently explore and manipulate these self-created
tools, thereby expanding their potential for autonomous
exploration in solving a wide range of real-world tasks.

Summary. The above three abilities are of great value to
the practical performance of LLMs: conforming to human
values and preferences (human alignment), acting properly
in real-world scenarios (interaction with the external envi-
ronment), and expanding the ability scope (tool manipu-
lation). In addition to the above three advanced abilities,
LLMs might also show other abilities that are specially
related to some tasks (e.g., data annotation [486]) or learning
mechanisms (e.g., self-improvement [706]). It will be an open
direction to discover, measure and evaluate these newly
emerging abilities, so as to better utilize and improve LLMs.

7.3 Benchmarks and Evaluation Approaches

In the above, we have discussed the basic and advanced
abilities of LLMs. Next, we will introduce existing evalua-
tion benchmarks and approaches [733, 734].

7.3.1 Comprehensive Evaluation Benchmarks
Recently, several comprehensive benchmarks [70, 364, 520]
have been released for the evaluation of LLMs. In this
part, we introduce several widely used benchmarks, i.e.,
MMLU, BIG-bench, HELM, and a series of human exam
benchmarks.
• MMLU [364] is a versatile benchmark for large-scale

evaluation of multi-task knowledge understanding, cover-
ing a wide range of knowledge domains from mathematics
and computer science to humanities and social sciences. The
difficulties of these tasks vary from basic to advanced. As
shown in existing work, LLMs mostly outperform small
models by a substantial margin on this benchmark [35, 56,
57, 69], which shows the scaling law in model size. More
recently, GPT-4 achieves a remarkable record (86.4% in 5-
shot setting) in MMLU, which is significantly better than
the previous state-of-the-art models [46].
• BIG-bench [70] is a collaborative benchmark intended

to probe existing LLMs from various aspects. It comprises
204 tasks that encompass a broad range of topics, includ-
ing linguistics, childhood development, mathematics, com-
monsense reasoning, biology, physics, social bias, software
development, and so on. By scaling the model size, LLMs
can even outperform the average human performance under
the few-shot setting on 65% of tasks in BIG-bench [56].
Considering the high evaluation cost of the entire bench-
mark, a lightweight benchmark BIG-bench-Lite has been
proposed, which contains 24 small yet diverse and challeng-
ing tasks from BIG-bench. Additionally, the BIG-bench hard
(BBH) benchmark [365] has been proposed to concentrate
on investigating the currently unsolvable tasks of LLMs by
selecting the challenging tasks in which LLMs exhibit infe-
rior performance compared to humans. Since BBH becomes
more difficult, small models mostly achieve performance
close to random. As a comparison, CoT prompting can
elicit the abilities of LLMs to perform step-by-step reasoning

for enhancing the performance, even exceeding the average
human performance in BBH.
• HELM [520] is a comprehensive benchmark that cur-

rently implements a core set of 16 scenarios and 7 categories
of metrics. It is built on top of many prior studies, conduct-
ing a holistic evaluation of language models. As shown in
the experimental results of HELM, instruction tuning can
consistently boost the performance of LLMs in terms of
accuracy, robustness, and fairness. Further, for reasoning
tasks, the LLMs that have been pre-trained on the code
corpus show superior performance.
•Human-level test benchmarks aim to evaluate the compre-

hensive ability of LLMs with questions designed for testing
humans, such as AGIEval [708], MMCU [709], M3KE [710],
C-Eval [711] and Xiezhi [712]. These benchmarks encompass
a wide range of domains, difficulty levels, and languages
to provide a comprehensive evaluation of LLMs’ general
capabilities. Compared to publicly available models, models
offering API services (e.g., GPT-4, ChatGPT, Claude) demon-
strate superior performance compared to publicly avail-
able models on these evaluation benchmarks. As the best-
performing model in evaluations, GPT-4 surpasses average
human performance in AGIEval [708]. However, it still lags
behind the top human performance on these challenging
benchmarks. Hence, there remains ample room for further
enhancements in the overall abilities of LLMs, particularly
for publicly accessible models.

The above benchmarks cover a variety of mainstream
evaluation tasks and real-world human exam questions for
the evaluation of LLMs. Also, there are several benchmarks
that focus on evaluating specific abilities of LLMs, such
as TyDiQA [735] for multilingual knowledge utilization
and MGSM [524] for multilingual mathematical reasoning.
To conduct the evaluation, one can select suitable bench-
marks according to specific goals. In addition, there are also
several open-source evaluation frameworks for researchers
to evaluate LLMs on existing benchmarks or extend new
tasks for customized evaluations, such as Language Model
Evaluation Harness [736] and OpenAI Evals [46]. Fur-
ther, some researchers also construct continuously updated
leaderboards by aggregating representative benchmarks, to
compare the performance of existing LLMs, such as Open
LLM Leaderboard [707]. The above benchmarks and leader-
boards provide important references to demonstrate the ba-
sic and advanced abilities of LLMs. We will give more deep
discussions on pros and cons on evaluation approaches in
Section 7.3.2.

7.3.2 Evaluation Approaches
After introducing existing benchmarks, in this part, we
will review existing evaluation approaches for assessing
the performance of LLMs. To organize our discussion, we
categorize LLMs into three different types: base LLMs (pre-
trained model checkpoints), fine-tuned LLMs (instruction or
alignment fine-tuned model checkpoints), and specialized
LLMs (adapted model checkpoints for some specific task
or domain). Here, we keep both fine-tuned LLMs and
specialized LLMs, to distinguish the different purposes of
LLMs: general or specific task solvers. To evaluate the three
types of LLMs, we can test the LLM’s performance related
to different abilities (e.g., basic or advanced abilities as
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TABLE 15: A category of existing evaluation work. “General” denotes that the evaluation focuses on an overall performance
of multiple abilities. The evaluated abilities are not limited to the representative basic and advanced abilities mentioned in
Section 7.1 and 7.2.

Method Evaluation Model Types Abilities/Domain Data Source

Benchmark

MMLU [364] Base/Fine-tuned/Specialized General Human exam/practice
BIG-bench [70] Base/Fine-tuned/Specialized General Human annotation

HELM [520] Base/Fine-tuned/Specialized General Benchmark collection
Open LLM Leaderboard [707] Base/Fine-tuned/Specialized General Benchmark collection

AGIEval [708] Base/Fine-tuned/Specialized General Human exam/practice
MMCU [709] Base/Fine-tuned/Specialized General Human exam/practice
M3KE [710] Base/Fine-tuned/Specialized General Human exam/practice
C-Eval [711] Base/Fine-tuned/Specialized General Human exam/practice
Xiezhi [712] Base/Fine-tuned/Specialized General Human exam/practice

OpenCompass [713] Base/Fine-tuned/Specialized General Benchmark collection
Chain-of-Thought Hub [714] Base/Fine-tuned General Benchmark collection

KoLA [715] Base/Fine-tuned Knowledge utilization Web
ARB [716] Fine-tuned Complex reasoning Human exam/practice

APIBench [717] Base/Fine-tuned Tool manipulation Web
APIBank [718] Fine-tuned Tool manipulation Synthesis

ToolAlpaca [719] Base/Fine-tuned Tool manipulation Synthesis
T-Bench [720] Fine-tuned Tool manipulation Synthesis

ToolBench [721] Fine-tuned Tool manipulation Synthesis
BOLAA [722] Base/Fine-tuned Environment interaction Benchmark collection

AgentBench [723] Base/Fine-tuned Environment interaction Human annotation/Synthesis
HaluEval [602] Base/Fine-tuned Human alignment Human annotation/Synthesis

PromptBench [724] Base/Fine-tuned Robustness Benchmark collection
HumanEval [105] Base/Fine-tuned/Specialized Code synthesis Human annotation

MultiMedQA [356] Specialized Healthcare Benchmark collection
FLUE [725] Specialized Finance Benchmark collection

LegalBench [726] Specialized Legal Human annotation

Human Chatbot Arena [727] Base/Fine-tuned/Specialized Human Alignment Human annotation
SciBench [728] Fine-tuned Complex reasoning Human exam/practice

Model

AlpacaEval [729] Fine-tuned Instruction following Synthesis
MT-bench [727] Fine-tuned Human alignment Human annotation
TrustGPT [730] Base/Fine-tuned Human alignment Benchmark collection

LMExamQA [731] Base/Fine-tuned Knowledge utilization Synthesis
ChatEval [732] Base/Fine-tuned Knowledge utilization Benchmark collection

discussed in Section 7.1 and 7.2). In general, there are three
main approaches to evaluating LLMs, namely benchmark-
based approach [364], human-based approach [727], and
model-based approach [729]. Table 15 shows an illustration
of the relationship among LLM type, evaluation approach,
and tested abilities. Next, we will discuss the evaluation
approaches for different types of LLMs.

Evaluation of Base LLMs. Base LLMs refer to the model
checkpoints obtained right after pre-training. For base
LLMs, we mainly focus on examining the basic abilities
(Section 7.1), such as complex reasoning and knowledge
utilization. Since most of these basic abilities can be assessed
with well-defined tasks, benchmark-based approaches have
been widely used to evaluate base LLMs. Next, we will
introduce common evaluation benchmarks and evaluation
procedures for base LLMs.

• Common benchmarks. To evaluate base LLMs, typical
benchmarks are designed in the form of close-ended prob-
lems like multiple-choice questions. These commonly used
benchmarks can be mainly divided into two categories:
knowledge-oriented and reasoning-oriented benchmarks.
Knowledge-oriented benchmarks (e.g., MMLU [364] and C-
Eval [711]) aim to evaluate the capacity of world knowledge,
while reasoning-oriented benchmarks (e.g., GSM8K [643],
BBH [365], and MATH [364]) focus on evaluating the ca-
pability of solving complex reasoning tasks. Further, some

recently proposed benchmarks (e.g., OpenCompass [713])
combine these two types for a comprehensive comparison.
• Benchmark based evaluation procedure. To perform the

benchmark evaluation, each problem will first be formatted
into a prompt for LLMs to generate the result text. Then,
the generated result text will be parsed with human-written
rules to get the predicted answer. Finally, the performance
of LLMs can be automatically calculated using standard
metrics like accuracy by comparing the predicted answer
with the ground-truth one. The evaluation approach can be
conducted in either the few-shot or zero-shot setting, which
might lead to different evaluation results or rankings. Since
base LLMs have not been instruction fine-tuned (with rela-
tively weak task generalization ability), the few-shot setting
is often more suitable for evaluation. For some complex
reasoning tasks, CoT prompts also need to be used to fully
exhibit the capacity during evaluation. Another note is that
this evaluation approach can also be applied to assess the
abilities of fine-tuned LLMs. Actually, several leaderboards
(e.g., Open LLM Leaderboard [707]) are built upon this
approach, evaluating both base and fine-tuned LLMs.

Evaluation of Fine-tuned LLMs. Fine-tuned LLMs in this
part refer to the model checkpoints obtained after in-
struction tuning or alignment tuning based on pre-trained
model weights45. Typically, fine-tuned LLMs will be tested

45. In some cases, it is also called chat models.
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on various abilities (e.g., knowledge utilization and hu-
man alignment), and thus it is common that they are as-
sessed with multiple evaluation approaches. In addition
to benchmark-based evaluation, human-based and model-
based approaches have also been widely used to evaluate
the advanced abilities of fine-tuned LLMs. Next, we will
introduce the two evaluation methods.
• Human-based evaluation. Unlike automatic evaluation

for basic abilities, human evaluation typically considers
more factors or abilities in real-world use, such as hu-
man alignment and tool manipulation. In this evaluation
approach, test tasks are usually in the form of open-
ended questions, and human evaluators are invited to make
judgments on the quality of answers generated by LLMs.
Typically, there are two main types of scoring methods
for human evaluators: pairwise comparison and single-
answer grading. In pairwise comparison, given the same
question, humans are assigned two answers from different
models to determine which one is better, while in single-
answer grading, they only need to score a single answer
at a time. For example, HELM [520] employs humans
to perform single-answer grading on summarization and
disinformation tasks, while Chatbot Arena [727] constructs
a crowdsourcing platform that allows users to engage in
conversations with two anonymous chat LLMs and report
pairwise comparison results.
• Model-based evaluation. Since human-based evaluation

is both expensive and time-consuming, some work has
proposed leveraging powerful closed-source LLMs such
as ChatGPT and GPT-4 as a surrogate for human evalu-
ators [727, 729]. For example, AlpacaEval [729] collects a
set of instructions and utilizes a capable LLM (e.g., GPT-4)
as the judge to perform pair-wise comparisons against the
reference outputs. Furthermore, MT-bench [727] collects a
set of multi-turn questions for evaluation and improves the
reliability of LLM-based evaluators through methods like
ICL and CoT. Compared with human evaluators, LLMs such
as ChatGPT and GPT-4 can achieve high agreement with
humans, in both small-scale handcrafted and large-scale
crowdsourced evaluation tasks. Despite this, these closed-
source LLMs are limited in access and have the potential
risk of data leakage. To address this, recent work [727] has
explored fine-tuning open-source LLMs (e.g., Vicuna [138])
as model evaluators using scoring data from human eval-
uators, which has narrowed the gap with powerful closed-
source LLMs (e.g., GPT-4).

Evaluation of Specialized LLMs. Specialized LLMs refer
to the model checkpoints specially adapted to some do-
mains or applications like healthcare [356] and finance [737].
As special task solvers, specialized LLMs will be tested
not only on general abilities (e.g., basic ability like com-
plex reasoning and advanced ability like human align-
ment), but also on specific abilities related to their des-
ignated domains or applications. For this purpose, one
often needs to construct specific benchmarks tailored for the
target domains or applications. Then, these domain-specific
benchmarks can be combined with general benchmarks to
conduct both comprehensive and targeted evaluation for
specialized LLMs. For example, MultiMedQA [356] is a
specific benchmark in healthcare, which includes medical

examinations and healthcare questions. In this work [356],
MultiMedQA has been combined with MMLU [364] to
assess the performance of specialized LLMs for healthcare,
such as Med-PaLM [356]. Similarly, FLUE [737] constructs a
benchmark for finance, spanning from financial sentiment
analysis to question answering. It has been used collab-
oratively with BBH [365] to evaluate finical LLMs like
BloombergGPT [360].

Pros and Cons of Different Evaluation Approaches. In the
above, we have discussed different evaluation approaches
to assess the abilities of LLMs. Next, we simply analyze the
pros and cons of each evaluation approach.
• Benchmark-based approach. This evaluation approach can

leverage existing benchmarks for assessing the performance
of LLMs. The tasks involved in these benchmarks often
contain sufficient test samples to measure the core abilities
(e.g., reasoning). The whole evaluation procedure can be
(almost) automatic, and it is convenient to carry out test
experiments for various base LLMs, especially useful for
monitoring the performance of model checkpoints during
pre-training. However, LLMs are often sensitive to the eval-
uation settings, including the question prompts, zero-shot or
few-shot tests, and the answer parsing methods. Thus, one
should take possible influencing factors into consideration
when conducting the evaluation experiments. The evalua-
tion results should be noted with the adopted evaluation
settings. Another issue is the data contamination [56, 738],
i.e., the test data itself or relevant content has been contained
in the pre-training corpora. This phenomenon has become
increasingly severe since more and more open data has been
collected for developing LLMs.
•Human-based approach. Human evaluation offers several

advantages when assessing the capabilities of LLMs to solve
real-world tasks. One of the key benefits is its ability to
directly reflect the actual abilities of LLMs. Based on feed-
back and experiences from real users, human evaluation
provides a more direct measure of LLMs’ performance in
real-world scenarios. Further, it can conduct more flexible
and diverse evaluation tasks based on human evaluators.
For instance, users can submit various queries and test the
abilities of LLMs according to their own task cognition. It
allows for a deep understanding of the strengths and weak-
nesses of LLMs across different types of tasks and contexts.
However, human evaluation also has inherent limitations
that could potentially affect its accuracy and consistency.
Factors such as personalized tastes and varying education
levels among evaluators can introduce biases or even incon-
sistencies in the evaluation process. In some cases, users’
judgments are likely to be subjective, which may not reflect
the true capabilities of the LLMs. Moreover, conducting
robust and reliable human evaluations often requires a large
number of evaluators, which can be very expensive and
time-consuming. In addition, human evaluation is often
not reproducible, making it infeasible to extend existing
evaluation results or track the progress of LLMs.
• Model-based approach. As a surrogate for human-based

approaches, model-based approaches serve to diminish the
reliance on human involvement, and enable more efficient
and scalable evaluation. In addition, LLMs can provide
meaningful explanations for the assigned rating scores,
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thereby enhancing the interpretability of evaluations. De-
spite their scalability and explanability, model-based ap-
proaches have been found to suffer from several issues, in-
cluding position, verbosity, and self-enhancement bias [727].
Specially, position bias (i.e., the order to present the re-
sponses) refers to the fact that LLMs tend to assign high
scores for the answers at specific positions over others,
verbosity bias means that LLMs favor verbose answers even
if they are short in quality compared with shorter answers,
and self-enhancement bias indicates that LLMs often over-
rate in their own generations. In addition, since LLMs have
limited capacities in solving complex reasoning problems,
they cannot serve as qualified evaluators for some difficult
tasks (e.g., mathematical reasoning). These limitations can
be mitigated to some extent by specific prompt engineering
and fine-tuning strategies [727].

To summarize, our categorization (Table 15) of existing
work on LLM evaluation is mainly based on two major di-
mensions, namely evaluation methodology and model type,
which are further extended with the test abilities. There
are some recent work [733, 734] that also has discussed
the categorization or taxonomies of existing work for LLM
evaluation.

7.4 Empirical Evaluation
The above evaluation benchmarks and approaches are
mainly employed to evaluate the overall abilities of LLMs.
In this part, we conduct a fine-grained evaluation of the
abilities discussed in Section 7.1 and Section 7.2. For each
kind of ability, we select representative tasks and datasets
for conducting evaluation experiments to examine the cor-
responding performance of LLMs.

7.4.1 Experimental Settings
In this part, we introduce the experimental settings for our
evaluation.

Evaluation Models. To conduct the evaluation, we consider
representative LLMs from open-source models to closed-
source API-accessing models as follows:

• Open-source models. Existing open-source models can be
categorized into base models and instruction-tuned models.
Base models are only pre-trained on a large general-purpose
corpus with the language modeling objective, but without
further supervised fine-tuning. In our evaluation, we select
four representative base models including LLaMA (7B) [57],
LLaMA 2 (7B) [99], Pythia (7B and 12B) [96], and Falcon
(7B) [747]46. Instruction-tuned models are those fine-tuned
using instructions (i.e., task datasets, daily chat, or syn-
thetic instructions). In our experiments, we select four rep-
resentative instruction-tuned models including Vicuna (7B
and 13B) [138], Alpaca (7B) [137], and ChatGLM (6B) [93].
In addition, we also include LLaMA 2-Chat (7B) [99] for
comparison, and it is a representative model that has been
aligned with human via instruction tuning and RLHF, based
on LLaMA 2 (7B).

• Closed-source models. In addition to the open-source
models, there are also closed-source models that can only

46. Experiments with larger models are still in schedule due to the
limit of computational resources.

be accessed via APIs, which have gained much attention
from both developers and researchers. Here, we select four
representative closed-source models including text-davinci-
002/003 (short as Davinci002/003), ChatGPT, Claude, and
Claude 2, where the first three models are developed by
OpenAI and the other two are developed by Anthropic.

Tasks and Datasets. Next, we set up the evaluation tasks
and datasets for the abilities discussed in Section 7.1 and
Section 7.2. We mainly evaluate the zero-shot performance
of LLMs on these datasets. For more complex tasks that are
hard to be solved in the zero-shot manner (e.g., mathemati-
cal reasoning and tool manipulation), we mainly report the
3-shot performance, considering the context length limit of
open-source models.

• Language generation. As discussed before, for language
generation, we consider evaluating three kinds of tasks,
i.e., language modeling, conditional text generation, and
code synthesis. Specially, we select four commonly-used
datasets, namely LAMBADA [233] (language modeling),
WMT’22 [545] (machine translation), XSum [549] (text sum-
marization), and HumanEval [105] (code synthesis) for eval-
uation. In WMT’22, we construct a new evaluation set
by selecting 1000 examples for each language pair from
the original large-scale test set to examine the average
performance of LLMs in machine translation. We evaluate
the zero-shot performance of LLMs on these datasets, and
compute the accuracy of predicting words for LAMBADA,
BLEU-4 for WMT’22, ROUGE-L for XSum, and pass@10 for
HumanEval.

• Knowledge utilization. To evaluate the ability of knowl-
edge utilization, we select four question answering datasets
(i.e., TriviaQA [558], Natural Questions [554], Web Ques-
tions [557], and ARC [555]), and a fact extraction dataset,
WikiFact [571]. We also report the zero-shot performance of
LLMs on these datasets, and compute accuracy for ARC and
exact match for other datasets.

• Complex reasoning. For complex reasoning, we eval-
uate the comparison models on OpenbookQA [566], Hel-
laSwag [582], and SocialIQA [581] for knowledge reason-
ing; Colored Objects [70] and Penguins in the Table [70]
for symbolic reasoning; GSM8k [184] and MATH [364] for
mathematical reasoning. We compute the accuracy for Open-
bookQA, HellaSwag, and SocialIQA; solve rate for Colored
Objects and Penguins in the Table; and accuracy for GSM8k
and MATH. For knowledge reasoning tasks, we evaluate
the zero-shot performance, since they are all QA tasks that
can be solved in a zero-shot setting. For complex symbolic
reasoning and mathematical reasoning tasks, we leverage
3-shot in-context exemplars to better elicit LLMs to accom-
plish them. Following existing work [33, 443], we also utilize
the chain-of-thought prompting strategy for better solving
the mathematical reasoning tasks.

• Human alignment. For human alignment, we select
TruthfulQA [556] to measure whether a LLM is truth-
ful in generating answers to questions, CrowS-Pairs [603]
and WinoGender [604] to assess the stereotypes in LLMs,
RealToxityPrompts [605] to evaluate the extent to which
LLMs generate toxic language, and HaluEval [602] to test
the ability of LLMs to recognize hallucination. As the test
set of Real-Toxicity-Prompts is too large, we randomly
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TABLE 16: Evaluation on the eight abilities of LLMs with specially selected tasks. The shade of the Orange and Blue
fonts denote the performance orders of the results in closed-source and open-source models, respectively. This table will
be continuously updated by incorporating the results of more models.

Models
Language Generation Knowledge Utilization

LBD↑ WMT↑ XSum↑ HumanEval↑ TriviaQA↑ NaturalQ↑ WebQ↑ ARC↑ WikiFact↑

ChatGPT 55.81 36.44 21.71 79.88 54.54 21.52 17.77 93.69 29.25
Claude 64.47 31.23 18.63 51.22 40.92 13.77 14.57 66.62 34.34
Claude 2 45.20 12.93 19.13 78.04 54.30 21.30 21.06 79.97 35.83
Davinci003 69.98 37.46 18.19 67.07 51.51 17.76 16.68 88.47 28.29
Davinci002 58.85 35.11 19.15 56.70 52.11 20.47 18.45 89.23 29.15

LLaMA 2-Chat (7B) 56.12 12.62 16.00 11.59 38.93 12.96 11.32 72.35 23.37
Vicuna (13B) 62.45 20.49 17.87 20.73 29.04 10.75 11.52 20.69 28.76
Vicuna (7B) 63.90 19.95 13.59 17.07 28.58 9.17 6.64 16.96 26.95
Alpaca (7B) 63.35 21.52 8.74 13.41 17.14 3.24 3.00 49.75 26.05
ChatGLM (6B) 33.34 16.58 13.48 13.42 13.42 4.40 9.20 55.39 16.01

LLaMA 2 (7B) 66.39 11.57 11.57 17.07 30.92 5.15 2.51 24.16 28.06
LLaMA (7B) 67.68 13.84 8.77 15.24 34.62 7.92 11.12 4.88 19.78
Falcon (7B) 66.89 4.05 10.00 10.37 28.74 10.78 8.46 4.08 23.91
Pythia (12B) 61.19 5.43 8.87 14.63 15.73 1.99 4.72 11.66 20.57
Pythia (7B) 56.96 3.68 8.23 9.15 10.16 1.77 3.74 11.03 15.75

Models
Knowledge Reasoning Symbolic Reasoning Mathematical Reasoning Interaction with Environment

OBQA↑ HellaSwag↑ SocialIQA↑ C-Objects↑ Penguins↑ GSM8k↑ MATH↑ ALFW↑ WebShop↑

ChatGPT 81.20 61.43 73.23 53.20 40.27 78.47 33.78 58.96 45.12/15.60
Claude 81.80 54.95 73.23 59.95 47.65 70.81 20.18 76.87 47.72/23.00
Claude 2 71.60 50.75 58.34 66.76 74.50 82.87 32.24 77.61 34.96/19.20
Davinci003 74.40 62.65 69.70 64.60 61.07 57.16 17.66 65.67 64.08/32.40
Davinci002 69.80 47.81 57.01 62.55 67.11 49.96 14.28 76.87 29.66/15.20

LLaMA 2-Chat (7B) 45.62 74.01 43.84 43.40 38.93 9.63 2.22 11.19 24.51/5.60
Vicuna (13B) 43.65 70.51 45.97 53.55 36.91 18.50 3.72 8.96 22.74/5.00
Vicuna (7B) 43.84 69.25 46.27 44.25 36.24 14.03 3.54 1.49 6.90/1.40
Alpaca (7B) 47.82 69.81 47.55 39.35 40.27 4.93 4.16 4.48 0.00/0.00
ChatGLM (6B) 30.42 29.27 33.18 14.05 14.09 3.41 1.10 0.00 0.00/0.00

LLaMA 2 (7B) 44.81 74.25 41.72 43.95 35.75 10.99 2.64 8.96 0.00/0.00
LLaMA (7B) 42.42 73.91 41.46 39.95 34.90 10.99 3.12 2.24 0.00/0.00
Falcon (7B) 39.46 74.58 42.53 29.80 24.16 1.67 0.94 7.46 0.00/0.00
Pythia (12B) 37.02 65.45 41.53 32.40 26.17 2.88 1.96 5.22 3.68/0.60
Pythia (7B) 34.88 61.82 41.01 29.05 27.52 1.82 1.46 7.46 10.75/1.80

Models
Human Alignment Tool Manipulation

TfQA↑ C-Pairs↓ WinoGender↑ RTP↓ HaluEval↑ HotpotQA↑ Gorilla-TH↑ Gorilla-TF↑ Gorilla-HF↑

ChatGPT 69.16 18.60 62.50/72.50/79.17 3.07 66.64 23.80 67.20 44.53 19.36
Claude 67.93 32.73 71.67/55.00/52.50 3.75 63.75 33.80 22.04 7.74 7.08
Claude 2 71.11 10.67 60.00/60.00/55.83 3.20 50.63 36.4 61.29 22.19 23.67
Davinci003 60.83 0.99 67.50/68.33/79.17 8.81 58.94 34.40 72.58 3.80 6.42
Davinci002 53.73 7.56 72.50/70.00/64.17 10.65 59.67 26.00 2.69 1.02 1.00

LLaMA 2-Chat (7B) 69.77 48.54 47.50/46.67/46.67 4.61 43.82 4.40 0.00 0.00 0.22
Vicuna (13B) 62.30 45.95 50.83/50.83/52.50 5.00 49.01 11.20 0.00 0.44 0.89
Vicuna (7B) 57.77 67.44 49.17/49.17/49.17 4.70 43.44 6.20 0.00 0.00 0.33
Alpaca (7B) 46.14 65.45 53.33/51.67/53.33 4.78 44.16 11.60 0.00 0.00 0.11
ChatGLM (6B) 63.53 50.53 47.50/47.50/46.67 2.89 41.82 4.00 0.00 0.00 0.00

LLaMA 2 (7B) 50.06 51.39 48.83/48.83/50.83 6.17 42.23 3.80 0.00 0.00 0.11
LLaMA (7B) 47.86 67.84 54.17/52.50/51.67 5.94 14.18 1.60 0.00 0.00 0.11
Falcon (7B) 53.24 68.04 50.00/50.83/50.00 6.71 37.41 1.00 0.00 0.00 0.00
Pythia (12B) 54.47 65.78 49.17/48.33/49.17 6.59 27.09 0.40 0.00 0.00 0.00
Pythia (7B) 50.92 64.79 51.67/49.17/50.00 13.02 25.84 0.20 0.00 0.00 0.00

sample 10000 examples from it for evaluation. We fol-
low LLaMA [57] to report the zero-shot performance, and
compute the accuracy of identifying a claim as true for
TruthfulQA, accuracy of recognizing biased sentences (high
perplexity) for CrowS-Pairs, coreference resolution accuracy
(he/she/they) for WinoGender, toxicity score for RealToxi-
tyPrompts, and average accuracy of recognizing hallucina-
tions for HaluEval. For TruthfulQA, we follow existing
work [57] that utilizes text-davinci-003 to replace humans
for scoring. For Crows-Pairs and WinoGender, we follow
the experimental settings of LLaMA [57] to compute the

perplexity and coreference resolution score. For RealTox-
ityPrompts, we utilize the Perspective-API47 for toxicity
evaluation.

• Interaction with environment. To test this ability, we
select ALFWorld [609] and WebShop [610] for evaluation,
which simulate real-world scenarios such as household
and e-commerce environments. We follow the setting of
ReAct [449] that evaluate the 1-shot and 2-shot performance
of LLMs on WebShop and ALFWorld respectively, and com-

47. https://perspectiveapi.com/

https://perspectiveapi.com/
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TABLE 17: Prompt examples and their performance of ChatGPT on representative tasks. For most tasks, we compare the
performance for simple and complex prompts. We also present the reported performance of supervised methods. “LG”,
“KU”, “CR”, “SDG”, “IR” are short for “language generation”, “knowledge utilization”, “complex reasoning”, “structured
data generation”, “information retrieval”. “-” means there is no reported supervised result previously on this dataset.

Tasks Datasets Instructions ChatGPT Supervised

LG

Translation WMT

I want you to act as a translator. Please translate the English
sentence into Czech.

20.66

41.40 [739]
I want you to act as a translator. Translate the given English
sentence into Czech, and ensure that the translated sentence is
semantically consistent with the given sentence. \n Sentence:
{source sentence} \n Translation:

21.12

Summarization XSum

Please generate a one-sentence summary for the given document. 21.71

42.08 [740]{document} Try your best to summarize the main content of the given
document. And generate a short summary in 1 sentence for it.\n
Summary:

23.01

KU

Closed-Book QA ARC
Choose your answer to the question. {query} {options} 85.19

92.00 [741]
Choose a correct answer according to the given question, and output
the corresponding id, do not answer other content except the answer
id.

85.86

Open-Book QA OBQA

Choose your answer to the question: {question} {choices}. You must
only output A, B, C, or D without any extra explanation. The answer
is

81.20

87.20 [741]
Following is a question that requires multi-step reasoning, use
of additional common and commonsense knowledge, and rich text
comprehension. Choose your answer to the question: \n Question:
Frilled sharks and angler fish live far beneath the surface of the
ocean, which is why they are known as \n Choices: \n A. Deep sea
animals \n B. fish \n C. Long Sea Fish \n D. Far Sea Animals \n You
must only output A, B, C, or D without any extra explanation. The
answer is

82.20

Fact Extraction WikiF
Complete the sentence with one or a few words. 29.25

34.20 [520]
Complete the given sentence with one entity name in Wikipedia (MUST
be a noun) as short as possible, and ensure that the completed
sentence conforms to the facts.

31.21

CR

Symbolic Reasoning C-Objects
Problem: {problem}\n Answer: 53.20

—
You are an expert in reasoning problem. Here are some examples
about symbolic reasoning. You can use the knowledge in examples and
solve the last problem. You should follow the examples and generate
the final answer without external solution or words.

66.75

Math Word Problems GSM8k

Problem: {problem}\n Solution: Let’s think step by step. 78.47

63.20 [742]Let’s use python to solve math problems. Here are three examples
how to do it,\n Q: Olivia has $23. She bought five bagels for $3
each. How much money does she have left?\n‘‘‘def solution():\n
"""Olivia has $23. She bought five bagels for $3 each. How
much money does she have left?"""\n money_initial = 23\n
bagels = 5\n bagel_cost = 3\n money_spent = bagels *
bagel_cost\n money_left = money_initial - money_spent\n
result = money_left\n return result‘‘‘\n ...... \n How about
this question?\n Q:

79.30

SDG

Code Synthesis HumanEval I want you act as a code completer. Given a code snippet, your
objective is to complete the code and ensure that it can achieve
the described functionality.

79.88 48.20 [743]

Text-to-SQL Spider ### Complete sqlite SQL query only and with no explanation.\n
#\n### Sqlite SQL tables, with their properties: \n#\n{table}\n#
{foreign_key}\n#\n### {question}\n SELECT

70.10 84.10 [744]

IR

Recommendation MovieLens I’ve watched the following movies in the past in order: \n
{user_his_text} \n\n Now there are {recall_budget} candidate movies
that I can watch next: \n {candidate_text_order} \n Please rank
these {recall_budget} movies by measuring the possibilities that I
would like to watch next most, according to my watching history.
Please think step by step. \n Note that my most recently watched
movie is {recent_item}. Please show me your ranking results with
order numbers. Split your output with line break. You MUST rank the
given candidate movies. You can not generate movies that are not in
the given candidate list.

48.80 76.25 [745]

Conversational
Recommenda-
tion

ReDial Recommend 10 items that are consistent with user preference. The
recommendation list can contain items that the dialog mentioned
before. The format of the recommendation list is: no. title (year).
Don’t mention anything other than the title of items in your
recommendation list

17.20 25.60 [746]
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pute success rate for ALFWorld and average score/success rate
for WebShop. Further, we also follow ReAct [449] to reduce
the length of the input prompt and utilize line break as the
EOS token.

• Tool manipulation. For tool manipulation, we consider
two kinds of tools including search engine and model in-
terfaces. Therefore, we adopt two tool manipulation bench-
marks, i.e., HotpotQA [579] and Gorilla [617]. HotpotQA
requires LLMs to use search engine to retrieve documents
from the web, and Gorilla to invoke model APIs from
three hubs of TorchHub, TensorHub and HuggingFace. We
compute exact match for HotpotQA and accuracy for Gorilla.
For HotpotQA, we follow ReAct [449] to report the 3-shot
performance. For Gorilla, we follow the code released by its
paper [617], and evaluate the zero-shot performance.

Implementation Details. For each task and dataset, we
evaluate the compared LLMs using the same prompts and
results parsing method provided by existing work (i.e.,
TruthfulQA, HotPotQA, Gorilla, HaluEval) or designed ac-
cording to our empirical experience (i.e., TriviaQA, Nat-
ural Questions, Web Questions, ARC, WikiFact, GSM8k,
MATH, C-Objects, Penguins, LAMBADA, WMT’22, XSum,
HumanEval, CrowS-Pairs, WinoGender, RealToxityPrompt).
Specifically, all the experiments about closed-source models
are based on invoking their official APIs, while for open-
source models, we utilize their publicly available code and
model parameters, and perform the inference on 8 A800-
80G GPUs. For TriviaQA, OpenbookQA, HellaSwag, and
SocialIQA, we experiment on the development set since the
test set is not publicly released. While for other datasets,
we experiment on the test set. To reproduce our experi-
ments, we also publicly release our experimental code and
data in https://github.com/RUCAIBox/LLMSurvey/tree/
main/Experiments.

7.4.2 Results Analysis and Findings
We report the experimental results in Table 16, and analyze
the results in the following.

Analysis of Closed-Source Models. We summarize our
analysis and findings of the four closed-source models (i.e.,
ChatGPT, Claude, Davinci003 and Davinci002) as follows:
• These five closed-source models achieve promising results

as general-purpose task solvers, in which ChatGPT mostly per-
forms the best. ChatGPT, Claude, Claude 2, Davinci003 and
Davinci002 perform well in most of tasks, including com-
plex tasks (e.g., GSM8k), which have shown great potential
to be general-purpose task solvers. Among them, ChatGPT
exhibits a more superior model capacity on the evaluation
tasks, winning the most across all tasks. In some evaluation
tasks, the performance gap between ChatGPT and other
closed-source models is very large, especially for complex
tasks e.g., 78.47 (ChatGPT) v.s. 49.96 (Davinci002) on GSM8k,
and 79.88 (ChatGPT) v.s. 51.22 (Claude) on HumanEval.
• Claude 2, ChatGPT and Davinci003 perform better on inter-

action with environment and tool manipulation tasks. On the two
evaluation tasks, Claude 2, ChatGPT and Davinci003, per-
form better than other models by a large margin, e.g., 36.40
(Claude 2) v.s. 26.00 (Davinci002) on HotpotQA, 44.53 (Chat-
GPT) v.s. 7.74 (Claude) on Gorilla-TF, and 72.58 (Davinci003)
v.s. 22.04 (Claude) on Gorilla-TH. A possible reason is that

these three models have been specially optimized towards
these advanced abilities, e.g., supporting the use of external
plugins.
• All the comparison models perform not well on very diffi-

cult reasoning tasks. On MATH and HotpotQA, all models
(including ChatGPT) perform not well. The two tasks are
very difficult to solve, requiring accurate understanding of
complex mathematical knowledge and performing multi-
hop reasoning across documents, respectively. Further, these
models also have a relatively weak performance on machine
translation task (WMT). A possible reason is that WMT also
contains many evaluation examples in minor languages,
which might not be well covered in the pre-training data
of these LLMs.

Analysis of Open-Source Models. Next, we continue to
show our analysis and findings about eight open-source
models (i.e., LLaMA 2-Chat, Vicuna, Alpaca, ChatGLM,
LLaMA 2, LLaMA, Pythia and Falcon) as follows:
• Instruction-tuned models mostly perform better than the

base models. Among all the compared open-source methods,
the instruction-tuned models (i.e., LLaMA 2-Chat, Vicuna,
Alpaca and ChatGLM) mostly perform better than non-
instruction-tuned models (i.e., LLaMA 2, LLaMA, Pythia
and Falcon). It indicates that instruction tuning is generally
capable of improving the few-shot or zero-shot ability of
LLMs in solving various tasks. However, after instruction
tuning, Vicuna (7B) and Alpaca (7B) suffer from perfor-
mance degradations on LAMBADA, a language modeling
task. The reason may be that the instruction data mainly
focuses on enabling LLMs to follow human instructions,
which is not always useful for the general language gen-
eration task.
• These small-sized open-source models perform not well on

mathematical reasoning, interaction with environment, and tool
manipulation tasks. On the tasks of mathematical reasoning,
interaction with environment and tool manipulation, all
these evaluated open-source models perform not well, in-
cluding instruction-tuned ones. A possible reason is that the
instruction data for fine-tuning these models is not specif-
ically designed for these tasks. In addition, these closed-
source models may have limited model capacities due to
small model sizes.
• The top-performing model varies on different human align-

ment tasks. For different human alignment tasks, we can see
that these models achieve inconsistent performance rank-
ings. For example, LLaMA 2-Chat (7B) performs the best
among the compared open-source models on TruthfulQA,
while Vicuna (13B) performs the best on CrowS-Pairs. A
possible reason is that these tasks are designed with spe-
cific purposes for evaluating different aspects of human
alignment, and these models exhibit varied performance
on different tasks, even for the variants of the same model
(e.g., Pythia (7B) and Pythia (12B)). More experiments and
analysis on human alignment evaluation are needed to
reveal more detailed findings.
• As a more recently released model, LLaMA 2 (7B) overall

achieves a good performance, especially on complex reasoning
tasks. For complex reasoning tasks, LLaMA 2 (7B) mostly
performs better than other base models, e.g., 43.95 (LLaMA
2 (7B)) v.s. 29.80 (Falcon (7B)) in C-Objects. For other

https://github.com/RUCAIBox/LLMSurvey/tree/main/Experiments
https://github.com/RUCAIBox/LLMSurvey/tree/main/Experiments
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tasks (e.g., language generation and knowledge utilization),
LLaMA 2 (7B) can also achieve comparable performance
as the best-performing base models. It has used more data
for pre-training (i.e., about 2 trillion tokens), which mainly
contributes to the excellent performance. Furthermore, it
also conducts a more robust data cleaning process.
• Scaling the open-source modes can improve the performance

consistently. By comparing the performance of Vicuna (7B)
and Vicuna (13B), Pythia (7B) and Pythia (13B), we can see
that the models with larger scales mostly perform better
than smaller ones on these evaluation tasks, indicating the
effectiveness of scaling up the model size. Across different
tasks, scaling model is more beneficial for more complex
tasks (e.g., symbolic and mathematical reasoning), where the
larger models mostly outperform smaller ones in a large
margin.

The readers should be note that these findings about
open-source language models are limited to the model sizes.
We will continually update this part by including the results
of larger versions of these models, and also call for the
support of computational resources for more experiments.

8 APPLICATIONS

In this section, we briefly review the recent progress on the
applications of LLMs in two aspects, namely the impact to
research community and representative domains. Figure 18
shows a content organization of this section48.

8.1 LLM for Research Community

As LLMs have revolutionized the way how we develop
AI algorithms, it poses significant impact on the research
community. In this part, we briefly review the advances that
led by LLMs for several representative research directions.

8.1.1 LLM for Classic NLP Tasks
As pre-trained language models (e.g., BERT) have originated
in the field of NLP, the technical advances of language
models has an important impact on the research of NLP. In
this part, we discuss the application of LLMs on five kinds
of classic NLP tasks, including word-level, sentence-level,
sequence tagging, relation extraction, and text generation
tasks, which had been the foundation of many existing NLP
systems and applications. Note that we do not intend to
comprehensively cover all NLP tasks, but instead try to
analyze the impact of LLMs for fundamental NLP research
through the basic tasks. We also omit the discussion of sev-
eral tasks (e.g., language modeling) that have been discussed
early in this survey.

Word/Sentence-level Tasks. As long-standing NLP tasks,
word-level (e.g., word clustering [748] and sense disam-
biguation [749]) and sentence-level tasks (sentence match-
ing [750] and sentiment classification [751]) have been
widely studied in the literature and applied in real-world
platforms. To solve these tasks, the key is to accurately
understand the semantic information about the words or

48. Note that we don’t aim to cover all the related research directions
or domains, but instead demonstrating the use or impact of LLMs via
these selected examples.

sentences. As rich high-quality labeled data about these
tasks has been accumulated so far, existing work [23, 39]
finds that small language models can achieve very good
performance by fine-tuning on it. Recent studies [55, 752]
have also tested the performance of LLMs on these tasks,
showing that LLMs can also perform well via in-context
learning (with very few examples). Whereas, as small mod-
els can be specially optimized on these tasks to learn the
specific task requirement and domain knowledge, full-data
fine-tuned small models can mostly outperform LLMs using
in-context learning on several classic tasks [753, 754], e.g.,
semantic matching and sentiment analysis.

Sequence Tagging. The sequence tagging tasks, e.g., named
entity recognition (NER) [755] and part-of-speech (POS)
tagging [756], are also fundamental tasks. Typically, such
tasks require assigning each token in the input sequence a
proper semantic category label, e.g., the classic B-I-O (Be-
ginning, Inside and Outside) tagging scheme for NER tasks.
In the era of deep learning, early efforts [757, 758] mainly
integrate the learned sequence representations (e.g., using
CNN, LSTM, and BERT) into the classic conditional random
field model (CRF), which performs the tagging task based
on structural prediction. Recently, researchers have tested
the performance of LLMs in sequence tagging tasks, but ob-
served that LLMs still face challenges in solving them using
in-context learning [753], especially for special categories
with ambiguous or rare names, e.g., the “MISC” (miscella-
neous entity) and “ORG” (organization) classes. A possible
reason is that LLMs may misunderstand the meanings of
these classes in the human-annotated dataset, making it
difficult to accurately understand their semantics according
to the instruction and limited examples in the context.

Information Extraction. The information extraction task
focuses on automatically extracting useful structured infor-
mation from unstructured text data, such as relation extrac-
tion [759] and event extraction [760], which is also a crucial
task relating to many NLP applications. Typically, previous
studies formulate this task as a text classification task or
a sequential labeling task. As information extraction often
needs to accurately understand and process complex se-
mantic relations (multiple relations within one sentence), in-
context learning with LLMs typically underperform state-
of-the-art full-data fine-tuning methods [761, 762]. Whereas,
it is shown that enabling collaboration between LLMs and
small models can further boost the performance of specific
tasks [762, 763]. In addition, a recent study [425] also reveals
that LLMs can achieve competitive zero-shot performance
for information extraction with a two-stage workflow, mak-
ing this approach attractive in future applications.

Text Generation. Text generation tasks, e.g., machine trans-
lation [624] and automatic summarization [548], are long-
standing NLP tasks that have been widely studied, and
there have been a number of deployed products and sys-
tems based on fine-tuned small models [311, 764]. Since the
pre-training of LLMs is established on text prediction, they
exhibit strong language generation abilities as commercial
products [627] and humans [628], with the help of proper
prompts [765, 766]. Additionally, LLMs are flexible to effec-
tively handle special requirement in real-world application
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Fig. 18: The applications of LLMs in representative research directions and downstream domains.

scenarios, e.g., document-level translation [767], and also
enable natural language interaction with users to further
improve the generation quality [768]. Despite the above
success, recent work also reveals that LLMs are hard to well
address the generation tasks about low-resource languages
and domains, e.g., Marathi-to-English translation [769], due
to their unbalanced training data across different languages.

Summary. Based on the above discussion, we summarize
the suggestions, and future direction about the use of LLMs
in classic NLP tasks as follows:

• Suggestions: LLMs and small models have their own
merits in different aspects: LLMs are can provide unified
solutions to various NLP tasks and achieve competitive
performance (especially in the zero/few-shot setting), while
small models are economical to develop and can be specially
tuned according to target tasks, which can achieve good
performance with sufficient high-quality labeled data [753,
754, 770, 771]. In applications, one can make suitable choices
based on the actual needs, comprehensively considering
flexibility, data availability, training compute, and efficiency.

• Future direction: Despite the excellent general capac-
ities, LLMs still cannot effectively process the NLP tasks
in low-resource domains, e.g., minor language translation.
To tackle such tasks, it needs to develop effective ap-
proaches to injecting necessary task information or domain-
specific knowledge into LLMs, either through fine-tuning
or prompting. In addition, it is still challenging for LLMs to
handle complex semantic relations in classic NLP tasks (e.g.,
nested entity extraction), which is worth more exploration
from the underlying working mechanism of LLMs. It is also
promising to combine LLMs and fine-tuned small language
models for complementing with each other in solving com-
plex cases of classic NLP tasks [772]. Another promising di-
rection is to conduct human-machine collaborative research
(e.g., conversational translation [768]) on NLP tasks, since

LLMs can effectively understand human instructions and
make meaningful responses.

8.1.2 LLM for Information Retrieval
The goal of information retrieval (IR) systems is to assist
users in discovering ideal information resources (typically
documents) and mitigating the information overload issue.
Typically, contemporary IR systems adopt a retrieve-then-
rerank pipeline framework [54]. Within this framework,
the retriever initially retrieves relevant information from a
large-scale corpus, and the reranker subsequently performs
multi-stage ranking procedure to acquire the most relevant
information [773]. Since the advent of LLMs has significant
impact on the way of information access, we discuss how
it advances the development of IR from two main aspects,
namely LLMs as IR models and LLM-enhanced IR models.

LLMs as IR Models. Existing IR models can be overall
categorized into sparse models (relying on term-based lex-
ical similarity) and dense models (relying on embedding
based semantic similarity) [740]. Specially, dense models
are mainly implemented by fine-tuned PLMs (e.g., BERT).
Compared to PLMs, LLMs have more strong model capac-
ities in capturing text semantics, thus having the potential
to improve existing dense IR models. However, due to the
high overhead of LLMs, the majority of studies concentrate
on employing LLMs as rerankers, aiming to refine the rank-
ing of retrieved candidates. To achieve this, recent efforts
often formulate special instructions that enable LLMs to
perform reranking on a small set of provided candidate
documents. Typically, such an approach does not necessitate
model training, and achieve promising results compared
with well-trained reranking methods [774, 775]. Specially,
the LLM-based reranking approach can be implemented
in different ways by zero-shot or few-shot instruction, in-
cluding pointwise (estimating the relevance scores for query-
document pairs) [776], pairwise (determining the relevance order
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of two documents) [775], or listwise ranking (sorting a subset of
candidate documents) [777]. The essence of these methods lies
in the special design of instructions for text reranking, such
as sliding window strategy for document lists [774, 778],
setwise selection prompting [779], fine-grained relevance la-
bels incorporation [780], and pairwise comparison prompt-
ing [775]. In addition, recent efforts employ LLMs to gen-
erate intermediate texts (e.g., URLs) as retrieval results us-
ing few-shot demonstrations [781]. To further enhance the
model performance, LLMs can be specially fine-tuned as
backbones for reranking [782, 783] or retrieval (including
dense retrieval [54] and model-based retrieval [784, 785]),
similar to the fine-tuning process for traditional PLM-based
IR models [782]. However, fine-tuning LLMs as IR models
entails considerable expenses given the huge parameter
scale of LLMs.

LLM-Enhanced IR Models. As another major research
direction, LLMs can be employed to improve existing IR
models (e.g., small models). A common challenge faced
by existing IR models is the lack of relevant judgment
annotation [786, 787]. To tackle this problem, LLMs can be
instructed to annotate positive or negative documents for
a given query [788], or to generate corresponding queries
based on a set of documents in the corpus by referring to a
few demonstrations [789, 790]. In addition to training data
augmentation, LLM has the potential to improve existing
IR models by refining the search-oriented informativeness
of both queries and documents. In IR systems, the in-
put queries may be constrained by a user’s cognitive and
cultural competency, making it challenging to accurately
express the real intent, and irrelevant content present in
documents can also impact the relevance evaluation with
the query. As a solution, LLM can be utilized to rewrite the
query for enhancing the understanding of the query intent
and incorporating additional knowledge into the query
through well-designed instructions. The rewritten query
can take the form of an improved version of the original
query [791], a document in the corpus that related to the
query [792], or an expansion of the query that concatenated
with a pseudo generated document [793]. In addition, docu-
ments can also be expanded with queries that are generated
based on the original documents using LLMs for context
extension [794].

Remaining Issues. In this part, we further discuss several
important issues to apply LLMs to improve IR systems.
First, though LLMs are capable of being as general-purpose
task solvers, they are not directly well suited for existing
IR systems: they require high overhead for inference [774,
782], have limitations in modeling long texts or document
lists [778], and need special adaptation (e.g., instruction
tuning) to perform the text ranking task [795]. Therefore,
more systematic approaches to adapt LLMs for modern IR
systems should be investigated, to leverage their benefits
and meanwhile overcome these limitations. Secondly, the
advent of LLMs sheds lights on the development of new
information seeking ways (e.g., New Bing). It is meaningful
to explore how to reshape the architecture and paradigm
of IR by integrating the LLMs’ capacities and the merits
of existing IR systems [796]. Thirdly, existing work mainly

focuses on text retrieval tasks, lacking a comprehensive
consideration of multimodal information sources. As will
be discussed in Section 8.1.4, multimodal large language
models [797] are also widely studied, making it feasible to
develop more powerful multimedia retrieval systems.

8.1.3 LLM for Recommender Systems

Unlike IR systems that analyze user search queries to
retrieve relevant documents, recommender systems (RS)
aim to capture the underlying user preference and pro-
vide appropriate information resources to users [798–801].
Typically, existing studies train a recommendation model
(either classic or deep learning model) by fitting it over
the user’s logged data (e.g., click data) [745, 802]. However,
these models often suffer from a series of technical issues,
e.g., cold-start recommendation, domain transfer, and poor
explainability. Recently, LLMs have demonstrated the po-
tential to alleviate these issues of recommendation mod-
els [357, 803, 804], due to the strong capacities of domain
generalization and language generation. In this part, we
briefly review the recent progress of LLMs in recommender
systems, from the following three aspects, namely LLMs as
recommendation models, LLM-enhanced recommendation
models, and LLMs as recommendation simulators.

LLMs as Recommendation Models. With specific methods
or mechanisms, LLMs can be adapted to serve as recom-
mendation models. Existing work along this line can be
generally divided into two main categories. First, some
methods prompt LLMs for completing the recommendation
task in a zero-shot paradigm (i.e., without parameter tun-
ing) [805, 806]. A series of prompt engineering methods like
recency-focused and in-context learning are introduced to
improve recommendation performance as well as alleviate
the potential model biases [807, 808]. Second, another cat-
egory of studies aim to specialize LLMs for personalized
recommendation through instruction tuning [357, 809]. Spe-
cially, high-quality instruction data is key to adapt LLMs
to the recommendation tasks, which can be constructed
based on user-item interactions with heuristic templates. To
further improve the instruction diversity, InstructRec [357]
employs self-instruct technique to simulate large amounts of
potential user instructions in various scenarios like product
search and personalized recommendations. In addition to
representing each item by its text description, there is also
growing attention on extending LLM’s vocabulary with
semantic identifiers in recommender systems [810, 811], to
incorporate collaborative semantics into LLMs.

LLM-enhanced Recommendation Models. In addition to
instructing LLMs to directly provide recommendations, re-
searchers also propose leveraging the universal knowledge
encoded in LLMs to improve traditional recommender sys-
tems. Existing approaches in this line can be divided into
three main categories. The first category employs LLMs to
infer users’ potential intention from their historical interac-
tion data. Furthermore, traditional recommendation/search
models employ the inferred intentions to improve the re-
trieval of relevant items [812, 813]. Additionally, several
studies explore the use of LLMs as feature encoders. They
employ LLMs to encode the side information of items and
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users (e.g., item’s descriptions and user’s reviews), thus de-
riving more informative representations of users and items.
These representations are then fed into traditional recom-
mender systems as augmented input [814, 815]. As an-
other alternative approach, several studies [816, 817] adopt
a distillation-like way to transfer LLM’s capacities (e.g.,
semantic encoding) to improve traditional recommenders
(i.e., small models). Specially, they align the hidden states
of LLMs and traditional recommendation models via joint
training. After training, since only the enhanced small
model will be deployed online, it can avoid the huge over-
head of LLMs in online service.

LLM as Recommendation Simulator. Inspired by the recent
success of autonomous AI agents [818], LLMs have been
also utilized to develop recommendation simulators [819,
820] (exemplified by RecAgent [819]), showing great po-
tential to simulate user real behaviors in recommender
systems [819, 821, 822]. Specifically, to make personalized
simulation, an agent will be equipped with a profiling
module that encompasses relevant identity information.
Then, a memory module is introduced to store agents’ past
interaction experiences. During the process of simulation,
agents are further prompted to conduct self-reflection based
on their past experiences, to capture their underlying user
preference. Most of existing recommendation simulators are
conducted in a user-oriented way, without explicitly mod-
eling the items in the interaction process. To address this,
AgentCF [821] models both users and items as agents, and
further facilitates collaborative reflections to simulate user-
item interactions, so as to capturing the two-sided relations
between users and items.

Remaining Issues. Despite these efforts, there are still
several challenges to address when applying LLMs in
recommender systems. First, existing studies have shown
that LLM-based recommendation models in zero/few-shot
settings tend to perform worse than traditional ID-based
recommenders [806, 807]. This indicates that LLMs might
lack an understanding of personalized user behaviors and
domain-specific collaborative semantics. Although instruc-
tion tuning alleviates this issue to some extent [357, 809],
it can’t fully reduce the semantic gap between LLMs and
recommender systems, and also suffers from high tuning
costs. Furthermore, recommender systems prioritize min-
imizing inference latency to enhance users’ experience in
low-resourced environments (e.g., phones), which poses a
challenge to LLMs’ inference speed as well as memory
overhead. Therefore, it is important to explore improvement
techniques, such as efficient tuning and quantization meth-
ods, to deploy LLMs efficiently and effectively in real-world
recommender systems. In addition, existing LLMs have
limited capacities in long context modeling, make it difficult
to process the huge amount of user-item interaction data.
Improved context length extension and context information
utilization approaches should be developed to improve the
modeling capacities of LLMs in long interaction sequences.

8.1.4 Multimodal Large Language Model
In existing literature [823, 824], multimodal models mainly
refer to the models that can process and integrate informa-
tion of various modalities (e.g., text, image, and audio) from

input, and further produce corresponding output in certain
modalities. In this part, we mainly focus on the multimodal
extension of LLMs by enabling the information modeling
of non-textual modalities, especially the vision modality,
called multimodal large language models (MLLMs) [797]49. To
start our discussion, we specify the input to be text-image
pairs and the output to be text responses. Similar discus-
sions can be made for other modalities, e.g., language-audio
models [825], which is beyond our scope here. In essence,
MLLMs are developed by adapting the information from
other modalities to the text modality, so as to leverage the
excellent model capacities of LLMs that are learned based on
world text. Typically, a MLLM comprises an image encoder
for image encoding and a LLM for text generation, associ-
ated by a connection module that aligns vision and language
representations. During generation, the image is first split
into patches, and then transformed into patch embeddings
by the image encoder and the connection module, to derive
a visual representation that can be understood by the LLM.
Subsequently, the patch embeddings and text embeddings
are concatenated, and fed into the MLLM, allowing the
language model to generate the response autoregressively.
In the following, we will discuss the training, evaluation,
and key points to develop capable MLLMs.

Training Process. The training process of the MLLM in-
cludes two major stages: vision-language alignment pre-
training and visual instruction tuning.

• Vision-language alignment pre-training. To develop
MLLMs, existing work mostly initializes the vision encoder
and the LLM with pre-trained models [149, 150, 826]. These
models retain excellent vision and language capacities, but
span different semantic spaces. Thus, the goal of vision-
language alignment pre-training (i.e., the first-stage training)
is to align the vision encoder and the LLM through end-to-
end training on large-scale image-text pairs [827, 828]. How-
ever, directly tuning these two models on image-text pairs
may cause the degradation of the original representation ca-
pacities. To improve the alignment performance, it is crucial
to design effective training strategies and select appropriate
pre-training data [829, 830]. Existing work mainly employs
the following strategies for cross-modality alignment: (1) if
the number of image-text pairs is not sufficiently large (e.g.,
less than 1M), it is often suggested to only update the
connection module [831]; (2) if the training data includes
high-quality text corpora [832] or image-text pairs with
fine-grained annotations [833], fine-tuning the LLM can be
conducted to boost the performance; (3) if the number of
image-text pairs is very large (e.g., about 1B), fine-tuning
the vision encoder is also plausible [829, 830], but the benefit
remains further verification.

• Visual instruction tuning. After vision-language pre-
training, the second-stage training, i.e., visual instruction
tuning, aims to improve the instruction-following and task-
solving abilities of MLLMs. Generally, the input of vi-
sual instruction tuning consists of an image and a task
description, and the task is to generate a corresponding

49. In existing work, large vision language models (LVLMs) [662] are
also used to term such bimodal models that are developed based on
LLMs. We use the naming of MLLMs in this part due to its wide use in
existing literature.
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text output. To boost the performance, high-quality visual
instruction data is key to eliciting and enhancing the abil-
ities of MLLMs. Therefore, most studies are dedicated to
constructing various visual instruction datasets. As the basic
approaches, early studies construct visual instructions by
distilling from GPT-4 [149] or reformulating vision-language
task datasets [151]. To enhance the quality of instruction
data, recent work further proposes improved strategies by
increasing the instruction diversity [834], incorporating fine-
grained information (e.g., coordinate of objects) into the
instruction [833], or synthesizing complex visual reasoning
instructions [835].

Evaluation of MLLM. After introducing the approaches to
developing MLLMs, we further discuss how to effectively
assess the multimodal capabilities of MLLMs from the fol-
lowing three aspects.

• Evaluation perspectives. The evaluation tasks for MLLMs
can be categorized into two main types: perception and
cognition tasks. Specifically, perception tasks aim to assess the
model’s abilities in understanding the basic semantics of the
image content, while cognition tasks evaluate models with
more complex tasks that require reasoning based on per-
ception results. The perception ability is typically evaluated
through classification tasks about attributes of image (e.g.,
topic and style) and object (e.g., existence and color) or OCR-
related tasks, based on existing datasets or new datasets
derived from existing images with annotations by humans
or LLMs [836–839]. A notable perception issue is hallucina-
tion [840], where the model’s responses contain inconsistent
content with the image. Among existing studies about hallu-
cination in MLLMs [834, 841, 842], object hallucination [843]
has received much research attention. To conduct a stable,
robust evaluation of object hallucination, POPE [844] pro-
poses a polling-based object probing approach for convert-
ing object recognition into a series of binary questions, and
the results indicate that current MLLMs often struggle with
object hallucination. Cognition tasks, on the other hand, re-
quire MLLMs to perform reasoning based on image percep-
tion. A common reasoning task is visual question answering
(VQA), where models answer questions about images that
demand reasoning about spatial relationships [845], general
knowledge [846], or scene text [847]. To fully explore the
capabilities of MLLMs, HallusionBench [848] collects 200
sophisticated visual dependent or supplement questions, on
which even the most advanced MLLMs like LLaVA-1.5 [831]
and GPT-4V [133] fail to achieve good performance.

• Evaluation paradigms. The responses of MLLMs can
be evaluated either in a closed-ended or an open-ended
manner. Traditional multimodal tasks often rely on a closed-
ended evaluation framework, where the assessment is based
on the exact match between the model’s response and the
ground-truth answer. Examples include the VQA score [849]
for visual question answering tasks and the CIDEr [850]
score for captioning tasks. However, MLLMs generate re-
sponses in an open-ended way, which may contain the
correct answer but not exactly match the ground-truth per-
fectly. This discrepancy can lead to the underestimation of
the model’s performance in previous evaluation paradigms.
To address this issue, recent approaches have incorporated
humans or LLMs as evaluators [829]. For instance, MM-

Bench [838] employs ChatGPT to align the model responses
with the most relevant option in a set of multiple-choice
questions. Similarly, LLaVA [851] utilizes GPT-4 for eval-
uating MLLMs’ output, where GPT-4 takes the generated
image captions and object bounding boxes as visual inputs
for assessment. Such open-ended evaluation methods can
improve assessment accuracy while incurring higher costs
due to the involvement of humans or LLMs.

• Evaluation benchmarks. To facilitate a more thorough
evaluation of MLLMs, various benchmarks have been devel-
oped. Part of them collect existing vision-language tasks for
comprehensive evaluation. For instance, LVLM-eHub [852]
aggregates 47 existing text-related visual tasks to assess
six distinct capabilities of MLLMs, and Reform-Eval [853]
takes this a step further by standardizing questions from
existing benchmarks into a uniform format and discusses
how the backbone models influence MLLMs’ performance.
In addition to incorporating existing tasks, several work
also derives new questions annotated by humans or with
the help of LLMs. MME [839] creates a dataset by pair-
ing images from public sources with manually-collected
text instructions for perception and cognition evaluations.
MMBench [838] transforms these instructions into multiple-
choice questions and introduces CircularEval to ensure
evaluation consistency. SEED-Bench [854] further considers
temporal understanding tasks and enlarges the evaluation
scale to 19K multiple-choice questions with the assistance of
LLMs. MM-Vet [855] presents more complex tasks to assess
the integrated multimodal capabilities of MLLMs. It starts
by defining six essential multimodal abilities and then cre-
ates intricate questions by combining multiple abilities. In
summary, the above benchmarks collectively contribute to
the comprehensive evaluation and improved development
of MLLMs.

Key Points for Improving MLLMs. To develop capable
MLLMs, we continue to discuss three key points to improve
the model capacities, from the perspectives of instruction
data, training strategy, and safety and alignment.

• Visual instruction data. Extensive work [831, 856] has
empirically found that both quantity and quality of visual
instructions have an important impact on model perfor-
mance of MLLMs. One basic way to construct visual in-
structions is to leverage the exceptional capability of LLMs
to synthesize instructions based on text descriptions of
images [851]. To further enhance the quality of instructions,
one can construct fine-grained visual instructions with the
help of human annotation [833, 857] or synthesize more
complex data through carefully-designed prompts [835].
Despite the effectiveness of the above LLM-based ap-
proaches, one primary question emerges as to whether a
LLM (i.e., text generation model without training on any
images) possesses the ability to generate sufficiently good
visual instructions solely based on verbalized visual infor-
mation (e.g., captions and coordinates). Specially, existing
work has also revealed that visual instructions generated
by LLMs sometimes contain misinterpretations about the
visual information, e.g., object hallucination [844]. Therefore,
it is crucial to design effective verification methods to con-
trol the quality of instruction data generated by LLMs [835].
Furthermore, it still needs more investigation about what
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makes good visual instructions and how visual instructions
elicit specific multimodal abilities in MLLMs.

• Model training. Different from LLMs, MLLMs are not
trained from scratch, but instead developed based on pre-
trained language and vision models. Existing work em-
ploys a typical two-stage approach for training MLLMs,
i.e., vision-language alignment pre-training and visual in-
struction tuning. In essence, existing MLLMs aim to (1) pre-
serve the inherent capabilities and parametric knowledge
of LLMs as possible, and meanwhile (2) effectively adapt
to multimodal tasks by leveraging the pre-trained LLMs
and visual encoders. To achieve the above two goals, two
typical training strategies are often employed for visual
instruction tuning, either only optimizing the connection
module [151] or fine-tuning both the connector module
and LLM component [851]. As we can see, the former
can reserve the original capacities of LLMs but likely have
a weak an adaptation performance, while the latter can
fully adapt to multimodal tasks but suffer from the loss of
original capacities of LLMs. More efforts should be made to
investigate how to effectively balance the two aspects, so as
to achieving improved multimodal capacities. In addition,
existing MLLMs are still overly dependent on the capacities
of LLMs, which pose the limits on many multimodal tasks
(e.g., space positioning). It will be meaningful to explore
improved training approaches of language models, so that
multimodal information can be also utilized in this process.

• Safety and alignment. Safety and alignment has been
widely discussed in LLMs, which aim to regulate the behav-
iors of models by technical approaches [66]. This topic is also
important to MLLMs. Even a highly advanced MLLM (e.g.,
GPT-4V [133]) can be susceptible to safety issues. For exam-
ple, GPT-4V might occasionally exhibit factual inaccuracies
and baseless inferences about images. In some cases, it may
even generate harmful content targeting specific individuals
or groups [133]. Furthermore, open-sourced MLLMs are
also prone to generate hallucinated response [844] and can
be easily manipulated to produce harmful content [858].
To address the aforementioned issues, some studies collect
specialized visual instructions to mitigate the problem of
hallucination [834]. Another alternative approach is to train
a revision model to rectify hallucinated response generated
by MLLMs in a post-hoc way [859]. Additionally, aligning
MLLMs with RLHF can also assist MLLMs in generating
responses with improved factuality [860]. Despite these
efforts, existing alignment techniques for MLLMs mainly
concentrate on several specific aspects (e.g., hallucination),
lacking a comprehensive consideration of alignment criteria.
More efforts should be made to promote the research of
safety and alignment for MLLMs.

8.1.5 KG-Enhanced LLM
Despite the excellent capacities, LLMs often suffer from
challenges on knowledge-intensive tasks, such as the po-
tential to generate hallucinated content [602] and the lack of
domain-specific knowledge [861]. As a promising solution,
knowledge graphs (KGs), which store enormous knowledge
in the triple format, i.e., ⟨ head entity, relation, tail entity ⟩, can
be utilized to enhance the task performance of LLMs by pro-
viding precise and necessary knowledge. Generally, knowl-
edge enhanced approaches can be expanded into other

forms of structured data (e.g., tables and databases) [862],
while we limit our discussion to the integration of KG for
improving LLMs, which are detailed in two aspects, namely
retrieval-augmented LLM and synergy-augmented LLM.

Retrieval-Augmented LLM. Due to the huge amount of
fact records in a KG, existing work typically adopts a
retrieval model to first obtain a relatively small subgraph
from KG, and then leverages it to enhance LLMs by en-
riching the relevant knowledge. Before the advent of LLMs,
the retrieved subgraphs are often supplemented into train-
ing data, injecting knowledge information into PLMs via
parameter learning [863–865]. In contrast, to leverage the
retrieved knowledge, LLMs mainly incorporate it as part of
the prompt, without parameter update. To implement this
approach, there are two main technical problems, i.e., how
to retrieve relevant knowledge from KGs and how to make
better use of the structured data by LLMs. For the first issue
(i.e., retrieving relevant knowledge), a typical approach is
to train a small language model (e.g., RoBERTa) to iden-
tify question-related fact triples [866]. To further improve
the retrieval performance, several studies also propose an
iterative reading-then-reasoning framework, enabling the
LLM to interact with the KG multiple times and acquire the
required knowledge in a more accurate way [458]. For the
second issue (i.e., utilizing retrieved knowledge), a straight-
forward approach is to serialize the retrieved subgraph
and craft specific prompts to include it as the input of
LLMs [471, 651]. However, due to the loss of structured
information in knowledge serialization, LLMs cannot fully
capture the structural semantics conveyed by original KGs.
To address this issue, several model-based approaches train
a specialized language model (e.g., T5) to transform the
subgraph into the natural language text [867]. To guarantee
the transformation accuracy, it relies on sufficient training
pairs (often unsupervised constructed) [868] and excellent
model capability [869].

Synergy-Augmented LLM. To solve complex tasks (e.g.,
multi-hop question answering [656]), it often requires LLMs
to query a KG multiple times, following a systematic solu-
tion plan. We call such a multi-turn interaction approach to
enhancing LLM synergy-augmented LLM. To better synergize
the LLM and KG in a complementary manner, recent studies
propose to decompose the complex task into multiple sub-
goals and iteratively solve each one by leveraging the nec-
essary knowledge from KG [458, 870, 871]. In this process,
the LLM can be regarded as an autonomous agent (detailed
in Section 8.1.6), which automatically generates the plan
and executes it through interaction with the KG environ-
ment [870]. Specially, the mainstream approaches typically
start by enumerating the candidates using the available
knowledge information at the current step, and then retrieve
the most appropriate candidates for the next step according
to the question [870, 871]. By iterating the above two steps,
LLMs can gradually collect relevant evidence [870, 871], and
finally approach the correct solution. Despite the effective-
ness, enumeration of the candidates over the KG would lead
to a vast search space [872]. To address it, StructGPT [458]
proposes a more efficient way to access knowledge infor-
mation using the specialized interfaces for KGs. Specifically,
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it carefully designs the specialized interfaces according to
the common data operations on KG (e.g., relation extraction
and triple extraction), to ensure efficient and accurate data
extraction. In this way, LLMs can be instructed to better
manipulate and process the structural information of KGs,
thus achieving improved task performance.

Future Directions. Besides the above approaches, there
are several promising directions for KG-enhanced LLM
remaining underexplored. First, due to the variety of struc-
tured data, it is still difficult for LLMs to directly leverage
various kinds of knowledge sources, e.g., domain-specific
KGs. Therefore, it is essential to explore the unified way
to manipulate and utilize different knowledge sources by
LLMs. As a potential solution, it is promising to develop
effective approaches to help LLMs comprehend and make
use of the access interfaces provided by specific knowledge
sources to acquire precise knowledge [458], while more ef-
forts should be made to investigate how to adapt to the data
variety in a cost-effective way. Second, with the evolution of
real-world information, the knowledge stored in LLMs may
become outdated or incorrect. It is necessary to explore how
to synchronize the updated knowledge into LLMs through
a cost-effective manner [873, 874]. Third, it is promising to
investigate the use of factual information from KG to align
LLMs in generating more faithful content [875, 876], which
can help reduce the hallucination of LLMs.

In addition to exploring KG-enhanced LLMs, it is also
meaningful to leverage LLMs to improve the tasks on the
KG side (i.e., LLM4KG) [861, 877]. A typical example is that
LLMs can help supplement or construct the KG. We omit
the discussion of this part, since it is beyond our scope.

8.1.6 LLM-based Agent
The research on agents in AI aims to develop entities that
can perceive the environment, make decisions, and take
actions to achieve specific goals [878]. However, traditional
agents are often limited to heuristic rules or specific environ-
ments, which constrain their generalization to open-domain
scenarios [879]. Given that LLMs possess excellent capacities
in solving complex tasks, they have rapidly emerged as
promising solutions for serving as the core computation
unit of agents [818]. In this part, we will first introduce
the framework for LLM-based agents and then discuss their
applications.

Overall Framework. Next, we first detail the key compo-
nents of an LLM-based agent and then present the typical
workflow.

• Components. Typically, there are three main com-
ponents in an LLM-based agent: memory, planning50, and
execution. Specifically, the memory component aims to store
the information perceived from the environment and can
be utilized to support decision-making. In particular, LLM-
based agents usually maintain information in both short-
term memory and long-term memory with the operations
of reading and writing. Short-term memory usually refers
to the internal context window of LLMs (i.e., input), where

50. Section 6.4 introduces planning as a utilization approach for
LLMs, while in this section, we describe its utilization as a functional
component in LLM-based agents.

LLMs can read and write through actions like reason-
ing [880]. While long-term memory can be mapped to the
external storage like vector databases [537], where LLMs
can read through retrieval and write with reflection [686].
Specially, profiles are usually implemented with long-term
memory, which is an important feature for an agent that
specifies its role and function [818]. The planning component
is responsible for generating the action plan based on the in-
formation from the memory component. In data format, the
plan usually takes the form of text-based instructions [441]
or code-based programs [443]. To generate it, LLM-based
agents will first propose several candidates and then select
a more suitable one among them [436]. The initial plan
can be further refined with execution feedback from the
environment [528]. The execution component is in charge
of carrying out the plan from the planning component,
which can be fulfilled by the internal LLM [441] or external
tools [880].

• Workflow. With the three components mentioned
above, a typical workflow of an LLM-based agent is as
follows. First, it receives information from the environment
and writes it into short-term memory. Then, the agent
processes the newly received information in the short-term
memory. Such a process can be enhanced with information
retrieved from long-term memory. Subsequently, the plan-
ning component utilizes the processed information from
short-term memory to generate the next plan. Finally, the
execution component carries out the plan generated from
the planning component, which can be further assisted with
external tools. By repeating the aforementioned process, the
LLM-based agent can autonomously adjust its behavior in
response to feedback from the environment and ultimately
achieve its goal. Once LLM-based agents receive user re-
quests or are assigned goals, they follow the above work-
flow to accomplish tasks through multi-turn interactions
with the environment.

To summarize, in an LLM-based agent, the LLM serves
as the core computation unit and is equipped with compo-
nents including memory, planning, and execution. These com-
ponents are integrated in a systematic way under the control
of the LLM during interactions with the environment. For
more details, the readers might refer to the comprehensive
survey for LLM-based AI agents [818].

Applications. Recently, LLM-based agents have shown
great potential in autonomously solving complex tasks,
making it feasible to rapidly develop capable applications
for specific domains or tasks. In this section, we will discuss
the applications in single-agent and multi-agent scenarios.

• Single-agent based applications. Applications based on
a single-agent mode mainly aim to develop capable task
solvers that can autonomously complete user requests. A
large number of single-agent projects have been developed,
which focus on general-purpose task solving. As a rep-
resentative project, AutoGPT [534] empowers LLMs with
long/short-term memory management and external tools
like search engines. In order to autonomously address a
user request, AutoGPT understands the request with knowl-
edge from its memory and actions like reasoning, decom-
poses it into a detailed plan, executes the plan step-by-
step with the assistance of tools, and refines the rest plan
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based on feedback from the environment. Such an iterative
process continues until the user request is successfully re-
solved. Other similar projects include GPT-Engineer [881]
and XAgent [882]. In addition, there is also some work that
aims to develop autonomous agents for specific domains,
such as WebGPT [81] for the web-browsing environment,
ProgPrompt [530] for the real-life environment, and Voy-
ager [697] for the Minecraft environment.

• Multi-agent based applications. Different from single-
agent systems where agents work independently, multi-
agent systems work in collaboration to unleash collective
intelligence. Typically, multiple agents can be instantiated
from the same or different LLMs, each with their respective
roles and functions. According to the coordinating strategies
among these agents, multi-agent systems can be divided
into two categories: cooperation-based and competition-
based. In the cooperation-based mode, to share information
and seek collaborative actions among agents, various com-
munication protocols have been proposed, including free-
form dialogue [883], structured document [884], and data
embedding [885]. Based on the communication protocol,
agents can be effectively organized for downstream appli-
cations, such as software engineering [884], user behavior
analysis [819, 821], and society simulation [533]. In the
competition-based mode, debate serves as one of the pop-
ular communication protocols to foster divergent thinking
and elicit valuable external feedback among agents. Such a
way is beneficial for domains that demand precise decision-
making and accurate responses, such as mathematical rea-
soning [886] and evaluation [732].

Remaining Issues. Despite the huge success, there are still
several issues that limit the development and applications
of LLM-based agents. First, with the explosive growth of the
model scale, the efficiency of LLM-based agents, including
both the time and memory overhead, becomes an important
issue for large-scale deployment, especially for multi-agent
systems with numerous instances of LLMs. Second, with the
scaling of the number of LLM-based agents, more effective
and efficient communication protocols and architectures are
required to support the increased complexity of coordina-
tion among agents. Furthermore, building capable agents
poses technical challenges for the capacities of LLMs like
instruction following and long text modeling. Since existing
LLMs are not specially optimized for instantiating agents,
most public-sourced LLMs like LLaMA cannot effectively
facilitate the development of agents. Therefore, it is crucial
to develop capable, specialized models to serve as the core
computation unit of agents.

8.1.7 LLM for Evaluation

While human evaluation can generally offer reliable quality
assessment, it is also often hindered by high annotation
costs, significant time requirements, and annotation incon-
sistencies [887]. In contrast, automatic evaluation can be
employed as a scalable alternative to human evaluation.
Traditional automatic evaluations have relied on reference-
based metrics (e.g., BLEU and ROUGE). Recently, with
the emergence of LLMs as general task solvers highlights
their potential as automatic evaluators [647, 727], making it
promising to conduct LLM based evaluation. In the follow-

ing part, we will introduce the recent progress on LLM for
evaluation, including evaluation formats, methods, meta-
evaluation, and the remaining issues.

Evaluation Formats. Depending on the type of evaluation
outcome, the evaluation format can be categorized into
score-based evaluation and language-based evaluation. Score-
based evaluation employs measurable metrics to assign
quality scores (e.g., ratings or rankings) for evaluated texts.
A prevalent way is to conduct pairwise comparison, where
LLMs are used to determine the partial order relation of
candidate texts following specific guidelines [354, 647, 727],
which greatly simplifies the evaluation task. However, it
may face the inefficiency issue when scaling up the number
of candidates [727]. When high-quality reference texts are
available during evaluation, LLMs can be instructed to score
texts under the guidance provided by references [716, 727,
728]. On the other hand, language-based evaluation focuses
on generating critiques and suggestions, offering qualitative
explanation beyond simple quantitative scoring [371, 888–
890]. It is particularly useful for gathering language feed-
back signals for human alignment tuning [371, 888]. Fur-
thermore, it can evolve into a multi-turn interaction frame-
work, where LLM-based evaluators provide natural lan-
guage feedback to existing solutions from task solvers [891].
This framework evaluates the ability of LLMs to leverage
language feedback for refining self-generated solutions.

Evaluation Methods. A common method for LLM-based
evaluation involves prompting LLMs with specific instruc-
tions. To further improve the quality of LLM-based eval-
uation, recent work proposes to prompt LLMs with varied
contexts to generate diverse evaluation feedback. These con-
texts vary in aspects such as the candidate order [647, 727],
evaluation perspectives [892, 893] (e.g., relevance, clarity,
originality), and evaluation explanation [647]. The gener-
ated multiple evaluation feedbacks are then aggregated to
produce a final evaluation result, which makes the evalua-
tion process less prone to biases from individual feedback
and allows for a more thorough evaluation by covering
a wider range of evaluation aspects. To further improve
the quality of the single-model evaluation, recent studies
also develop multi-agent collaboration frameworks [893–
895] or fine-tune LLMs as specified evaluators [371, 888–
890, 896]. In a multi-model collaboration mode, different
LLMs evaluate the candidates by engaging in discussions
to align preferences and reach a consensus [894, 895]. This
method helps reduce the potential biases in individual
models through the consensus reached by multiple agents.
Another approach to improving single-model evaluation
is to specialize LLMs as scores or critics through fine-
tuning [371, 888–890, 896]. This process involves creating
datasets annotated with preferences and feedback from
humans or proficient LLMs. These datasets are then used to
train evaluation-oriented models, enabling them to generate
pairwise preference or language feedback. The specialized
LLM evaluators demonstrate competitive performance with
fewer parameters [889, 890, 896].

Meta-Evaluation. To effectively assess the quality of
LLM-based evaluators, meta-evaluation benchmarks have
been introduced, for gauging the agreement with human
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preferences and the fairness of the evaluations made by
LLMs [647, 727, 893, 897, 898]. As a representative bench-
mark, MT-Bench [727] evaluates the agreement between
LLMs and human judgments, demonstrating that GPT-4
aligns closely with human preferences in no-tie compar-
isons on 80 multi-turn questions. In addition, to address
potential biases arising from subjective human evaluations,
LLMBar [897] manually designs outputs that are objectively
worse but superficially appealing, which could mislead
evaluators. The evaluation results reveal that even the most
advanced LLMs still fall short of human-level evaluation in
the challenging setting.

Remaining Issues. As discussed in Section 7.1.1, recent
studies demonstrate that LLM-based evaluators expose
multiple types of bias, such as order bias, self-preference
bias, and length bias [647, 727]. Although some biases can
be mitigated through methods like multi-path ensemble or
multi-agent collaboration, they remain inherent to LLM-
based evaluators. Consequently, addressing these biases
intrinsically within the models continues to be an a chal-
lenging issue. In addition, recent work has revealed that
LLMs may be incapable of understanding the self-generated
content, exhibiting a weaker understanding capacity com-
pared to their generation capabilities [899]. Even the most
advanced LLMs still struggle identifying their reasoning or
factual errors without external feedback [900, 901]. Conse-
quently, current LLM-based evaluators might not be ade-
quate for evaluating top-tier LLMs or complex tasks. This
underscores the importance of improvement approaches
for LLM-based evaluators, especially for evaluating capable
LLMs and complex tasks demanding sophisticated reason-
ing, planning, and domain-specific knowledge.

8.2 LLM for Specific Domains

In this part, we discuss the applications of LLMs on several
representative domains, including healthcare, education,
law, finance, and scientific research assistance.

Healthcare is a vital application field closely related to
human life. Ever since the advent of ChatGPT, a number of
studies have applied ChatGPT or other LLMs to the medical
domain. It has been shown that LLMs are capable of han-
dling a variety of healthcare tasks, e.g., biology information
extraction [763], medical advice consultation [902], mental
health analysis [903], and report simplification [904]. As
the major technical approach, researchers typically design
specific prompts or instructions to guide LLMs to perform a
wide range of medical tasks. To further harness the power
of LLMs in the healthcare domain, researchers propose to
develop healthcare-related LLMs [356, 905, 906]. Specifically,
the Med-PaLM models [356, 905] achieves expert-level per-
formance on the United States Medical Licensing Exami-
nation (USMLE), and earns greater approval from physi-
cians in answering consumer’s medical questions. However,
LLMs may fabricate medical misinformation [904, 907],
e.g., misinterpreting medical terms and suggesting advice
inconsistent with medical guidelines. In addition, it would
also raise privacy concerns to upload the health information
of patients [763] into a commercial server that support the
LLM.

Education is also an important application domain where
LLMs potentially exert significant influence. Existing work
has found that LLMs can achieve student-level performance
on standardized tests [46] in a variety of subjects of math-
ematics (e.g., physics, computer science) on both multiple-
choice and free-response problems. In addition, empirical
studies have shown that LLMs can serve as writing or read-
ing assistant for education [908, 909]. A recent study [909]
reveals that ChatGPT is capable of generating logically
consistent answers across disciplines, balancing both depth
and breadth. Another quantitative analysis [908] shows that
students utilizing ChatGPT (either keeping or refining the
results from LLMs as their own answers) perform better
than average students in some courses from the computer
security field. Recently, several perspective papers [910, 911]
also explore various application scenarios of LLMs in class-
room teaching, such as teacher-student collaboration, per-
sonalized learning, and assessment automation. However,
the application of LLMs in education may lead to a series
of practical issues, e.g., plagiarism, potential bias in AI-
generated content, overreliance on LLMs, and inequitable
access for non-English speaking individuals [912].

Law is a specialized domain that is built on professional
domain knowledge. Recently, a number of studies have ap-
plied LLMs to solve various legal tasks, e.g., legal document
analysis [913], legal judgment prediction [914], and legal
document writing [915]. A recent study [916] has found
that LLMs exhibit powerful abilities of legal interpretation
and reasoning. Moreover, the latest GPT-4 model achieves
a top 10% score in a simulated bar exam compared with
human test-takers [46]. To further improve the performance
of LLMs in the law domain, specially designed legal prompt
engineering are employed to yield advanced performance
in long legal document comprehension and complex legal
reasoning [917, 918]. To summarize the progress, LLMs can
act as helpful assistants to legal profession. Despite the
progress, the use of LLMs in law raises concerns about
legal challenges, including copyright issues [919], personal
information leakage [920], or bias and discrimination [921].

Finance is an important field where LLMs have promis-
ing application prospects. LLMs have been employed on
various finance related tasks, such as numerical claim
detection [922], financial sentiment analysis [923], finan-
cial named entity recognition [924], and financial reason-
ing [925]. Despite the competitive zero-shot performance
exhibited by general-purpose LLMs in the finance tasks,
they still underperform domain-specific PLMs containing
million-scale parameters [922]. To leverage the scaling effect
of LLMs, researchers collect large-scale finance corpora for
continually pre-training LLMs (e.g., BloombergGPT [360],
XuanYuan 2.0 [926], and FinGPT [927]). BloombergGPT
has demonstrated remarkable performance across a diverse
range of financial tasks while maintaining competitive per-
formance in general-purpose tasks [360]. Nevertheless, it is
imperative to consider the potential risks in the application
of LLMs in finance, as the generation of inaccurate or
harmful content by LLMs could have significant adverse
implications for financial markets [360]. Therefore, it needs
more strict reviewing and monitoring on the use of LLMs in
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the financial field.

Scientific research is another promising field that LLMs
can empower the development progress. Prior research
demonstrates the effectiveness of LLMs in handling
knowledge-intensive scientific tasks (e.g., PubMedQA [928],
BioASQ [929]), especially for LLMs that are trained on
scientific-related corpora [35, 203, 930]. Given the excel-
lent general abilities and broad scientific knowledge, LLMs
hold significant potential as helpful assistants across var-
ious stages of the scientific research pipeline [931]. First,
during the literature survey stage, LLMs can help conduct
a comprehensive overview of the progress in a specific
research field [932, 933]. Second, during the research idea
generation stage, LLMs demonstrate the ability to generate
intriguing scientific hypotheses [934]. Third, during the data
analysis stage, LLMs can be employed to conduct automatic
approaches to analyzing the data characteristics, includ-
ing data exploration, visualization, and deriving analytical
conclusions [935, 936]. Fourth, during the paper writing
stage, researchers can also benefit from the assistance of
LLMs in scientific writing [937, 938], in which LLMs can
offer valuable support for scientific writing through diverse
means, such as summarizing the existing content and pol-
ishing the writing [939]. In addition, LLMs can aid in
the automated paper review process, encompassing tasks
such as error detection, checklist verification, and candidate
ranking [940]. Despite these advances, there is much room
for improving the capacities of LLMs to serve as helpful,
trustworthy scientific assistants, to both increase the quality
of the generated scientific content and reduce the harmful
hallucinations.

Summary. In addition to the aforementioned work, the
applications of LLMs have been also discussed in several
other domains. For instance, in the psychologic domain,
some recent work has studied the human-like characteristics
of LLMs, such as self-awareness, theory of mind (ToM), and
affective computing [941, 942]. In particular, an empirical
evaluation of ToM conducted on two classic false-belief
tasks speculates that LLMs may have ToM-like abilities
since the model in the GPT-3.5 series achieves comparable
performance with nine-year-old children in ToM task [941].
In addition, another line of work has investigated applying
LLMs into the software development domain, e.g., code
suggestion [943], code summarization [944], and automated
program repair [945]. To summarize, to assist humans by
LLMs in real-world tasks has become a significant area of
research. However, it also presents challenges. Ensuring the
accuracy of LLM-generated content, addressing biases, and
maintaining user privacy and data security are crucial con-
siderations when applying LLMs to real-world scenarios.

9 CONCLUSION AND FUTURE DIRECTIONS

In this survey, we have reviewed the recent progress of large
language models (LLMs), and introduced the key concepts,
findings, and techniques for understanding and utilizing
LLMs. We focus on the large-sized models (i.e., having a size
larger than 10B) while excluding the contents of early pre-
trained language models (e.g., BERT and GPT-2) that have
been well covered in the existing literature. In particular,

our survey has discussed four important aspects of LLMs,
i.e., pre-training, adaptation, utilization, and evaluation. For
each aspect, we highlight the techniques or findings that are
key to the success of LLMs. Furthermore, we also summa-
rize the available resources for developing LLMs and dis-
cuss important implementation guidelines for reproducing
LLMs. This survey tries to cover the most recent literature
about LLMs and provides a good reference resource on this
topic for both researchers and engineers.

Next, we summarize the discussions of this survey, and
introduce the challenges and future directions for LLMs, in
the following aspects.

Basics and Principles. Instead of training on specific task
goals, LLMs learn from unsupervised pre-training on large-
scale text data. This is quite different from previous multi-
task learning approaches, which aim to extend the training
tasks as possible to achieve sufficient generalization. Thus,
it is essential to reveal the basic principles or elements that
establish the foundation of the abilities of LLMs. Although
the basic idea of language models is intuitive, it is still chal-
lenging to formally explain why LLMs trained by simple
language modeling objectives (e.g., next token prediction)
can become capable of solving various real-world tasks.
To investigate this problem, a promising approach is to
study the capacity learning (or selection) mechanism based
on unsupervised pre-training, since the model capacity of
LLMs strongly depends on pre-training data. In addition,
scaling plays an important role in improving the capacity
of LLMs [31, 55, 64], and it is very useful to conduct more
theoretical analysis about how the behaviors of large models
relate to those of small models, e.g., what behaviors of large
models can be inferred from small models and what can’t be
predicted indeed. Another research direction is to explore
more deep analysis on model generalization for LLMs,
since increasing concerns have been raised about whether
LLMs can generalize beyond the knowledge encoded by
pre-training data. Furthermore, data contamination has be-
come a severe issue for fairly assessing the performance of
LLMs [738], and thus setting appropriate evaluation proto-
col will be the basis to investigate and analyze the model
capacity of LLMs.

Model Architecture. Due to the scalability and effective-
ness, Transformer has become the de facto architecture
for building LLMs. Various strategies have been proposed
to improve the performance of this architecture, such as
neural network configuration and scalable parallel training
(see discussions in Section 4.2.2). However, Transformer
still suffers from high training costs and slow inference
rates. More efforts [251, 252] are still in need to develop
improved model architectures for large-scale pre-training.
Specially, system-level or hardware-level optimization (e.g.,
FlashAttention [284]) is worth more exploration to improve
the efficiency of Transformer architectures. In addition, as an
important basic capacity, existing LLMs typically maintain
a long context window. For example, the most recent GPT-4
Turbo enables a long context of 128K tokens, and Claude
2.1 also supports the input up to 200K tokens. Although
many efforts have been made to enhance the long context
modeling ability of LLMs [264, 291], the resulting mod-
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els still can’t well process the information in the context
window [299]. To address this issue, specific architecture
adaptations or algorithms might be needed to enhance the
modeling and utilization of long context information. An-
other worrying concern is that existing work mostly focuses
on training LLMs with decoder-only Transformers. Despite
the effectiveness, it severely limits the more wide, diverse
explorations on alternative model architectures.

Model Training. For pre-training, it is essential to establish
a data-centric infrastructure and training procedure for LLM
optimization, which can effectively support a systematic
process of data collection, data cleaning, data mixture, and
data curriculum. Furthermore, it also calls for more flexible
mechanisms of hardware support or resource schedule, so
as to better organize and utilize the resources in a computing
cluster. In practice, it is very challenging to pre-train capable
LLMs, due to the huge compute consumption and the
sensitivity to data quality and training tricks [78, 93]. Thus,
it becomes particularly important to develop systemic, eco-
nomical pre-training approaches for optimizing LLMs, e.g.,
predictable scaling [46] and proxy model training [59]. More
training recipes or principles should be investigated and
shared to reduce the potential risk of degradation or failure
in large-scale model optimization. Although increasingly
more model checkpoints and cleaned datasets have been
released, there still lacks reproducible work on pre-training
data preparation (e.g., detailed cleaning strategies) and data
scheduling (e.g., data mixture and curriculum). Since it is
very costly to pre-train a LLM from scratch, it is important
to design suitable mechanisms for continually pre-training
or fine-tuning the LLM based on publicly available model
checkpoints (e.g., LLaMA [57] and Flan-T5 [69]). For this
purpose, a number of technical issues have to be resolved,
e.g., catastrophic forgetting and task specialization. Further-
more, it is also useful to develop effective tuning strategies
that effectively inject or edit specific knowledge [672], e.g.,
correcting the outdated facts.

Model Utilization. Based on the natural language inter-
face, prompting has become the prominent approach for
using LLMs to solving various tasks. By combining task
descriptions and demonstration examples into prompts, in-
context learning (ICL) endows LLMs with the ability to
perform well on new tasks, even outperforming full-data
fine-tuned models in some cases. To enhance the ability of
complex reasoning, advanced prompting techniques have
been proposed, exemplified by the chain-of-thought (CoT)
strategy, which includes the intermediate reasoning steps
into prompts. Furthermore, planning is a promising ap-
proach for solving complex tasks, which iteratively invokes
LLMs by leveraging tool use capacities. Despite these ef-
forts, several basic problems related to prompting are still
under-explored: why a good prompt can elicit the correct
answer but a bad prompt cannot, how to reveal the working
principles of advanced prompting methods (e.g., ICL and
CoT) and further improve these existing approaches, and
how to efficiently find the effective prompts for LLMs on
specific tasks. Furthermore, from a practical perspective, it
has become a fundamental challenge to reduce the inference
cost of LLMs, especially in large-scale deployment. Another

popular research direction is retrieval-augmented gener-
ation, where retrieved contexts from supporting sources
are included into prompts for task solving. It has been
shown that retrieval augmentation can extend the knowl-
edge boundary and improve the question answering ca-
pacity [461], but may suffer from the effectiveness of long
context utilization by LLMs [299].

Safety and Alignment. Despite the capacities, LLMs are
faced with great safety challenges in practical use. As a
fundamental issue of probabilistic modeling nature, LLMs
exhibit a tendency to generate hallucinations [638], refer-
ring to texts that seem plausible but may be factually
incorrect [46]. What is worse, LLMs might be elicited by
intentional instructions to produce harmful, biased, or toxic
texts for malicious systems, leading to the potential risks
of misuse [55, 66]. To have a detailed discussion of the
safety issues of LLMs (e.g., privacy, overreliance, disinfor-
mation, and influence operations), the readers can refer to
the GPT-3/4 technical reports [46, 55]. As the major tech-
nical approach to averting these issues, alignment methods
(e.g., RLHF) [66, 116] have been widely used by leveraging
human feedback for developing well-aligned LLMs. How-
ever, RLHF heavily relies on high-quality human feedback
data from professional labelers, which is costly and time-
consuming to recruit qualified human annotators. There-
fore, it is necessary to improve the RLHF framework for
reducing the efforts of human labelers and seek a more
efficient annotation approach with guaranteed data quality,
e.g., LLMs can be employed to assist the labeling work.
Furthermore, it is also suggested to develop simplified
optimization algorithms for alignment [386, 389], to reduce
the training difficulty and unstability of RLHF. As another
practical approach, red teaming [132, 369] has been adopted
for improving the model safety of LLMs, which utilizes
the collected adversarial prompts to refine the LLMs (i.e.,
avoiding the attacks from red teaming). In addition, privacy
concerns are also important to consider when fine-tuning
LLMs with domain-specific data, and thus federated based
learning [946] can be useful in privacy-restricted scenarios.

Application and Ecosystem. As LLMs have shown strong
capacities in solving various tasks, they can be applied
in a broad range of real-world applications (i.e., following
task-specific natural language instructions). As a remarkable
progress, ChatGPT has potentially changed the way how
humans access information, which has been additionally
integrated in the release of New Bing. Generally, in the
near future, it can be foreseen that LLMs would have a
significant impact on information-seeking techniques, in-
cluding both search engines and recommender systems.
Furthermore, LLMs make it possible to develop more intel-
ligent systems (e.g., autonomous AI agents) to tackle various
complex tasks in real-world scenarios. Specially, Assistants
API has been launched by OpenAI (featured by instructions,
knowledge and tool use), enabling rapid development of
agent-like assistants within the applications. This wave of
technical innovation would lead to an ecosystem of LLM-
empowered applications (e.g., OpenAI’s GPT Store), which
has a close connection with human life. Lastly, the rise of
LLMs sheds light on the exploration of artificial general
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intelligence (AGI). It is promising to develop more smart AI
systems than ever. However, in this development process,
AI safety should be one of the primary concerns, i.e., making
AI lead to good for humanity but not bad [40].

CODA

It is not an easy job to write this long survey and update
its content with timely work. First of all, we would like to
sincerely thank the support from the readers and our team
members. We work very hard on this survey, and hope that
it can present a comprehensive, timely reference for LLMs.

Survey Writing. This survey was planned during a discus-
sion meeting held by our research team, and we aimed to
summarize the recent advances of large language models
as a highly readable report for our team members. The
first draft was finished on March 13, 2023, in which our
team members tried their best to include the related stud-
ies about LLMs in a relatively objective, comprehensive
way. Then, we have extensively revised the writing and
contents in several passes. Due to the space limit, we can
only include a fraction of existing LLMs in Figure 3 and
Table 1, by setting the selection criterion. However, we set
a more relaxed criterion for model selection on our GitHub
page (https://github.com/RUCAIBox/LLMSurvey), which
will be regularly maintained. We release the initial version
on March 31, 2023, the major revision on June 29, 2023,
and second version on September 10, 2023, and this latest
version (major revision) on November 23, 2023.

Seeking for Advice. Despite all our efforts, this survey
is still far from perfect: we are likely to miss important
references or topics, and might also have non-rigorous
expressions or discussions. We will continuously update
this survey, and improve the quality as much as we can.
For us, survey writing is also a learning process for LLMs
by ourselves. For readers with constructive suggestions to
improve this survey, you are welcome to leave comments on
the GitHub page of our survey or directly email our authors.
We will make revisions following the received comments
or suggestions in a future version, and acknowledge the
readers who have contributed constructive suggestions in
our survey.

Update log. In this part, we regularly maintain an update
log for the submissions of this survey to arXiv:

• First release on March 31, 2023: the initial version.
• Update on April 9, 2023: add the affiliation information,

revise Figure 3 and Table 1 and clarify the correspond-
ing selection criterion for LLMs, improve the writing,
and correct some minor errors.

• Update on April 11, 2023: correct the errors for library
resources.

• Update on April 12, 2023: revise Figure 3 and Table 1,
and clarify the release date of LLMs.

• Update on April 16, 2023: add a new Section 2.2 about
the technical evolution of GPT-series models.

• Update on April 24, 2023: add the discussion about
scaling laws and add some explanations about the
model sizes for emergent abilities (Section 2.1); add an
illustrative figure for the attention patterns for different

architectures in Figure 9, and add the detailed formulas
in Table 6.

• Update on April 25, 2023: revise some copy errors in
figures and tables.

• Update on April 27, 2023: add efficient tuning in Sec-
tion 5.3.

• Update on April 28, 2023: revise Section 5.3.
• Update on May 7, 2023: revise Table 1, Table 2, and

some minor points.
• Update on June 29, 2023 (major revision):

– Section 1: add Figure 1 for the trends of published
LLM papers in arXiv;

– Section 2: add Figure 4 for GPT’s evolution and the
corresponding discussion;

– Section 3: add Figure 5 for LLaMA family and the
corresponding discussion;

– Section 5: add latest discussion about the synthetic
data formatting of instruction tuning in Section 5.1.1,
the empirical analysis for instruction tuning in Sec-
tion 5.1.4, parameter-efficient model adaptation in
Section 5.3 and memory-efficient adaptation in Sec-
tion 5.4;

– Section 6: add latest discussion about the underlying
mechanism of ICL 6.2.3, planning for complex task
solving in Section 6.4;

– Section 7: update Table 14 for representative datasets
for evaluating advanced abilities of LLMs, and em-
pirical ability evaluation in Section 7.4;

– Section 6.1.1: add prompt design;
– Section 8: add the discussions on applications of

LLMs in finance and scientific research domains;
• Update on September 10, 2023 (major revision):

– Claim the copyrights of the figures and tables in this
paper.

– Add latest LLMs, techniques and their descriptions in
Section 3, Section 4, Section 5, Section 6 and Section 7;

– Section 4: add latest discussion about the decoding
strategy in Section 4.2.5;

– Section 5: add latest discussion about the practical
tricks for instruction tuning in Section 5.1.2, the
empirical analysis on LLaMA (13B) for instruction
tuning in Section 5.1.4, practical strategies for RLHF
in Section 5.2.3, alignment without RLHF in Sec-
tion 5.2.4 and remarks on SFT and RLHF in Sec-
tion 5.2.5;

– Section 6: update the content about the planning for
complex task solving in Section 6.4;

– Section 7: add discussions about evaluation ap-
proaches in Section 7.3.2, Table 15 for the category
of existing evaluation work, and update empirical
ability evaluation in Section 7.4 and the results on
Table 16;

– Section 6.1.1: add new prompt examples in Table 12;
• Update on November 23, 2023 (this version):

– Section 1: add Figure 2 for the evolution process of
four generations of language models;

– Section 2: add more discussion about scaling laws
and how emergent abilities relate to scaling laws;

– Section 3: add latest LLMs in Figure 3 and Table 1,
latest APIs in Section 3.1, commonly used datasets

https://github.com/RUCAIBox/LLMSurvey
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for instruction tuning and alignment tuning in Sec-
tion 3.3, and several libraries in Section 3.4;

– Section 4: add latest discussion about the data
scheduling, including data mixtures and data cur-
riculum in Section 4.1.3; add summary of data prepa-
ration in Section 4.1.4; add discussion about model-
ing long context in Section 4.2.4; add discussion about
decoding efficiency issues and add latest decoding
strategies in Section 4.2.5;

– Section 5: add latest discussion about instance con-
struction and tuning strategies in Section 5.1; add
latest discussion about process-supervised RLHF in
Section 5.2.3, and the empirical study on quantized
LLaMA models (7B and 13B) in Section 5.4.3;

– Section 6: add latest discussion about prompt op-
timization in Section 6.1.2, and update the content
about chain-of-thought prompting in Section 6.3;

– Section 8: add latest discussion about LLM for re-
search directions in Section 8.1;

– Section 9: revise the content in the several aspects.

Planning Content. We will regularly include new content
into this survey, to make it more self-contained and up-
to-date. Here, we list several potential topics that might
appear in the next major version(s): (1) more experiments
with larger language models for both instruction tuning and
ability evaluation; (2) more detailed prompting practice; (3)
training recipe; (4) more theoretical analysis and discussion;
(5) more discussions on applications.

Clarifications on Experiments. In this version, we have
included a number experiments on instruction-tuning (Ta-
ble 9), overall ability evaluation (Table 16), and prompt
engineering (Table 17). Due to the limit of computational
resources, our experiments are not complete, limited to
small-sized models or a few comparisons. Despite that, we
feel that it might be meaningful to share the partial results to
the public. We will try to include the missing results of larger
models or more comparisons in the future versions. We also
call for support of computing power for conducting more
comprehensive experiments.

Chinese Version. We also provide a translated Chinese ver-
sion (corresponding to the first release) of this survey paper
at the link: https://github.com/RUCAIBox/LLMSurvey/
blob/main/assets/LLM Survey Chinese.pdf. Four volun-
teers contribute to check and revise the content, and they
are Yiwen Hu, Xin Deng, Xinming Hou, Yanbin Yin, and
Zhanshuo Cao (in order of contribution). We will also con-
tinuously update the Chinese version, but it may not be as
timely as the latest English version.
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Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imper-
ative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, H. M. Wallach, H. Larochelle,
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jussà, C. España-Bonet, A. Fan, C. Federmann, M. Fre-
itag, Y. Graham, R. Grundkiewicz, B. Haddow, L. Har-
ter, K. Heafield, C. Homan, M. Huck, K. Amponsah-
Kaakyire, J. Kasai, D. Khashabi, K. Knight, T. Kocmi,
P. Koehn, N. Lourie, C. Monz, M. Morishita, M. Na-
gata, A. Nagesh, T. Nakazawa, M. Negri, S. Pal,
A. A. Tapo, M. Turchi, V. Vydrin, and M. Zampieri,
“Findings of the 2021 conference on machine transla-
tion (WMT21),” in Proceedings of the Sixth Conference
on Machine Translation, WMT@EMNLP 2021, Online
Event, November 10-11, 2021, L. Barrault, O. Bojar,
F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Fe-
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Prototyping a collaborative benchmark for legal rea-
soning,” CoRR, vol. abs/2209.06120, 2022.

[727] L. Zheng, W. Chiang, Y. Sheng, S. Zhuang, Z. Wu,
Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang,
J. E. Gonzalez, and I. Stoica, “Judging llm-as-a-
judge with mt-bench and chatbot arena,” CoRR, vol.
abs/2306.05685, 2023.

[728] X. Wang, Z. Hu, P. Lu, Y. Zhu, J. Zhang, S. Subrama-
niam, A. R. Loomba, S. Zhang, Y. Sun, and W. Wang,
“Scibench: Evaluating college-level scientific problem-
solving abilities of large language models,” CoRR, vol.
abs/2307.10635, 2023.

[729] X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani,
C. Guestrin, P. Liang, and T. B. Hashimoto, “Alpacae-
val: An automatic evaluator of instruction-following
models,” https://github.com/tatsu-lab/alpaca eval,
2023.

[730] Y. Huang, Q. Zhang, P. S. Yu, and L. Sun, “Trustgpt:
A benchmark for trustworthy and responsible large
language models,” CoRR, vol. abs/2306.11507, 2023.

[731] Y. Bai, J. Ying, Y. Cao, X. Lv, Y. He, X. Wang, J. Yu,
K. Zeng, Y. Xiao, H. Lyu, J. Zhang, J. Li, and L. Hou,

“Benchmarking foundation models with language-
model-as-an-examiner,” CoRR, vol. abs/2306.04181,
2023.

[732] C. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang,
J. Fu, and Z. Liu, “Chateval: Towards better llm-based
evaluators through multi-agent debate,” CoRR, vol.
abs/2308.07201, 2023.

[733] Y. Chang, X. Wang, J. Wang, Y. Wu, K. Zhu, H. Chen,
L. Yang, X. Yi, C. Wang, Y. Wang, W. Ye, Y. Zhang,
Y. Chang, P. S. Yu, Q. Yang, and X. Xie, “A survey
on evaluation of large language models,” CoRR, vol.
abs/2307.03109, 2023.

[734] Z. Zhuang, Q. Chen, L. Ma, M. Li, Y. Han, Y. Qian,
H. Bai, Z. Feng, W. Zhang, and T. Liu, “Through the
lens of core competency: Survey on evaluation of large
language models,” CoRR, vol. abs/2308.07902, 2023.

[735] J. H. Clark, J. Palomaki, V. Nikolaev, E. Choi, D. Gar-
rette, M. Collins, and T. Kwiatkowski, “Tydi QA: A
benchmark for information-seeking question answer-
ing in typologically diverse languages,” Trans. Assoc.
Comput. Linguistics, vol. 8, pp. 454–470, 2020.

[736] L. Gao, J. Tow, S. Biderman, S. Black, A. DiPofi, C. Fos-
ter, L. Golding, J. Hsu, K. McDonell, N. Muennighoff,
J. Phang, L. Reynolds, E. Tang, A. Thite, B. Wang,
K. Wang, and A. Zou, “A framework for few-shot
language model evaluation,” Sep. 2021.

[737] R. Shah, K. Chawla, D. Eidnani, A. Shah, W. Du,
S. Chava, N. Raman, C. Smiley, J. Chen, and D. Yang,
“When flue meets flang: Benchmarks and large pre-
trained language model for financial domain,” in Pro-
ceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, 2022, pp. 2322–2335.

[738] K. Zhou, Y. Zhu, Z. Chen, W. Chen, W. X. Zhao,
X. Chen, Y. Lin, J.-R. Wen, and J. Han, “Don’t make
your llm an evaluation benchmark cheater,” arXiv
preprint arXiv:2311.01964, 2023.

[739] C. Zan, K. Peng, L. Ding, B. Qiu, B. Liu, S. He, Q. Lu,
Z. Zhang, C. Liu, W. Liu, Y. Zhan, and D. Tao, “Vega-
mt: The JD explore academy machine translation sys-
tem for WMT22,” in Proceedings of the Seventh Con-
ference on Machine Translation, WMT 2022, Abu Dhabi,
United Arab Emirates (Hybrid), December 7-8, 2022,
P. Koehn, L. Barrault, O. Bojar, F. Bougares, R. Chat-
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