
LDC: A Lower-Level Driven Compaction Method to Optimize
SSD-Oriented Key-Value Stores

Yunpeng Chai1,2, Yanfeng Chai1,2, Xin Wang3*, Haocheng Wei1,2, Ning Bao1,2 and Yushi Liang1,2

1Key Laboratory of Data Engineering and Knowledge Engineering, MOE, China
2School of Information, Renmin University of China, China

3College of Intelligence and Computing, Tianjin University, China
*Corresponding Author: wangx@tju.edu.cn

Abstract—Log-structured merge (LSM) tree key-value (KV)
stores have been widely deployed in many NoSQL and SQL
systems, serving online big data applications such as social net-
working, bioinfomatics, graph processing, machine learning, etc.
The batch processing of sorted data merging (i.e., compaction) in
LSM-tree KV stores greatly improves the efficiency of writing,
leading to good write performance and high space efficiency.
Recently, some lazy compaction methods were proposed to
further promote the system throughput through delaying the
compaction to accumulate more data within a compaction batch.
However, the batched writing manner also leads to significant
tail latency, which is unacceptable for online processing, and
the newly proposed lazy approaches worsen the tail latency
problem. Furthermore, the unbalanced read/write performance
of the widely deployed SSDs make the performance optimization
harder. Aiming to optimize both the tail latency and the system
throughput, in this paper, we propose a novel Lower-level
Driven Compaction (LDC) method for LSM-tree KV stores.
LDC breaks the limitations of the traditional upper-level driven
compaction manner and triggers practical compaction actions
by lower-level data. It has the benefits of both decreasing the
compaction granularity effectively for smaller tail latency and
reducing the write amplification of LSM-tree compaction for
higher throughput. We have implemented LDC in LevelDB; the
experimental results indicate that LDC can reduce the 99.9th
percentile latency for 2.62 times compared with the traditional
upper-level driven compaction mechanism, and achieve 56.7% ∼
72.3% higher system throughput at the same time.

Index Terms—LSM-tree, compaction, SSD, KV store, tail
latency

I. INTRODUCTION

Key-value stores have been increasingly adopted as the

low-level storage engines for many mainstream NoSQL and

SQL systems like BigTable [1], Cassandra [2], HBase [3],

HAWQ [4], and TiDB [5], especially in many online big

data applications such as social networking [6], bioinfomatics

[7], graph processing [8], and machine learning [9]. More-

over, Facebook has used key-value storage engines to replace

traditional engines like innoDB [10] for relational database

systems (e.g., MySQL [11]) in online data management to

achieve higher performance and space efficiency in order to

manage large-scale social graph data more efficiently [12].

The development of key-value (KV) storage engines ex-

hibits the following two trends during the last few years:

1) KV trends in terms of Software: LSM-tree. The per-

centage of write requests in many big data applications keeps

increasing. Due to the significantly improved write perfor-

mance and space efficiency [12], the log-structured merge tree

(LSM-tree) based KV stores have gradually replaced tradi-

tional ones based on B+-tree. The essential factor lies in that

the LSM-tree promotes write performance by buffering writes

in memory, batching writes to I/O devices, and performing

the sequential I/O access mode for throughput boost. However

the batched writes make the stored data less ordered, leading

to some read amplification. In other words, the LSM-tree

trades read performance for write boost, which fits in the

recent application feature of larger write proportions and thus

achieves higher system throughput.

2) KV trends in terms of Hardware: SSDs. Many big

data systems have been upgraded to utilize the fast flash-

based Solid State Drives (SSDs) for higher performance, when

the SSD products are getting larger and cheaper gradually.

Nevertheless, SSDs have their own drawbacks: (1) Unlike

the balanced read and write performance of HDDs, the write

operations of SSDs are usually one or two orders of magnitude

slower than its read operations due to the necessary slow

erase operations before re-writing and the inherent write

amplification problem of flash chips [13]. (2) SSDs usually

have the limited write endurance problem (e.g., each cell on

the common flash chips can only be allowed for 5,000 ∼
10,000 times of re-writing before wearing out [14]).

In this case, SSD-oriented LSM-tree KV stores should trade

more read performance for less writes because of SSDs’ fast

reading, slow writing, and limited write endurance. Thus a

common idea is to enlarge the writing batch through some lazy

scheme to accumulate more data for reducing the re-writing

frequency, such as the universal compaction mechanism in

RocksDB [15], dCompaction [16], and PebblesDB [17].

For example, RocksDB [15] implements a universal com-

paction manner that puts all newly-written files in the same

level, i.e., not sorting the new key-value pairs among different

files. Only when the accumulated new files reach a threshold,

all of these new files are merged into the old ones. The worst

case is that all the stored data are involved into one round of

compaction, leading to huge tail latency.

dCompaction [16] introduces the concept of virtual file to

delay the actual I/Os of merging new data into the existing

ones in order. The result is that some I/O operations may be

saved, but each round of merging will involve more data and

be executed in longer time, leading to serious performance

722

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00070



fluctuations (i.e., very unstable system throughput and request

latency).

Motivation. For the lazy approaches like RocksDB or

dCompaction, the enlarged writing batches increase the perfor-

mance fluctuations of LSM-tree-based KV stores. For online

big data systems, the unstable performance and large tail

latencies are unacceptable for users. In order to observe the

latency fluctuation, we have conducted a micro benchmark

experiment by performing a YCSB [18] workload mixed

with 10 millions of read and 10 millions of write requests

on LevelDB, a widely used open-source LSM-tree KV store

developed by Google [19]. The experimental results show that

LSM-trees usually lead to large tail latency and a drastic

performance fluctuation. The average latency per second of

all the requests are plotted in Fig. 1. The fluctuation extent

of the write latency reaches up to 49.13 times compared with

the smallest latency. When a round of batched writing is not

completed in LSM-trees, the user write requests have to wait,

leading to a much larger tail latency for users.

Fig. 1. Serious latency fluctuations caused by batched writing.

Therefore, for online big data applications, the optimization
objectives of LSM-tree KV stores is to reduce the tail latency
and at the same time improve the system throughput of LSM-
tree KV stores. To the best of our knowledge, existing solutions

cannot achieve both of the goals. For example, existing lazy

schemes move the balance point more close to achieving

higher throughput by enlarging compaction granularity, but

away from reducing the tail latency.

Basic Idea. As Fig. 2 (a) plots, the key operation of LSM-

tree is merging the new sorted data set into the existing one.

Usually, the size of new data set (i.e., m) is much smaller

than the existing data set (i.e., n). This data merging process

is called compaction. The traditional compaction of LSM-

tree works in an upper-level-driven manner: the new data set

located in the upper-level of LSM-tree determines the data

set involved in the compaction (i.e., m + n). This manner

leads to two drawbacks: (1) Many extra I/Os are triggered to

decline the throughput of LSM-tree, because the data in the

existing data set (i.e., n) have to be read into memory, and

then be written into the persistent storage again after sorting.

(2) The compaction granularity is large (i.e., m + n) and it

takes a long time to accomplish, along with the side-effect, i.e.,

large tail latency. Moreover, the above mentioned lazy schemes

of enlarging write batches in the LSM-tree may increase the

compaction granularity and worsen the tail latency.

In this paper, in order to achieve both low tail latency

and high throughput, we propose a novel Lower-level Driven
Compaction (LDC) mechanism. As Fig. 2 (b) shows, a small

sorted data subset (e.g., Ei) located in the lower level triggers

the compaction by pulling down some small data sets in the

upper level with the same key range as Ei. LDC optimizes

the tail latency and throughput of LSM-tree at the same time:

(1) LDC breaks down the large compaction job into more

efficient small ones, leading to less user request waiting and

smaller tail latency. (2) Our proposed LDC has a mechanism

to accumulate approximately the same amount of data in the

upper level (e.g., S1, S2, S3, ..., Sk) as Ei (see Section III for

more details), so the extra I/Os (i.e., the I/Os of the involved

lower-level data) in a compaction process are much reduced

to improve the actual throughput of LSM-tree KV stores. We

have implemented our proposed LDC mechanism in LevelDB.

The experimental results indicate that LDC can reduce the

99.9th percentile latency from 469.66 us to 179.53 us, declined

by 2.62 times, and at the same time lead to a 56.7% ∼ 72.3%

higher throughput on average for typical workloads compared

with the traditional upper-level driven compaction manner.

Sorted Data 
Merging 

(i.e., Compaction) 

New Sorted Data Set (m)

Existing Sorted Data 
Set (n)

……

……

…

Ei

S2 S3 SkS1

(a) Upper-level Driven Compaction

Existing 
Sorted 
Data 

Set (n)
(b) Lower-level Driven Compaction

New Sorted Data Set (m)

Upper 
Level

Lower 
Level

……

Fig. 2. The upper-level and the lower-level driven compactions.

Contributions. Our contributions in this paper can be

summarized as follows:

(1) Breaking the limitation of the traditional upper-level
driven compaction manner. We propose a novel Lower-level

Driven Compaction (LDC) algorithm, which can break large

batched writing job of merging new data into small pieces

to not only reduce the tail latency, also reduce the extra

compaction I/Os significantly for higher throughput at the

same time.

(2) Improving both the tail latency and the throughput for
LSM-tree KV stores. We have implemented LDC in a widely

used LSM-tree KV storage engine, i.e., LevelDB. LDC can

reduce the 99.9th percentile latency for 2.62 times, which

improves the quality of service significantly for online big

data applications.

(3) Especially fitting new hardware like SSDs. Our proposed

LDC method is particularly suitable for the hardware features

of SSDs very well, promoting the system performance and

lengthening the lifetimes of SSDs significantly by cutting

down the compaction I/Os by about 50%.

The rest of this paper is organized as follows. Section

II introduces the background of our research and models

the LSM-tree performance. In Section III, we describe the

rationale of our proposed Lower-level Driven Compaction

(LDC). Section IV exhibits the extensive experiments and

723



comparisons, followed by the related works in Section V.

Finally we conclude this paper in Section VI.

II. MODELING LSM-TREE PERFORMANCE

In this section, we first introduce some background about

LSM-tree KV stores (Section II-A), and then the performance

model and the performance analysis of LSM-tree KV stores

will be presented (Section II-B and II-C, respectively).

A. Background

Definition 2.1: (LSM-tree) The Log-Structured Merge

(LSM) tree is a data structure composed of a series of data

set Ci (0 ≤ i ≤ N ), where Ci is a data structure in order, and

|Ci| < |Ci+1|.
Definition 2.2: (MemTable) MemTable is the ordered data

set in the first level (i.e., C0) which is stored in memory for

higher performance in an LSM-tree.

For a key-value store, a MemTable maintains key-value pairs

(k → v) according to the order of k. All the newly inserted

or updated key-value pairs are first written into a MemTable.

Only after a MemTable is full, it will then be written into the

persistent storage, i.e., converting the slow fine-grained writing

to the fast batched one for I/O devices.

Definition 2.3: (SSTable) SSTable is a data set (i.e., Si,

1 ≤ i ≤ N ) located in persistent storage storing key-value

pairs in the sequential order of keys.

Definition 2.4: (Compaction) Compaction is the behavior

of merging all or part of the data in Ci to the sorted structure

in lower levels, i.e., Cj (j > i).
In most cases, we merge the data in Ci into the next level

Ci+1. Assuming Si
m(m ∈ [M1,M2]) represents the SSTables

in level i that are selected to be merged into the lower level

i+ 1 and Si+1
n (n ∈ [N1, N2]) are the SSTables that locate in

level i+ 1 and have the overlapping key ranges with all Si
m,

the compaction operation first loads all Si
m and Si+1

n into

memory, then sorts all the key-value pairs through a merge

sort, and finally constructs some new SSTables in level i + 1
and write these new SSTables into I/O devices.

Definition 2.5: (Fan-out) Fan-out is the capacity ratio of

adjacent levels in an LSM-tree, i.e., |Ci+1|/|Ci|.
The size of the lower levels in LSM-trees usually grows

exponentially. In practice, the total size ratios between adjacent

layers of LSM-trees may deviate from the settings of fan-out.
In this case, we can adjust the size distribution of all layers

by selecting appropriate compaction targets.

Definition 2.6: (Write Amplification) Write amplification

indicates the phenomenon that the physically performed I/Os

are larger than the user’s written data.

When merging the upper-layer data into the larger lower

layer, the compaction will trigger reading all the related

SSTables into memory for merge sort and writing all the sorted

data into persistent storage again to form new SSTables in the

lower layer. This procedure causes multiple times of additional

I/Os compared with the original upper-layer data.

The write amplification rate caused by one compaction

operation is Σn|Si+1
n |/Σm|Si

m|, and the value can usually be

estimated as the fan-out of an LSM-tree. The I/ O amplification

phenomenon usually happens several times when merging

data down layer by layer; the total write amplification rate

is Σn|Si+1
n |/Σm|Si

m|×HLSM , where HLSM is the height of

the LSM-tree.

Example 2.1: LSM-tree Structure and Compaction Behav-
ior in LevelDB. As shown in Fig. 3, when serving write re-

quests, LevelDB first sorts and places data in MemTable. When

a MemTable reaches its capacity threshold (e.g., 2MB), it is

marked as an Immutable MemTable, indicating the contents

in it cannot be changed, and will later be dumped into the

disk and stored as a file (i.e., SSTable). An SSTable stores the

sorted key-value pairs and some auxiliary data like a Bloom

filter to judge if a key exists in the SSTable with low overhead.

In LevelDB, the top layer, i.e., Level 0, is simply a collection

of the newly dumped SSTables to support fast insertion. The

SSTables in Level 0 usually have overlapping key ranges with

each other, while the other lower levels restrict their SSTables

to be sorted and have no overlaps with each other.

Memory

Storage

Immutable
MemTable

MemTable

T

L0

User Writes

Li

Li+1

Dump

Compaction

SSTable

Upper
Level

Lower
Level

Fig. 3. Compaction mechanism in LSM-trees.

In an LSM-tree, compaction is an operation performing the

most I/Os, so it is the performance bottleneck in LSM-tree

KV stores. For instance, we used a performance analysis tool,

i.e., perf [18], in Linux to record the total execution time of

each functions of the LevelDB source codes when inserting 10

millions of key-pairs. The experiment was performed based on

an enterprise-level SSD (see Section IV for more). Table I lists

the top functions which consume the most time. The top two

parts (i.e., the function DoCompactionWork and file system)

consume the most time due to compaction jobs.

TABLE I
THE MOST TIME-CONSUMING FUNCTIONS IN LEVELDB.

Module Percent of Time
DoCompactionWork 61.4%
file system (kernel) 20.9%

DoWrite 8.04%
Others 9.66%

B. Performance Model

LSM-tree Assumptions. We assume the fan-out of an

LSM-tree is k, the size of each SSTable is b, and the total data

amount of the whole LSM-tree is n. So the count of SSTables

is n/b, and the number of LSM-tree levels is logk (n/b) [20].

Assuming the first level (i.e., Level 0) contains u SSTables

with overlapping key ranges with each other, read operations

requires reading additional u SSTables to look for the target

724



key-value pairs. The symbols used in the following part are

summarized in Table II.
TABLE II

SYMBOLS USED IN THE LSM-TREE PERFORMANCE MODEL.

Symbols Descriptions
k Fan-out of an LSM-tree
b Size of an SSTable
n Total data amount of the LSM-tree
u Count of unsorted SSTables in the first level
thw, thr, th Write, read, and total throughput of the LSM-tree

thssd
w , thssd

r Write and read throughput of SSDs
aw, ar Write and read amplification rates of the LSM-tree
rw Ratio of write requests in user workloads
tlw Tail latency of write operations
c SSTable count in upper-level involved in compaction

Based on the above assumptions, the I/O amplification of

write and read operations can be calculated as the following

theorems.

Theorem 2.1: The write amplification rate of an LSM-tree

coupled with the traditional upper-level driven compaction is

O(k × logk(n/b)).
Proof (sketch): The total number of SSTables is n/b and

each level is k times larger than the previous one, so the

height of the LSM-tree is equal to logk (n/b). In each time of

compaction, we assume one SSTable is first selected to perform

compaction, i.e., merging it into the lower layer. Because

the lower layer is k times larger than the current layer, the

average count of SSTables with the overlapping key range

with the selected SSTable in the lower level is O(k). Therefore,

considering one SSTable newly written to the LSM-tree, it will

be re-written for O(k × logk (n/b)) times before putting it in

the lowest layer of the LSM-tree, i.e., the write amplification

rate is O(k × logk (n/b)).
Theorem 2.2: The read amplification rate of an LSM-tree

coupled with the traditional upper-level driven compaction

is O(logk (n/b) + u) when the key ranges of SSTables are

maintained in in-memory indexes.

Proof (sketch): We assume the key ranges of all the SSTa-

bles are maintained in an in-memory index. Each layer of

an LSM-tree is fully sorted, i.e., the key-value pairs in one

SSTable is sorted and the key ranges of SSTables are not

overlapped, but the SSTables in different layers may have

overlapping key ranges. When serving a read request, we need

to check each layer in a top-bottom manner to look for the

target key. Furthermore, the first layer contains u unsorted

SSTables, so we also need to check them first. Therefore, the

read amplification rate of the LSM-tree is related to the height

of the LSM-tree and the count of these unsorted SSTables in

Level 0, i.e., O(logk (n/b) + u).
In addition, it is a reasonable assumption that the SSTable

key range index can be maintained in memory. For instance,

assuming n=10TB, b=2MB, the SSTable count (i.e., n/b) will

be 5 millions. Because the key range of one SSTable only

contains two values of maximum and minimum keys, when the

length of one key is 16 bytes, the total memory consumption

of this index is only 160MB (i.e., 5M×2×16B).

Throughput. The write and read throughput of an LSM-

tree KV store (i.e., thw and thr, respectively) are shown as

(1), where thssd
w and thssd

r are the write and read throughput

of SSDs, and aw and ar are the LSM-tree write and read

amplification rates, respectively. Usually thssd
r is much larger

than thssd
w for SSDs, leading to larger read throughput than

the write one in most cases.

thw = thssd
w /aw

thr = thssd
r /ar

(1)

Assuming rw is the write request ratio of workloads, the

total system throughput (i.e., th) is shown as (2).

th =
1

rw
thw

+ 1−rw
thr

(2)

Tail Latency. Recall Fig. 1 that the request latencies

fluctuate significantly (from several us to more than 1ms). The

reason lies in that the periodical heavy compaction operations

blocks the requests, especially for write requests. If write

requests are always allowed, even when a compaction is

working, the unsorted SSTables in Level 0 will increase too

rapidly to slow down the read performance too much (i.e., a

too large value of u in Theorem 2.2). Therefore, the tail latency

of LSM-tree KV stores mainly comes from write requests

which are blocked by the ongoing compaction.

For the traditional compaction manner, each round of

compaction involves k additional SSTables on average when

moving one upper-level SSTable down. So the tail latency of

write operations (i.e., tlw) is presented as (3), where tw is the

consumed time of writing data into the MemTable which can

be considered as a negligible constant (i.e., p), c is the number

of the selected SSTables each time for compaction, and thread

is the average device bandwidth occupied by serving the read

requests at the same time when performing the compaction.

tlw = tcompaction + tw

=
(k + 1)× c× b

thssd
w − thread

+ p
(3)

C. Performance Analysis

Based on the above performance model of LSM-tree KV

stores, we can get the following points:

1) Existing lazy compaction solutions contribute to reduce
write amplification rate, but enlarge the tail latency. Ac-

cording to Theorem 2.1, the LSM-tree write amplification

comes from two aspects: the first one is the amplification

happened in each round of compaction (proportional to fan-
out, i.e., k), and the second one is the amplification of rewriting

data layer by layer (proportional to the height of the LSM-

tree, i.e., logk (n/b)). Existing lazy compaction solutions [15]–

[17] usually aim to put off some compactions, i.e., skipping

compactions in some layers, to reduce the total amplification

rate. However, these methods increase the granularity of

compaction operations, i.e., increase c in (3), usually leading

to worse tail latency.

2) The key for throughput optimization lies in reducing the
write amplification introduced by each round of compaction.
According to Theorem 2.1, the traditional compaction al-

gorithm introduces k more SSTables in the lower level for

merge sort when writing one SSTable down to the lower level,

725



because the lower level is multiple (e.g., 10) times larger than

the upper level. However, if we can involve data less than k
SSTables in the compaction, the LSM-tree write amplification

rate will be significantly reduced, leading to higher throughput.

3) Making a good balance between reading and writing
to promote the total throughput. According to (2), a too

small value of thw will slow down the process of write

requests significantly, blocking the following read requests and

declining the total throughput. For example, when rw is 0.5,

thr is 10MB/s, and thw is only 1MB/s, the total throughput

is only 1.82MB/s. If we can promote thw to 2MB/s, even

if thr drops to 5MB/s, the total throughput can be improved

to 2.86MB/s, 57% higher than the former, although the sum

of thr and thw declines. Therefore, for new storage hardware

like SSDs with unbalanced read/write performance, we should

give higher priority to improving the write throughput of the

LSM-tree to promote the overall performance.

4) Reducing the SSTables involved in each round of com-
paction is conductive to tail latency reduction. As (3) indicates,

if we can reduce both c and aw effectively, each round of

compaction can be finished in a short time. Write operations

will be blocked for less time and the tail latency will be

reduced significantly. Therefore, the I/O reduction in each

round of compaction is also conducive to reducing tail latency

by shrinking each compaction job.

III. THE LOWER-LEVEL DRIVEN COMPACTION

In this section, we first present the basic idea of our

proposed Lower-level Compaction (LDC) algorithm in Sec-

tion III-A. Then the algorithm description will be given in

Section III-B, followed by the performance analysis and some

discussions in Section III-C and III-D, respectively.

A. Overview

If we perform the lower-level driven compaction directly in

an LSM-tree, the compaction actions include first selecting an

appropriate SSTable and then getting the upper-level SSTable

with the same key range for merge sort. However, due to the

capacity ratio k between adjacent layers, the involved lower-

level data amount in each round of compaction is still k times

larger compared with the upper-level data. Therefore, in order

to reduce the write amplification rate, we should accumulate
more upper-level data for an SSTable for compaction.

Based on the above idea, our proposed LDC algorithm splits

the traditional LSM-tree compaction action into two separate

steps. (1) When an upper-level SSTable is selected for being

merged into the next level, we do not perform actual I/Os to

execute the compaction immediately. Instead, we adopt a light-

weighted link action to connect the segments of the upper-level

SSTable, which are called slices, to the related lower-level

SSTables according to their key range overlaps. Then we move

the upper-level SSTable into the frozen region, i.e., out of the

management of an LSM-tree. (2) Only when a lower-level

SSTable has accumulated enough slices with the overlapping

key ranges, the actual I/O operations of merging the upper-

level contents down into the lower level are performed.

Example 3.1: LDC contains two phases, i.e., link and
merge. As shown in Fig. 4 (a), when SSTable A is determined

to be moved down, we just link its slices to the related lower-

level SSTable with the same key ranges (i.e., SSTable B, C,

and D). As Fig. 4 (b) plots, when one lower-level SSTable

(e.g., C) has accumulated nearly the same amount of data

as itself from multiple file slices in the upper level (e.g., A)

and the frozen region (e.g., X and Y ), actual I/Os will be

performed at this time to complete the data merging.
For the traditional upper-level driven compaction (UDC),

for example, when performing the compaction immediately in

the case of Fig. 4 (a), the original compaction needs to perform

additional reading and writing of three low-level SSTables

(i.e., B, C, and D) in order to merge A into a sorted structure.

LDC can reduce the additional I/O consumption to about the

same amount of the necessary I/Os.

Fig. 4. Basic idea of Lower-level Driven Compaction (LDC).

B. Algorithm Description
The following Algorithm 1 exhibits the key parts of LDC

(i.e., the link and the merge phases).
1) Link: When a compaction process starts, the level whose

size exceeds the expected value the most severely according to

the LSM-tree fan-out setting will be chosen for compaction.

Then an SSTable in this table will be selected as the com-

paction target (i.e., su) according to methods like round-robin.
As Lines 1 ∼ 3 of Algorithm 1 indicate, the SSTables

with the overlapping key ranges with su located in the next

level of the LSM-tree will be identified as Sl, and su will

be frozen, i.e., removed from the LSM-tree. Then, for each

SSTable sl in Sl, we make a slice from su with the same key

range as sl, and link this slice to sl, as shown in Lines 4 ∼
7. This link is referenced as a SliceLink. Finally, when the

accumulated slice number of a lower-level SSTable reaches

the specified threshold Ts, the merge phase of a lower-level

driven compaction action will be triggered, as illustrated in

Lines 8 ∼ 9.
In the link phase, we only establish a relationship between

the slices in the upper-level SSTable and the lower-level SSTa-

bles with overlapping key ranges. No actual I/O operations

are performed in this step; only some in-memory metadata

needs to be processed at a fast speed. Therefore, linking is a

lightweight action in LDC.
2) Merge: When the count of SliceLinks for a lower-level

SSTable is no less than Ts, the merge action will start to

perform a lower-level driven compaction, i.e., executing actual

I/Os to move data down to the lower level and maintain the

key-value pairs sorted in the order of their keys.

726



Algorithm 1 LDC: Link & Merge Operations

1: function link(su) :

2: Sl ← getOverlappedLowerSSTs(su);
3: freeze(su);
4: for each sl ∈ Sl do
5: slice ← createF ileSlice(su, sl);
6: sl.addSliceLink(slice);
7: su.reference ← su.reference+ 1;
8: if getSlicesNum(sl) ≥ Ts then
9: merge(sl);

10: function merge(sl) :

11: C ← getLinkedSlices(sl);
12: D ← loadData(sl, C);
13: M ← doMergeSort(D);
14: S ← generateNewSSTs(M);
15: for each s ∈ S do
16: flush(s);

17: removeSST (sl);
18: for each c ∈ C do
19: su ← getSST (c);
20: su.reference ← su.reference− 1;
21: if su.reference = 0 then
22: removeSST (su);

In the merge phase, shown as Lines 10 ∼ 17 of Algorithm 1,

we first fetch the lower-level SSTable (i.e., sl) and all its linked

slices (i.e., C) into memory, sort all the loaded key-value pairs

using a merge-sort, and write the newly generated SSTables

into the underlying storage devices (e.g., SSDs). These new

SSTables located in the same level as sl, and the old sl will

be removed.

When the actual I/Os are accomplished, all the linked upper-

level SSTables of sl will have a decreased reference count. If

any of these upper-level SSTables have no reference, it will

be deleted to save storage space, as Lines 18 ∼ 22 exhibit.

3) Modification on Read Procedure: Besides the link and

the merge phases, LDC requires some additional modification

of the read procedure in the LSM-tree KV stores. According

to LDC, the frozen SSTables break away from the normal

management of the LSM-tree, and the data in these frozen

SSTables belong to their linked lower-level SSTables. In an

LSM-tree, because data in a higher level may be a newer ver-

sion compared with that in the lower levels, linked slices have

higher priority for reading than the corresponding SSTable.

Although the LDC mechanism may introduce some addi-

tional requirements in reading the linked slices, the cached

indexes and Bloom filters of active SSTables can help locate

the position of the target data accurately to avoid most of the

I/Os. Moreover, LDC is used in SSD-based key stores; the

random reading performance of SSDs is much more close to

their sequential reading performance compared with hard disk

drives. LDC usually achieves better total throughput according

to (2) because of more balanced read and write performance

of KV accesses (see §IV-C for more experimental results).

4) Self-Adaption of the SliceLink Threshold: When the

SliceLink threshold of LDC is small, we have less linked

slices to read, leading to higher read performance; but the

write amplification rate gets larger, with the result of worse

write performance. When the the SliceLink threshold is large,

the write amplification rates will be reduced for linking more

data to the same lower-level SSTable, resulting in higher write

performance but worse read performance.

Therefore, the SliceLink threshold can be self-adaptive to

fit the read/write request ratios of practical user workloads

for higher performance dynamically. For the read-dominated

applications, smaller SliceLink thresholds can be set in LDC

until the total performance cannot be improved further. For the

write-dominated workloads, the SliceLink thresholds can be set

larger periodically until we get the optimal total performance.

Example 3.2: Operations in the link phase. Taking the case

in Fig. 5 for example, for the selected compaction target, i.e.,

SSTable A, we first find the related lower-level SSTables with

the overlapping key ranges (i.e., B, C, and D). Assuming that

B is responsible for the key range from the smallest possible

key (i.e., ksmallest) to the largest key of B (i.e., kBH ), marked

as kr1 in Fig. 5. Similarly, C and D are also related to the key

range kr2 and kr3 containing the intervals. Then SSTable A is

marked as a frozen SSTable, meaning it will not be chosen for

another round of compaction. Reading data in A may cause

additional slice reading. For the related low-level SSTables B,

C, and D, a new in-memory item of SliceLink will be created

for each SSTable to remember its linked slice in SSTable A
(i.e., A1, A2, and A3 respectively) and their overlapping key

ranges.

Fig. 5. An example of the link phase in LDC.

Example 3.3: Operations in the merge phase. As shown

in Fig. 6, in the merge phase, we identify the corresponding

slices in the frozen SSTables (i.e., A3, B1, and C2) according

to all the SliceLinks of the lower-level SSTable D. The data

in the slices A3, B1, and C2, not the whole SSTables A, B,

and C, are loaded into memory, sorted, and then written into

two new SSTables, i.e., D′ and D′′, in the lower level. Finally,

the reference counts of the corresponding frozen SSTables will

all decrease by 1. A frozen SSTable can be recycled when its

reference count comes to 0.

C. Performance Analysis

Compared with the traditional UDC approach, our proposed

LDC algorithm can effectively reduce the tail latency and

improve the total system throughput.

727



1 2 3

A

D

Frozen

A3 B1 C2

SliceLink

1 2

B

1 2 3

C

ref=3 ref=1 ref=1

1 2 3

A

D

Frozen

1 2

B

1 2 3

C

ref=2 ref=0 ref=0

D

(a) before Merge (b) after Merge
Enough links triggers Merge 0-ref SSTables are removed

Fig. 6. An example of the merge phase in LDC.

Tail Latency. Recall (3) that the tail latency of the

traditional UDC method is nearly in direct proportion to

(k+1)×c×b, i.e., O(k×c), because b is a constant. The lazy

compaction approaches [15]–[17] can skip some compaction

actions but cannot reduce the write amplification of each

round of compaction by following the same upper-level driven

compaction mode (i.e., not reducing k). Furthermore, the lazy

compaction schemes increase the compaction granularity (i.e.,

increasing c). Therefore, the tail latency will be enlarged by

these lazy compaction schemes. On the contrary, our proposed

LDC algorithm aims to reduce the granularity in each round

of compaction (i.e., from O(k) to O(1)), so the tail latency

will be reduced significantly.

Throughput. LDC reduces the write amplification rate for

k times compared with UDC (see Theorem 3.1), obtaining

significantly improved LSM-tree write throughput. Although

the read amplification rate increases (see Theorem 3.2), the

total throughput will also be promoted based on higher write

throughput and a bit lower read throughput since the under-

lying SSDs has much better read performance than the write

one (please refer to the above (2)).

Theorem 3.1: The write amplification of an LSM-tree with

LDC is O(logk (n/b)).

Proof (sketch): Compared with UDC, LDC does not change

the fan-out (i.e., k) and the LSM-tree height (i.e., logk (n/b)).
The condition of triggering lower-level driven compaction is

the linked upper-level slices have nearly the same data amount

compared with the lower-level SSTable. Therefore, the write

amplification rate of each round compaction is O(1); the total

write amplification rate is O(logk (n/b)).

Theorem 3.2: The read amplification rate of an LSM-tree

with LDC is O(k × logk (n/b) + u) when the key ranges of

SSTables are maintained in in-memory indexes.

Proof (sketch): According to LDC, some SSTables have

linked slices. When performing read operations on this kind

of SSTables, we need to check all the linked slices first for

the target key(s). Because a lower layer in an LSM-tree is

usually k times larger than its upper layer, the data amount

corresponding to the same key ranges in the lower layer will

also be k times larger than those in the upper layer. In this

case, considering one SSTable in the lower layer, each of its

linked slices usually only contains 1/k size of an SSTable.

So we need to check k slices additionally when performing

reads. The read amplification rate of LDC will be enlarged to

O(k × logk (n/b) + u).

However, Bloom filters are widely adopted in LSM-tree KV

storage engines to help avoid reading unnecessary SSTables.

Due to the high space efficiency of Bloom filters, the Bloom

filters of most frequently accessed SSTables are usually cached

in memory. Consequently, the practical read amplification rate

of LDC will be much lower than O(k× logk (n/b)+u), even

close to O(logk (n/b) + u).

D. Discussions

Space Overhead of LDC is Small. Compared with UDC,

LDC requires some additional temporary space, because some

frozen SSTable may contain useless slices, whose data have

already been merged into lower-level SSTables, e.g., the gray

slices in Fig. 6. However, this overhead is acceptable due to

the following reasons:

1) An SSTable with SliceLinks cannot be chosen for link to

avoid making LDC too complicated. So overall, even if all the

SSTables establish link relationships in pairs, the total size of

all the frozen SSTables is less than 50%. On average, half of

the slices in all frozen SSTables is useless, so the additional

space that LDC does not release in time is at most 25% of the

whole storage.

2) In fact, not all the SSTables are involved in the link
relationship. It could be found from our experiments in §IV-J

that LDC only consumes 3.37% ∼ 10.0% more space than

the native compaction in LevelDB, 6.78% on average, much

less than the above worst-case estimation. Furthermore, we

can adopt a smaller SliceLink threshold to further reduce the

additional space overhead of LDC.

Simply Adjusting LSM-trees does not Work. An intuitive

idea of improving the tail latency and the throughput of an

LSM-tree is to simply adjust some parameters of the LSM-

tree, such as the size of SSTables, or fan-out of the LSM-

tree. However, these methods cannot improve tail latency and

throughput at the same time.

1) Setting Smaller SSTables. Smaller SSTable file size

settings lead to small compaction granularity and small tail

latency, but also lead to worse I/O performance due to smaller

I/O granularity on storage devices.

2) Tuning Fan-outs of LSM-trees. When setting a smaller

fan-out of an LSM-tree, we can reduce the average file number

involved in each round of compaction (i.e., O(k)), but it also

increases the tree depth, leading to more rounds of com-

pactions. On the contrary, an LSM-tree with a larger fan-out

has to handle more files each time (i.e., enlarged k), resulting

in considerable I/O amplification. Therefore, tuning fan-outs

of LSM-trees cannot effectively reduce I/O amplification and

promote throughput, verified by our experimental results in

Fig. 7 when the fan-out ranges from 3 to 100.

IV. IMPLEMENTATION AND EVALUATION

As a classical implementation of LSM-trees, LevelDB [19]

is a popular open source key-value store library written in C++,

inspired by Google’s BigTable [1]. Our proposed Lower-level

Driven Compaction (LDC) was implemented and integrated

to LevelDB. Our work mainly includes the newly added or

728



Fig. 7. Tuning fan-out cannot reduce amplification and promote throughput.

modified metadata to support our proposed new concepts, such

as slice, SliceLink, link, and merge, the modifications on the

compaction procedure, the read request processes including

both GET and SCAN operations, and some necessary statisti-

cal functions.

A. Experimental Setup

The experiments were performed in a Linux Ubuntu 14.04.1

environment equipped with an enterprise-level 800GB Mem-

blaze Q520 PCIe Solid State Drive (SSD). The widely used

YCSB benchmark suite [18] is adopted in our experiments

to provide workloads for LevelDB, with the uniform key

distribution as the default setting. Each key-value pair is set to

have a 16-B key and a 1-KB value. The evaluated workloads

are constructed with different ratios of random insertions (i.e.,

write operations) mixed with random reads (i.e., point lookups)

or range scans.

The workloads we listed in Table III include a write-only

(WO) workload, a read-only (RO) workload, mixed workloads

consisting of 70%, 50%, or 30% of writes and GET operations

representing write-heavy (WH), read/write balanced (RWB),

and read-heavy (RH). And there are similar workloads mixing

writes with range queries (i.e., SCN-WH, SCN-RWB, and SCN-
RH). Because the lazy compaction schemes introduce much

larger tail latency, which does not suit online applications, we

do not put them in the comparison target.
TABLE III

YCSB WORKLOADS USED IN EVALUATIONS.

Workload Query Type Category
WO / Write Only (100% writes)
WH Point Lookups Write Heavy (70% writes)
RWB Point Lookups Read/Write Balanced (50% writes)
RH Point Lookups Read Heavy (30% writes)
RO Point Lookups Read Only (100% reads)

SCN-WH Range Queries Write Heavy (70% writes)
SCN-RWB Range Queries Read/Write Balanced (50% writes)
SCN-RH Range Queries Read Heavy (30% writes)

B. Latency Reduction

Tail Latency. Fig. 8 plots the relative tail latencies of

different percentiles (i.e., P90 ∼ P99.99) for UDC and LDC

by performing 10 millions of random writes and 10 millions

of random reads. Recall (3) and the tail latency analysis in

Section III-C that LDC can effectively reduce the count of

long latencies by breaking a large compaction job into efficient

small pieces. For example, for the 99.9th percentile latency,

LDC reduces the latency from 469.66 us to 179.53 us, declined

Fig. 8. The P90 ∼ P99.99 tail latency comparisons between UDC and LDC.

for 2.62 times. And the 99.99th percentile latency is declined

from 2688.23 us to 1305.96 us by deploying LDC.

Average Latency. The same reason can explain the im-

provement of LDC on average latency. Fig.9 plots the average

latency of UDC and LDC by running different workloads. For

write-heavy workloads and read/write balanced workloads, the

average latency drops to 43.3% and 45.6% from UDC to LDC.

For read-heavy workloads, UDC and LDC achieve comparable

average latency.

Fig. 9. The average latency of UDC and LDC by running different workloads.

Therefore, LDC is effective in reducing tail latency and can

achieve lower average latency under various workloads.

C. Throughput Improvement

Fig. 10 (a) and (b) plot the total throughput of UDC and

LDC by running workloads containing queries composed of

GET or SCAN, respectively. All the workloads include 10

millions of requests each under the uniform distribution.

WO, WH, RWB, and RH workloads. In Fig. 10 (a),

LDC achieves a 78.0% higher total throughput than UDC

under the write-only workload (i.e., WO). For the write-

heavy workloads (i.e., WH), LDC achieves a 73.7% higher

throughput than UDC; for the read/write balanced cases (i.e.,

RWB), the improvement is 80.2%. As (2) indicates, when LDC

balances the read and the write performance for SSD-based

KV stores, the total throughput will be improved significantly.

For the read-heavy workloads (i.e., RH), the improvement

of LDC over UDC is 16% because write operations caused

by compactions are not the majority of I/O operations. The

average improvement of LDC over the traditional compaction

manner can reach 56.7% on average for the above workloads

including WH, RWB, and RH.

Read-only workloads. For the read-only workload, the

throughput of LDC is nearly the same as UDC. Although

LDC may trigger more read operations in order to reduce

the tail latency and to promote the throughput at the same

time, the SSTable-level Bloom filters and the self-adaption

729



(a) Throughput (Point Lookups) (b) Throughput (Range Queries) (c) I/O amount caused by compactions

Fig. 10. Throughput Improvement: our proposed Lower-level Driven Compaction (LDC) vs. traditional Upper-level Driven Compaction (UDC).

of the slicelink threshold make LDC achieve similar read

performance as UDC. First, due to small space overhead,

most Bloom filters of popular SSTables are usually in mem-

ory, avoiding many unnecessary I/Os of reading from slices.

Second, when the workloads are read-dominated or read-only,

the SliceLink threshold of LDC will be self-tuned to be very

small, reducing the linked slice count for SSTables.

Range Queries. SCN workloads are composed of random

insert operations and SCAN operations, each of which covers

100 key-value pairs on average. The throughput of running

SCN-WH, SCN-RWB, and SCN-RH workloads with 10 mil-

lions of requests each are illustrated in Fig. 10 (b). LDC

can promote the throughput for range queries. The throughput

improvement are 86.2%, 81.1%, and 49.1%, respectively for

SCN-WH, SCN-RWB, and SCN-RH, compared with UDC. The

average improvement of LDC is up to 72.3%.

Recall Theorems 3.1 that LDC can reduce the write am-

plification rate of an LSM-tree. As the experimental results

indicate, LDC is effective in promoting the system throughput

of KV stores due to smaller write amplification rates. Note

that the throughput of range-query workloads measured in

ops/sec is usually lower than those of the workloads without

range queries, because one range query that reads 100 key-

value pairs on average only accounts for one operation in the

measurement of throughput.

D. Compaction Efficiency Analysis

Fig. 10 (c) exhibits the total I/O amount caused by the

compaction operations of LDC and UDC under different work-

loads. SCN in this figure indicates SCN-RWB. By adopting

the lower-level driven compaction, the key-value store can

save nearly half of the I/O requests during the compaction

procedure under all kinds of workloads. Taking the WH
workload for example, the read and write I/O sizes of UDC

are 98.78 and 107.1GB, respectively, almost twice of LDC’s,

which are 50.38 and 58.78 GB.

Moreover, for key-value stores coupled with flash-based

SSDs, which have limited write endurance, LDC can extend

the SSD lifetimes by reducing writes caused by compactions,

improving the system reliability and reducing the costs.

E. Uniform vs. Non-Uniform Distributions

In this part, we measure the system throughput under the

uniform and the non-uniform distribution workloads, as shown

in Fig. 11. Some RWB workloads of 20 million requests under

the uniform and the Zipf distributions were performed in the

experiments and the Zipf constant ranges from 1 to 5 (i.e.,

Zipf1, Zipf2, and Zipf5 in Fig. 11). The larger the Zipf constant

is, the accesses are more concentrated on some popular key-

value pairs.

Fig. 11. The throughput under workloads of uniform and Zipf distributions.

Compared with the uniform distribution, Zipf distribution

usually leads to higher hit ratios of in-memory cache. More-

over, the concentrated user accesses push more data in limited

key ranges down for compaction, leading to smaller write

amplification rates. So both UDC and LDC achieve higher

performance when the Zipf constant gets larger.
Along with the increase of the Zipf constant, the perfor-

mance promotion of LDC over UDC generally gets larger.

For example, the performance improvement of the uniform

distribution is 38.7%, while that of Zipf5 is up to 67.3%.

When the written data are more concentrated in part of key

ranges under Zipf distribution with larger Zipf constant, it is

much easier to reach the SliceLink threshold for the lower-

level SSTables according to LDC. Therefore, LDC is more

effective under the Zipf distribution, which is more close to

the practical applications.

F. Impacts of SliceLink Threshold Settings
In this part, we measure the impacts of the SliceLink

threshold of LDC under a uniform workload with 50% writes

and 50% reads, illustrated in Fig. 12 (a) and (d). The SliceLink
threshold determines the timing to trigger a merge phase. The

results exhibit that the most suitable setting of the SliceLink
threshold is the same as fan-out (e.g., 10 in this case). A

small value will force the target SSTable to start merging

too early with few linked slices, i.e., the percentage of the

additional lower-level compaction I/Os will be enlarged. On

the contrary, although a large SliceLink threshold generates

smaller I/O amplification (see Fig. 12 (d)), it will introduce

more data fragments, leading to loss of I/O performance.

730



(a) SliceLink threshold: Throughput (b) Fan-out: Throughput (c) Bloom filter: Throughput

(d) SliceLink threshold: Compaction I/O Size (e) Fan-out: Compaction I/O Size (f) Bloom filter: Compaction I/O Size

Fig. 12. Impacts of different SliceLink thresholds, fan-outs, and Bloom filter sizes.

G. Impacts of Fan-out Settings

Fig. 12 (b) and (e) respectively plot the throughput and the

total compaction I/O sizes when the fan-out of the LSM-tree

ranges from 3 to 100 under a uniform RWB workload. LDC

achieves less compaction I/Os and higher performance than

UDC in all the cases. The performance is improved by 8.8% ∼
187.9%. The larger a fan-out value is, the greater advantage of

LDC over UDC is. The reason lies in that LDC is designed to

reduce the I/Os of each round compaction, which is extremely

effective for a relatively fat LSM-tree.

For UDC, the fan-out value that achieves the best perfor-

mance is 3, and the best fan-out for LDC is about 25. The hint

for us is that we can adopt an appropriately fat LSM-tree to

achieve high performance for LDC. The highest performance

that LDC has even reached is still much better than UDC. In

the other experiments, the fan-out values of UDC and LDC

are both set to 10 by default.

H. Impacts of Bloom Filter Settings

RWB workload. In Fig. 12 (c) and (f), we evaluate how

different Bloom filter size affects the performance based on a

read/write balanced workload under the uniform distribution.

In order to reduce the I/O overhead of reading data, LSM-

tree KV stores usually set a Bloom filter in each SSTable. If

a key fails to pass the Bloom filter, it is surely not in this

SSTable; if it hits the Bloom filter, the key may be in this

SSTable. Therefore, the accuracy of Bloom filters is related to

their sizes. As shown in Fig. 12 (c) and (f), when the sizes of

Bloom filters are assigned to 10 to 200 bits per key, the system

performance does not fluctuate much for both UDC and LDC,

indicating that Bloom filters in the level of 10 bits/key are

enough to provide high accuracy to judge whether a target

key is contained in an SSTable.

RO workload. Because of the design of SliceLinks, LDC

may need to check more SSTables than UDC when performing

a read request. However, the Bloom filters can exclude the

majority of to-be-checked SSTables for a target key to reduce

actual I/Os, especially when the accuracy of Bloom filters

is high. The effects of Bloom filters with different sizes are

further evaluated and shown in Fig. 13 under a 10-million read-

only workload. This figure shows the relationship between the

size of Bloom filters and their effects on reducing the count

of reading data blocks in SSTables from SSDs. Because we

always need to check a Bloom filter first when processing a

read requests, if the accuracy of the Bloom filter is 100%, the

read counts of data blocks should be exactly 10 millions. Fig.

13 exhibits that when the bits-per-key of Bloom filters reaches

16 or higher, the effects of reducing read counts of data blocks

is not obvious, i.e., increasing the Bloom filter size is hard to

promote the accuracy of Bloom filters further. So a value of

bits-per-key between 8 and 16 is usually enough.

In addition, the relationship between the Bloom filter size of

each SSTable and the setting of bits-per-key is also illustrated

in Fig. 13. When the value of bits-per-key ranges from 8

to 128, the size of Bloom filter increases from 11.3 to 67.3

KB. The above analysis tells us that we should adopt Bloom

filters of 8 ∼ 16 bits/key, i.e., the Bloom filter in each 2-MB

SSTable is only a bit more than 10 KB. The 0.5% additional

space overhead is not a heavy burden and most of the Bloom

filters can be cached in memory to promote the performance

significantly.

I. Scalability

Fig. 14 shows the comparison between LDC and UDC when

conducting different amount of requests with 50% writes and

50% reads under the uniform distribution. As the request count

731



Fig. 13. Impacts of Bloom filter size. Fig. 14. Impacts of different data scale. Fig. 15. LDC does not bring much space overhead.

ranges from 5 to 30 millions, LDC always maintains a 39%

∼ 65% higher throughput and saves 43.3% ∼ 46.7% of the

compaction I/O consumptions than the mechanism, indicating

good scalability of LDC.

J. Space Efficiency

To avoid frequent I/O operations, LDC adopts a delayed

garbage collection mechanism for recycling the useless slices
in frozen SSTables. This may lead to more space consumption

in SSDs. Fig. 15 plots the final consumed storage space in

the KV store to perform the uniform RWB workloads with

total request counts ranging from 5 to 30 millions. The results

reveal that LDC only consumes 3.37% ∼ 10.0% more space

compared with UDC. Hence, the additional capacity of LDC

is not a heavy burden for modern storage systems.

V. RELATED WORK

In this part, we summarize existing research work related

to the LSM-tree optimization and SSD-based key-value stores

in three categories:

Lazy Compaction Schemes. Existing work about the LSM-

tree compaction mechanism improvement mainly aims to

reduce the write amplification of compactions through ac-

cumulating more data in each round of compaction, i.e., in-

creasing the compaction granularity. Except for the previously

introduced RocksDB [15] and dCompaction [16], there are

also some other approaches:

The approach of the LSM-Tree maintenance in Cassandra

is called size-tiered compaction [20]. The size of the SSTable

is divided into many tiered of exponential growth. Several

smaller SSTables would be compacted into a larger SSTable.

For example, if the fan-out is 4, four SSTables of 16-MB data

would be compacted into a new SSTable of 64MB. And if

the amount of the SSTables in 64-MB size reach 4, these four

SSTables would be compacted into an SSTable of 256MB.

PebblesDB [17] proposed a new structure called Guard
which contains multiple SSTables with overlapping key ranges

in each layer of an LSM-tree. It also extends the compaction

action by tolerating some unsorted data in a layer.

Although these lazy compaction schemes can lower the

write amplification rates, the enlarged compaction granularity

usually leads to serious performance fluctuation and large tail

latency. In addition, the large compaction granularity requires

a huge space cost including both the input and output data

of the compaction behavior. For example, for the universal

compaction of RocksDB, under an extreme circumstance that

all the SSTables are involved in the compaction, the KV store

has to prepare twice the storage capacity of all the stored data.

Moreover, the existing approaches are orthogonal with LDC.

Some existing lazy solutions skip the compaction operations

at some levels of the LSM-tree, while some other methods put

several sorted data sets in one level of the LSM-tree. Different

with all of them, LDC optimizes the microscopic action in

each round of compaction. Therefore, LDC can be integrated

with them to further improve the throughput and tail latency.

Besides LSM-tree, LDC can also be applied in some other

similar data structures. For example, in the partitioned B-tree

[21], some independent B-tree partitions are allowed except

for the main partition. In this case, the write performance,

especially the bulk writes, are significantly improved, with the

cost of declined read performance due to looking up multiple

sorted partitions. When the data in the small partitions are

merged into the main partition, LDC can be integrated to both

shrink the granularity of data merging for smaller tail latency

and accumulate more data in small partitions for less write

amplification and higher throughput.

Other LSM-tree improvement except for compaction
mechanism. Some works accelerate compactions by making

use of hardware parallelism such as CPUs and I/O devices.

RocksDB [15] supports configuring an arbitrary number of

MemTables, and can be configured to issue concurrent com-

paction requests from multiple threads. PCP [22] also de-

composes compactions into several sub-tasks, and exploits the

parallelism of I/O and CPU resources to process them in a

pipeline manner. LOCS [23] extends LevelDB to exploit the

parallelism of customized open-channel SSDs and optimizes

the scheduling and dispatching policies to improve efficiency.

Some other works reduce the compaction I/O amplification

effectively for some types of workloads. Atlas [24] and Wis-

cKey [25] separate keys and values, using an LSM-tree to

manage keys and the pointers to their values and appending

values into logs, which is effective on large objects since

compactions only need to concern I/O amplification of keys.

LSM-trie [26] uses a tree prefixed by hash values of the keys

to organize data in the store and replace merge sorting with

hash sorting in compaction, which reduces the compaction

I/O amplification effectively, but sacrifices the important range

scan performance of LSM-trees. Monkey [27] focuses on

the LSM-tree parameters optimization for performance ac-

celeration. Light-weight compaction [28] first compacts some

732



sorted SSTables into temporary DTables which possess several

overlapped segments and shared metadata, and then merge

some DTables into sorted SSTables. This approach introduces

extra I/Os performed on DTables, without effective reduction

on compaction I/O overhead.
SSD-based key-value stores. Flash-based SSDs provide

higher performance than hard disk drives and have been

deployed in many enterprise storage systems. However, SSDs

are faced with the write durability problem, i.e. the device

will become unreliable after a certain times of writing [13].

For the flash-based KV stores, many systems organize key-

value pairs in log-structures and establish hash tables for quick

lookup, e.g., FAWN [29] and Flashstore [30], which require

large memory to keep the in-memory indexes. However, stores

based on hash indexes are difficult to provide satisfactory

range query performance.

VI. CONCLUSION

For the widely used LSM-tree key-value storage engines in

many NoSQL and SQL systems, the batched write operations

(i.e., compaction) can promote the system throughput, but

also introduce the problems of performance fluctuation and

long tail latency. Some existing lazy compaction schemes

can reduce the count of performed compaction operations

to promote system throughput, but they also enlarge the

compaction granularity and worsen the tail latency. In fact, the

difficulty of improving both the throughput and the tail latency

of LSM-tree key-value stores lies in the traditional upper-level

driven compaction manner, which adds much more lower-level

data into an I/O batch of compaction when merging the upper-

level data down, enlarging the compaction granularity and the

I/O amplification.
Therefore, in this paper, we propose a novel Lower-level

Driven Compaction (LDC) method. By means of separating

an consecutive compaction action into two steps, i.e., link and

merge, LDC performs actual I/Os driven by a lower-level data

set that has enough links with upper-level data. Therefore,

LDC can effectively reduce the additional I/O amplification

and shrink the compaction granularity, achieving improved tail

latency and system throughput at the same time.

ACKNOWLEDGMENT

This work is supported by the National Key Research

and Development Program of China (No. 2018YFB1004401),

National Natural Science Foundation of China (No. 61732014,

61472427, and 61572353), Beijing Natural Science Foun-

dation (No. 4172031), Natural Science Foundation of Tian-

jin (17JCYBJC15400), and Open research program of State

Key Laboratory of Computer Architecture, Institute of

Computing Technology, Chinese Academy of Science (No.

CARCH201702). This work is also supported by SenseTime

Young Scholars Research Fund.

REFERENCES

[1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deb-
orah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. Bigtable: a distributed storage system for structured
data. TOCS, 26(2):15–15, 2008.

[2] Avinash Lakshman and Prashant Malik. Cassandra:a decentralized
structured storage system. Acm Sigops Operating Systems Review,
44(2):35–40, 2010.

[3] Apache hbase, 2017. http://hbase.apache.org/.
[4] Hawq, 2018. http://hawq.apache.org/.
[5] Tidb is a distributed htap database compatible with the mysql protocol,

2018. https://github.com/pingcap/tidb.
[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. In ACM
SIGMETRICS Performance Evaluation Review, volume 40, pages 53–
64. ACM, 2012.

[7] Rifki Sadikin, Andria Arisal, Rofithah Omar, and Nur Hidayah Mazni.
Processing next generation sequencing data in map-reduce framework
using hadoop-bam in a computer cluster. In ICITISEE, pages 421–425.
IEEE, 2017.

[8] Belén Vela, José María Cavero, Paloma Cáceres, Almudena Sierra-
Alonso, and Carlos E Cuesta. Using a nosql graph oriented database
to store accessible transport routes. In EDBT/ICDT Workshops, pages
62–66, 2018.

[9] Ashish Kumar Gupta, Prashant Varshney, Abhishek Kumar, Bakshi Ro-
hit Prasad, and Sonali Agarwal. Evaluation of mapreduce-based dis-
tributed parallel machine learning algorithms. In Advances in Big Data
and Cloud Computing, pages 101–111. Springer, 2018.

[10] Innodb, 2018. https://en.wikipedia.org/wiki/InnoDB.
[11] Mysql, 2018. https://www.mysql.com/cn/.
[12] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur,

Tony Savor, and Michael Strum. Optimizing space amplification in
rocksdb. In CIDR, 2017.

[13] Simona Boboila and Peter Desnoyers. Write endurance in flash drives:
Measurements and analysis. In FAST, pages 9–9, 2010.

[14] Laura M Grupp, John D Davis, and Steven Swanson. The bleak future
of nand flash memory. In FAST, pages 2–2. USENIX Association, 2012.

[15] Under the hood: Building and open-sourcing rocksdb, 2017.
http://goo.gl/9xulVB.

[16] Feng-Feng Pan, Yin-Liang Yue, and Jin Xiong. dcompaction: Speeding
up compaction of the lsm-tree via delayed compaction. JCST, 32(1):41–
54, 2017.

[17] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham.
Pebblesdb: Building key-value stores using fragmented log-structured
merge trees. In SOSP, pages 497–514. ACM, 2017.

[18] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
SOCC, pages 143–154, 2010.

[19] Leveldb - a fast and lightweight key/value database library by google,
2017. http://code.google.com/p/leveldb.

[20] Bradley C Kuszmaul. A comparison of fractal trees to log-structured
merge (lsm) trees. White Paper, 2014.

[21] Goetz Graefe. Sorting and indexing with partitioned b-trees. In CIDR,
volume 3, pages 5–8, 2003.

[22] Zigang Zhang, Yinliang Yue, Bingsheng He, Jin Xiong, Mingyu Chen,
Lixin Zhang, and Ninghui Sun. Pipelined compaction for the lsm-tree.
In IPDPS, pages 777–786, 2014.

[23] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen
Zhang, and Jason Cong. An efficient design and implementation of lsm-
tree based key-value store on open-channel ssd. In EuroSys, page 16.
ACM, 2014.

[24] Chunbo Lai, Song Jiang, Liqiong Yang, and Shiding Lin. Atlas: Baidu’s
key-value storage system for cloud data. In MSST, pages 1–14, 2015.

[25] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Wisckey: Separating keys from
values in ssd-conscious storage. In FAST, pages 133–148, 2016.

[26] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: an lsm-
tree-based ultra-large key-value store for small data. In ATC, pages
71–82, 2015.

[27] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal
navigable key-value store. In SIGMOD, pages 79–94. ACM, 2017.

[28] Ting Yao, Jiguang Wan, Ping Huang, Xubin He, Qingxin Gui, Fei Wu,
and Changsheng Xie. A light-weight compaction tree to reduce i/o
amplification toward efficient key-value stores. In MSST, 2017.

[29] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. Fawn: a fast array of
wimpy nodes. CACM, 54(7):101–109, 2011.

[30] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore: high through-
put persistent key-value store. VLDB, 3(1-2):1414–1425, 2010.

733


