2206.13843v1 [cs.DB] 28 Jun 2022

arxXiv

Manu: A Cloud Native Vector Database Management System

Rentong Guo'*, Xiaofan Luan*, Long Xiang**, Xiao Yan**, Xiaomeng Yi'*, Jigao Luo®
Qianya ChengT, Weizhi Xu', Jiarui Luo*, Frank Liu’, Zhenshan Cao’, Yanliang QiaoT, Ting W'angT
Bo Tang* Charles Xie'

"Zilliz
fDepartment of Computer Science and Engineering, Southern University of Science and Technology
$Technical University of Munich
T{firstname.lastname}@zilliz.com
i{Xiamgl3@maﬂ., yanx@, 11911419@mail., tangb3@}sustech.edu.cn, §jiga.o.luo@tum.de

ABSTRACT

With the development of learning-based embedding models, embed-
ding vectors are widely used for analyzing and searching unstruc-
tured data. As vector collections exceed billion-scale, fully managed
and horizontally scalable vector databases are necessary. In the
past three years, through interaction with our 1200+ industry users,
we have sketched a vision for the features that next-generation
vector databases should have, which include long-term evolvability,
tunable consistency, good elasticity, and high performance.

We present Manu, a cloud native vector database that imple-
ments these features. It is difficult to integrate all these features
if we follow traditional DBMS design rules. As most vector data
applications do not require complex data models and strong data
consistency, our design philosophy is to relax the data model and
consistency constraints in exchange for the aforementioned fea-
tures. Specifically, Manu firstly exposes the write-ahead log (WAL)
and binlog as backbone services. Secondly, write components are
designed as log publishers while all read-only analytic and search
components are designed as independent subscribers to the log ser-
vices. Finally, we utilize multi-version concurrency control (MVCC)
and a delta consistency model to simplify the communication and
cooperation among the system components. These designs achieve
a low coupling among the system components, which is essential
for elasticity and evolution. We also extensively optimize Manu for
performance and usability with hardware-aware implementations
and support for complex search semantics. Manu has been used
for many applications, including, but not limited to, recommenda-
tion, multimedia, language, medicine and security. We evaluated
Manu in three typical application scenarios to demonstrate its effi-
ciency, elasticity, and scalability.

PVLDB Reference Format:

Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang
Qiao, Ting Wang, Bo Tang, and Charles Xie. Manu: A Cloud Native Vector
Database Management System. PVLDB, 15(12): XXX-XXX, 2022.

doi: XX . XX/XXX. XX

*Co-first-authors are ordered alphabetically.

¥ Work done while working with Zilliz, correspondence to Bo Tang.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/milvus-io/milvus/tree/2.0.

1 INTRODUCTION

According to IDC, unstructured data, such as text, images, and video,
took up about 80% of the 40,000 exabytes of new data generated in
2020, their percentage keeps rising due to the increasing amount
of human-generated rich media [48]. With the rise of learning-
based embedding models, especially deep neural networks, using
embedding vectors to manage unstructured data has become com-
monplace in many applications such as e-commerce, social media,
and drug discovery [49, 63, 68]. A core feature of these applica-
tions is that they encode the semantics of unstructured data into a
high-dimensional vector space. Given the representation power of
embedding vectors, operations like recommendation, search, and
analysis can be implemented via similarity-based vector search. To
support these applications, many specialized vector databases are
built to manage vector data [11, 13, 18-20, 81].

In 2019, we open sourced Milvus [81], our previous vector data-
base, under the LF Al & Data Foundation. Since then, we collected
feed-backs from more than 1200 industry users and found that some
of the design principles adopted by Milvus are not suitable. Milvus
followed the design principles of relational databases, which are
optimized for either transaction [52] or analytical [81] workloads,
and focused on functionality supports (e.g., attribute filtering and
multi-vector search) and execution efficiency (e.g., SIMD and cache
optimizations). However, vector database applications have differ-
ent requirements in the following three aspects, which motivates
us to restructure Manu from scratch with focuses on a cloud-native
architecture.

o Support for complex transactions is not necessary. Instead
of decomposing entity representations into different fields or
tables, learning-based models encode complex and hybrid data
semantics into a single vector. As a result, multi-row or multi-
table transactions are not necessary; row-level ACID is sufficient
for the majority of vector database applications.

e A tunable performance-consistency trade-off is important.
Different users have different consistency requirements; some
users prefer high throughput and eventual consistency, while

doi:XX.XX/XXX. XX

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/milvus-io/milvus/tree/2.0
https://doi.org/XX.XX/XXX.XX
Junwang Zhao
Highlight

Junwang Zhao
Highlight

others require some level of guaranteed consistency, i.e., newly
inserted data should be visible to queries either immediately or
within a pre-configured time. Traditional relational databases
generally support either strong consistency or eventual consis-
tency; there is little to no room for customization between these
two extremes. As such, tunable consistency is a crucial attribute
for cloud-native vector databases.

e High hardware cost calls for fine-grained elasticity. Some
vector database operations (e.g., vector search and index build-
ing) are computationally intensive, and hardware accelerators
(e.g. GPUs or FPGAs) and/or a large working memory are re-
quired for good performance. However, depending on application
types, workload differs amongst database functionalities. Thus,
resources can be wasted or improperly allocated if the vector
database does not have fine-grained elasticity. This necessitates
a careful decoupling of functional and hardware layers; system-
level decoupling such as separation of read and write logic is
insufficient, elasticity and resource isolation should be managed
at the functionalities level rather than the system level.

In summary, modern vector databases should have tunable con-
sistency, functionality-level decoupling, and per-component scal-
ability. Following the design principles of traditional relational
databases makes achieving these design goals extremely difficult, if
not impossible. A key opportunity for achieving these design goals
lies in the potential for relaxing transaction complexity.

Manu follows the “log as data” paradigm. Specifically, Manu struc-
tures the entire system as a group of log publish/subscribe micro-
services. The write-ahead log (WAL) and inter-component mes-
sages are published as “logs", i.e., durable data streams that can be
subscribed. Read-side components, such as search and analytical
engines, are all built as log subscribers. This architecture provides
a simple yet effective way to decouple system functionalities; it
enables the decoupling of read from write, stateless from stateful,
and storage from computing. Each log entry is assigned a global
unique timestamp, and special log entries called time-tick (simi-
lar to watermarks in Apache Flink [26]) are periodically inserted
into each log channel signaling the progress of event-time for log
subscribers. The timestamp and time-tick form the basis of the
tunable consistency mechanism and multi-version consistency con-
trol (MVCC). To control the consistency level, a user can specify
a tolerable time lag between a query’s timestamp and the latest
time-tick consumed by a subscriber.

Additionally, we extensively optimize Manu for performance
and usability. Manu supports various indexes for vector search, in-
cluding vector quantization [22, 34, 37, 83], inverted index [24], and
proximity graphs [33]. In particular, we tailor the implementations
to better utilize the parallelization capabilities of modern CPUs
and GPUs along with the improved read/write speeds of SSDs over
HDDs. Manu also integrates refactored functionalities from Mil-
vus [81], such as attribute filtering and multi-vector search. More-
over, build a visualization tool that allows users to track the perfor-
mance of Manu in real time and include an auto-configuration tool
that recommends indexing algorithm parameters using machine
learning.

To summarize, this paper makes the following contributions:

e We summarize lessons learned from communicating with over
1200 industry users over three years. We shed light on typical
application requirements of vector databases and show how they
differ from those of traditional relational databases. We then
outline the key design goals that vector databases should meet.

e We introduce Manu’s key architectural designs as a cloud native
vector database, building around the core design philosophy of
relaxing transaction complexity in exchange for tunable consis-
tency and fine-grained elasticity.

e We present important usability and performance-related en-
hancements, e.g., high-level AP, a GUI tool, automatic parameter
configuration, and SSD support.

The rest of the paper is organized as follows. Section 2 pro-
vides background on the requirements and design goals of vector
databases. Section 3 dives deep into Manu’s design. Section 4 high-
lights the key features for usability and performance. Section 5
discusses representative use cases for Manu. Section 6 review re-
lated works. Section 7 concludes the paper and outlines future
work.

2 BACKGROUND AND MOTIVATION

Consider video recommendation as a typical use case of vector
databases. The goal is to help users discover new videos based on
their personal preferences and previous browsing history. Using
machine learning models (especially deep neural networks), fea-
tures of users and videos, such as search history, watch history,
age, gender, video language, and tags are converted to embedding
vectors. These models are carefully designed and trained to encode
the similarity between user and video vectors into a common vec-
tor space. Recommendation is conducted by retrieving candidate
videos from the collection of video vectors via similarity scores
with respect to the specified user vector. The system also needs
to handle updates to vectors when new videos are updated, some
videos are deleted and the embedding model is changed.

Video recommendation and other applications of vector databases
can involve hundreds of billions of vectors with daily growth at
hundred-million scale, and serve million-scale queries per second
(QPS). Existing DBMSs (e.g., relational databases [9, 12], NoSQL [76,
86], NewSQL [40, 74]) were not built to manage vector data on that
scale. Moreover, the underlying data management requirements of
their applications differ greatly from vector database applications.

First, when compared with relational databases, both the archi-
tecture and theory of vector databases are far from mature. A key
reason for this is that Al- and data-driven applications are still
in a state of constant evolution, thereby necessitating continued
architectural and functionality changes to vector databases as well.

Second, complex transactions are unnecessary for vector databases.
In the above example, the recommendation system encodes all se-
mantic features of users and videos into standalone vectors as
opposed to multi-row or multi-column entity fields in a relational
database. As a result, row-level ACID is sufficient; multi-table oper-
ations (such as joins) are inessential.

Third, vector database applications need a flexible performance-
consistency trade-off. While some applications adopt a strong or
eventual consistency model, there are others that fall between the
two extremes. Users may wish to relax consistency constraints in

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

exchange for better system throughput. In the video recommen-
dation example, observing a newly uploaded video after several
seconds is acceptable but keeping users waiting for recommenda-
tion harms user experience. Thus, the application can configure the
allowed maximal delay for the video updates in order to improve
system throughput.

Fourth, vector databases have more stringent and diversified
hardware requirements compared with traditional databases. This
is attributed to three reasons. First, vector database operations
are computation-intensive, and thus hardware accelerators such
as GPUs are critical for computing functionalities such as search
and indexing. Second, accesses to vector data (e.g., search or up-
date) generally have poor locality, thereby requiring large RAM
for good performance. Third, different applications vary signifi-
cantly in their resource demands for the system functionalities.
Core functionalities of a vector database include data insertion,
indexing, filtering, and vector search. Applications such as video
recommendation require online insertion and high concurrency
vector search. In contrast, for interactive use cases such as drug dis-
covery, offline data ingestion and indexing are generally acceptable.
Although interactive applications usually require lower throughput
than recommendation systems, they have high demands for real-
time filtering, similarity-based vector search, and hybrid queries.
The high hardware costs as well as diverse workload features call
for fine-grained elasticity.

The key design goals of Manu are summarized below; these
design goals not only fully encompass the above characteristics but
also share some common goals with generic cloud-based databases.

e Long-term evolvability: Overall system complexity must be
controlled for the continuous evolution of Manu’s functionalities.
Without the need to support complex transactions, there lies an
opportunity to model all the event sequences (such as WAL and
inter-component messages) as message queues to cleanly decou-
ple the entire system. In this way, individual components can
evolve, be added, or be replaced easily with minimal interference
to other components. This design echos large-scale data analytic
platforms, which often rely on data streaming systems such as
Kafka to connect system components.

e Tunable consistency: To enable flexible consistency-performance
trade-off, Manu should introduce delta consistency that falls be-
tween strong consistency and eventual consistency, where a read
operation returns the last value that was produced at most delta
time units preceding itself. It’s worth noting that strong consis-
tency and eventual consistency can be realized as special cases
of this model, with delta being zero and infinity, respectively.

o Good elasticity: Workload fluctuations can cause different loads
on individual system components. In order to dynamically al-
locate compute resources to high-load tasks, components must
be carefully decoupled, taking both functionality and hardware
dependencies into consideration. System elasticity and resource
isolation should be managed at the component-level rather than
at the system-level (e.g. decoupling indexing from querying ver-
sus decoupling read from write).

e High availability: Availability is a must-have for modern cloud-
based applications; Manu must isolate system failures at the
component level and make failure recovery transparent.

ID Embedding

Filtering Field

Primary Key [Feature Vector| Label | Numerical attribute

. [S——
User Fields System Fields

Figure 1: An example of Manu’s schema.

e High performance: Query processing performance is key to
vector databases. For good performance, implementations to be
extensively optimized for hardware. Moreover, the framework
should be carefully designed so as to minimize system overheads
for query serving.

e Strong adaptability: Our customers use vector databases in a
variety of environments, ranging from prototyping on laptops to
large-scale deployments on the cloud. A vector database should
provide consistent user experience and reduce code/data migra-
tion overhead across environments.

3 THE MANU SYSTEM

In this section, we begin by first introducing the basic concepts of
Manu. Next, we present the system designs, including the overall
system architecture, the log backbone, and how Manu conducts
vector searches and builds vector search indexes.

3.1 Schema, Collection, Shard, and Segment

Schema: The basic data types of Manu are vector, string, boolean,
integer, and floating point. A schema example is given in Figure 1.
Suppose each entity consists of five fields and corresponds to a
product on an e-commerce platform. The Primary key is the ID
of the entity. It can either be an integer or a string. If users do
not specify this field, the system will automatically add an integer
primary key for each entity. The Feature vector is the embedding of
the product. The Label is the category of the product, such as food,
book, and cloth. The Numerical attribute is a float or an integer
associated with the product, such as price, weight, or production
date. Manu supports multiple labels and numerical attributes in
each entity. Note that these fields are used for filtering, rather than
join or aggregation. The Logical sequence number (LSN) is a system
field hidden from users.

Collection: A Collection is a set of entities similar to the concept of
tables in relational databases. For example, a collection can contain
all the products of an e-commerce platform. The key difference is
that collections have no relations with each other; thus, relational
algebra, such as join operations, are not supported.

Shard: The Shard correspondence to insertion/deletion channel.
Entities are hashed into multiple shards based on their primary keys
during insertion/deletion. Manu’s data placement unit is segment
rather than shard. !

Segment: Entities from each shard are organized into segments. A
segment can be in either a growing or sealed state. Sealed segments
are read-only while growing segments can accept new entities. A
growing segment will switch to sealed state when it reaches a prede-
fined size (set to 512MB by default) or if a period of time has passed

1Using segments for data placement is more flexible than shards, as the number of
shards is static, while the number of segments grows as the volume of the collection
increases.

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Access Proxy Proxy Proxy Proxy
Layer [Cache || | [Cache || | [Cache] || [Cache]
Root Query Data Index
Coordinator 00 Coordinator| (Coordinator| |Coordinator
Layer Metadata | Metadata | Metadata | Metadata |
Cache Cache Cache Cache
Worker Query Node Data Node Index Node
2 | O || &
ey e}] EEE
CKey >—{ Value
gese
Layer ey >—{ Value
KV-Storage Object-Storage

Figure 2: The Architecture of Manu.

without an insertion (e.g., 10 seconds). As some segments may be
small (e.g., when insertion has a low arrival rate), Manu merges
small segments into larger ones for search efficiency.

3.2 System Architecture

Manu adopts a service-oriented design [65] to achieve fine-grained
decoupling among the system components. As shown in Figure 2,
from top to bottom, Manu has four layers, i.e., access layer, coordi-
nator layer, worker layer, and storage layer.

Access layer consists of stateless proxies that serve as the user
endpoints. They work in parallel to receive requests from clients,
distribute the requests to the corresponding processing components,
and aggregate partial search results before returning to clients. Fur-
thermore, the proxies cache a copy of the metadata for verifying the
legitimacy of search requests (e.g., whether the collection to search
exists). Search request verification is lightweight and moving it to
the proxies has two key benefits. First, requests that fail verification
are rejected early, thus lowering the load on other systems compo-
nents. Second, it reduces the number of routing hops for requests,
thus shortening request processing latency.

Coordinator layer manages system status, maintains metadata of
the collections, and coordinates the system components for process-
ing tasks. There are four coordinators, each responsible for different
tasks. Root coordinator handles data definition requests, such as
creating/deleting collections, and maintains meta-information of
the collections. Data coordinator records detailed information about
the collections (e.g., the routes of the segments on storage), and
coordinates the data nodes to transform data update requests into
binlogs [4]. Query coordinator manages the status of the query
nodes, and adjusts the assignment of segments (along with related
indexes) to query nodes for load balancing. Index coordinator main-
tains meta-information of the indexes (e.g., index types and storage
routes), and coordinates index nodes in index building tasks. A
coordinator can have multiple instances (e.g., one main and two
backups) for reliability. As vector databases usually do not have
the cross table operations that relational databases have, different
collections can be served by separate coordinator instances for
throughput.

Worker layer conducts the actual computation tasks. The worker
nodes are stateless—they fetch read-only copies of data to conduct

The Log System

[Logger H WAL (Strealm) } { ?;nlor (Batch)}
----------- e

Data Node Query Node Index Node

A u § Node
Eg @)\ T I

The Log Subscribers

Figure 3: Overview of Manu’s log system.

tasks and do not need to coordinate with each other. This ensures
that computation intensive (thus expensive) worker nodes can be
easily scaled on demand. We use different worker nodes for dif-
ferent tasks, i.e., query nodes for query processing, index nodes for
index building, and data nodes for log archiving. Due to the fact that
the workloads for different computation tasks vary significantly
over time and across applications, each worker type can scale inde-
pendently. This design also achieves resource isolation as different
computation tasks have different QoS requirements.

Storage layer persists system status, metadata, the collections,
and associated indexes. Manu uses etcd [7] (a key-value store)
to host system status and metadata for the coordinators as etcd
provides high availability with its leader election mechanism for
failure recovery. When metadata is updated, the updated data is first
written to etcd, and then synchronized to coordinators. Since the
volume of other data (e.g., binlog, data, index) is large, Manu uses
AWS S3 [14] (an object storage) for persistence due to its high
availability and low cost. The API of many other object storage
systems is compatible with AWS S3. This allows Manu to easily
swap storage engines, if necessary. At present, storage engines
including AWS S3, MinlO [8], and Linux file system are supported.
Note that the high latency that comes with object storage is not a
performance bottleneck as the worker nodes conduct computation
tasks on in-memory, read-only copies of data.

3.3 The Log Backbone

The log system is the backbone of Manu, which connects the de-
coupled system components. As shown in Figure 3, Manu exposes
the write-ahead log (WAL) and binlog as backbone services. The
WAL is the incremental part of system log while the binlog is the
base part; they complement each other in delay, capacity and cost.
Loggers are entry points for publishing data onto the WAL. Data
nodes subscribe to the WAL and convert the row-based WAL into
column-based binlogs. All read-only components such as index
nodes and query nodes are independent subscribers to the log ser-
vice to keep themselves up-to-date. This architecture completely
decouples the write and read components, thus allowing the compo-
nents (e.g., WAL, binlog, data nodes, index nodes and query nodes)
to scale independently.

Manu records all the requests that change system state to the
log, including data definition requests (e.g., create/delete collection),
data manipulation requests (e.g., insert/delete a vector), and sys-
tem coordination messages (e.g., load/dump a collection to/from
memory). Note that vector search requests are not written to the

Junwang Zhao
Highlight

Junwang Zhao
Highlight

log as they are read-only operations and do not change system
state. We use logical logs instead of physical logs, as logical logs
focus on event recording, rather than describing the modifications
to physical data pages. This allows the subscribers to consume the
log data in different ways depending on their functions.

Figure 4 illustrates the detailed architecture of the log system.
For the sake of clarity, we only illustrate the parts related to insert
requests. The loggers are organized in a hash ring, and each logger
handles one or more logical buckets in the hash ring based on
consistent hashing. Each shard corresponds to a logical bucket in
the hash ring and a WAL channel. Each entity in insert requests
is hashed to a shard (and thus channel) based on their ID. When
a logger receives a request, it will first verify the legibility of the
request, assign an LSN for the logged entity by consulting the
central time service oracle (TSO), determine the segment the entity
should go to, and write the entity to WAL. The logger also writes
the mapping of the new entity ID to segment ID into a local LSM
tree and periodically flushes the incremental part of the LSM tree
to object storage, which keeps the entity to segment mapping using
the SSTable format of RocksDB. Each logger caches the segment
mapping (e.g., for checking if the entity to delete exists) for the
shards it manages by consulting the SSTable in object storage.

The WAL is row-based and read in a streaming manner for low
delay and fine-grained log pub/sub. It is implemented via a cloud-
based message queue such as Kafka or Pulsar. We use multiple
logical channels for the WAL in order to prevent different types of
requests from interfering with each other, thus achieving a high
throughput. Data definition requests and system coordination mes-
sages use their own channels while data manipulation requests
hashed across multiple channels to increase throughput.

Data nodes subscribe to the WAL and convert the row-based
WAL: into column-based binlogs. Specifically, values from the same
field (e.g., attribute and vector) from the WAL are stored together
in a column format in binlog files. The column-based nature of
binlog makes it suitable for reading per field values in batches, thus
increasing storage and IO efficiency. An example of this efficiency
comes with the index nodes. Index nodes only read the required
fields (e.g., attribute or vector) from the binlog for index building
and thus are free from the read amplifications.

System coordination: Inter-component messages are also passed
via log, e.g., data nodes announce when segments are written to
storage and index nodes announce when indexes have been built.
This is because the log system provides a simple and reliable mecha-
nism for broadcasting system events. Moreover, the time semantics
of the log system provide a deterministic order for coordination
messages. For example, when a collection should be released from
memory, the query coordinator publishes the request to log, and
does not need to confirm whether the query nodes receive the mes-
sage or handle query node failure. The query nodes independently
subscribe to the log and asynchronously release segments of the
collection.

3.4 Tunable Consistency

We adopt a delta consistency model to enable flexible performance-
consistency trade-offs, which guarantees a bounded staleness of
data seen by search queries. Specifically, the data seen by a query

Cloud-native
Event-stream Engine

o0oooog
WAL Channel 3
SSTable
EENEEEEN
WAL Channel 4 ode
nenamma — ([B3DFE
*53

§3 kafka ZxpULSAR

Cloud-native
Object Storage

Binlog

N

Figure 4: Detailed structure of Manu’s log system.

Table 1: Major indexes in Manu

Vector Quantization
Inverted Index
Proximity Graph
Numerical Attribute

PQ, OPQ, RQ, SQ

IVF-Flat, IVF-PQ, IVF-SQ, IVF-HNSW, IMI
HNSW, NSG, NGT
B-Tree, Sorted List

can be stale for up to delta time units, with respect to time of the last
data update, where delta is an user-specified “staleness tolerance”
given in virtual time.

In practice, users prefer to define temporal tolerance as physical
time, e.g., 10 seconds. Manu achieves this by making the LSN as-
signed to each request extremely close to physical time. Manu uses
a hybrid logical clock in the TSO to generate timestamps. Each
timestamp has two components: a physical component that tracks
physical time, and a logical component that tracks event order. The
logical component is needed since multiple events may happen at
the same physical time unit. Since a timestamp is used as a request’s
LSN, the value of the physical component indicates the physical
time when the request was received by Manu.

For a log subscriber, e.g., a query node, to run the delta consis-
tency model, it needs to know three things: (1) the user-specified
staleness tolerance 7, (2) the time of the last data update, and (3) the
issue time of the search request. In order to let each log subscriber
know (2), we introduce a time-tick mechanism. Special control mes-
sages called time-ticks (similar to watermarks in Apache Flink [26])
are periodically inserted into each log channel (for example, WAL
channel) signaling the progress of data synchronization. Denote
the latest time-tick a subscriber consumed as Lg and the issue time
of a query as Ly, if L, — Lg < 7 is not satisfied, the query node will
wait for the next time-tick before executing the query.

Note that strong consistency and eventual consistency are two
special cases of delta consistency, where delta equals to 0 and infin-
ity, respectively. To the best of our knowledge, our work is the first
to support delta consistency in a vector database.

3.5 Index Building

Searching similar vectors in large collections by brute-force, i.e.,
scanning the whole dataset, usually yields unacceptably long de-
lays. Numerous indexes have been proposed to accelerate vector
search and Manu automatically builds user specified indexes. Ta-
ble 1 summarizes the indexes currently supported by Manu, and
we are continuously adding new indexes following the latest in-
dexing algorithms. These indexes differ in their properties and use

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

cases. Vector quantization (VQ) [34, 45] methods compress vectors
to reduce memory footprint and the costs for vector distance/simi-
larity computation. For example, scalar quantization (SQ) [91] maps
each dimension of vector (data types typically are int32 and float)
to a single byte. Inverted indexes [69] group vectors into clusters,
and only scan the most promising clusters for a query. Proximity
graphs [33, 42, 61] connect similar vectors to form a graph, and
achieve high accuracy and low latency at the cost of high mem-
ory consumption [54]. Besides vector indexes, Manu also supports
indexes on the attribute field of the entities to accelerate attribute-
based filtering.

There are two index building scenarios in Manu, i.e., batch in-
dexing and stream indexing. Batch indexing occurs when the user
builds an index for an entire collection (e.g., when all vectors are
updated with a new embedding model). In this case, the index co-
ordinator obtains the paths of all segments in the collection from
the data coordinator, and instructs index nodes to build indexes
for each segment. Stream indexing happens when users contin-
uously insert new entities, and indexes are built asynchronously
on-the-fly without stopping search services. Specifically, after a seg-
ment accumulates a sufficient number of vectors, its resident data
node seals the segment and writes it to object storage as a binlog.
The data coordinator then notifies the index coordinator, which
instructs a index node to build index for the segment. The index
node loads only the required column (e.g., vector or attribute) of
the segment from object storage for indexing building to avoid read
amplification. For entity deletions, Manu uses a bitmap to record
the deleted vectors and rebuilds the index for a segment when a
sufficient number of its entities have been deleted. In both batch
and stream indexing scenarios, after the required index is built for a
segment, the index node persists it in the object storage and sends
the path to the index coordinator, which notifies the query coordi-
nator so that query nodes can load the index for processing queries.
The index coordinator also monitors the status of the index nodes
and shuts down idle index nodes to save costs. As vector indexes
generally have sub-linear search complexity w.r.t. the number of
vectors, searching a large segment is cheaper than several small
segments, Manu builds joint indexes on multiple segments when
appropriate.

3.6 Vector Search

Manu supports classical vector search, attribute filtering, and multi-
vector search. For classical vector search, the distance/similarity
function can be Euclidean distance, inner product or angular dis-
tance. Attribute filtering is useful when searching vectors similar
to the query subject to some attribute constraints. For example, an
e-commerce platform may want to find products that interest the
customer and cost less than 100$. Manu supports three strategies
for attribute filtering and uses a cost-based model to choose the
most suitable strategy for each segment. Multi-vector search is
required when an entity is encoded by multiple vectors, for exam-
ple, a product can be described by both embeddings of its image
and embeddings of its text description. In this case, the similarity
function between entities is defined as a composition of similarity
functions on the constituting vectors. Manu supports two strategies
for multi-vector search and chooses the one to use according to the

entity similarity function. For more details about how Manu han-
dles attribute filtering and multi-vector search, interested readers
can refer to Milvus [81].

For vector search, Manu partitions a collection into segments
and distributes the segments among query nodes for parallel exe-
cution. ? The proxies cache a copy of the distribution of segments
on query nodes by inquiring the query coordinator, and dispatch
search requests to query nodes that hold segments of the searched
collection. The query nodes perform vector searches on their local
segments without coordination using a two-phase reduce procedure.
For a top-k vector search request, the query nodes search their local
segments to obtain the segment-wise top-k results. These results
are merged by each query node to form the node-wise top-k results.
Then, the node-wise top-k results are aggregated by the proxy for
the global top-k results and returned to the application. To handle
the deletion of vectors, the query nodes use a bitmap to record
the deleted vectors in each segment and filter the deleted vectors
from the segment-wise search results. Users can configure Manu to
batch search requests to improve efficiency. In this case, the proxies
organize cache search requests if results of the previous batches
have not been returned yet. In the cache, requests of the same type
(i.e., target the same collection and use the same similarity function)
are organized into the one batch and handled by Manu together.
Manu also allows maintaining multiple hot replicas of a collection
to serve queries for availability and throughput.

Query nodes obtain data from three sources, i.e., the WAL, the
index files, and the binlog. For data in the growing segments, query
nodes subscribe to the WAL and conduct searches using brute
force scan so that updates can be searched within a short delay. A
dilemma for segment size is that larger size yields better search
efficiency once the index is built but brute force scan on growing
segment is also more costly. To tackle this problem, we divide each
segment into slices (each containing 10,000 vectors by default). New
data are inserted into the slices sequentially, and after a slice is
full, a light-weight temporary index (e.g., IVF-FLAT) is built for it.
Empirically, we observed that the temporary index brings up to 10X
speedup for searching growing segments. When a segment changes
from growing state to sealed state, its index will be built by an index
node and then stored in object storage. After that, query nodes are
notified to load the index and replace the temporary index.

Query nodes access the binlog for data when the distribution
of segments among the query nodes changes, which may happen
during scaling, load-balancing, query node failure and recovery.
Specifically, the query coordinator manages the segment distribu-
tion and monitors the query nodes for liveness and workload to
coordinate failure recovery and scaling. On failure recovery, the
segments and their corresponding indexes (if they exist) handled
by failed query nodes are loaded to the healthy ones. 3 In the case
of scaling down, a query node can be removed once other query
nodes load the indexes for the segments it handles from the object
storage. When scaling up, the query coordinator assigns some of

2Manu loads all data to the query nodes as different queries may access different parts
of the data, and a hot compute side cache is necessary for low latency. This is different
from general cloud DBMSs that decouple compute and storage (e.g., Snowflake [29]),
which only fetch the required data to compute side upon request.

3The WAL channels subscribed to by failed query nodes are also assigned to healthy
ones.

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Junwang Zhao
Highlight

Table 2: Main commands of Python-based PyManu API

Methods

Description

Collection(name, schema)

Create collection with name str and schema schema

Collection.insert(vec)

Insert vector vec into collection

Collection.delete(expr)

Delete vectors satisfying boolean expression expr from collection

Collection.create_index(field, params) | Create index on a field of the vectors using parameters params

Collection.search(vec, params)

Vector search for vec with parameters params

Collection.query(vec, params, expr)

Vector search for vec with boolean expression expr as filters

the segments to the newly added nodes. A new query node can join
after it loads the assigned segments, and existing query nodes can
release the segments no longer handled by them. The query coordi-
nator also balances the workloads (and memory consumption) of
the query nodes by migrating segments. Note that Manu does not
ensure that segment redistribution is atomic, and a segment can re-
side on more than one query node. This does not affect correctness
as the proxies remove duplicate result vectors for a query.

4 FEATURE HIGHLIGHTS

In this part, we introduce several key features of Manu for usability
and performance.

4.1 Cloud Native and Adaptive

The primary design goal of Manu is to be a cloud native vector
database such that it fits well into cloud-based data pipelines. To
this end, Manu decouples system functionalities into storage, coor-
dinators, and workers in the overall design. For storage, Manu uses
a transaction KV for metadata, message queues for logs, and an ob-
ject KV for data, which are all general storage services provided by
major cloud vendors and thus enables easy deployment. For coordi-
nators that manage system functionalities, Manu uses the standard
one main plus two hot backups configuration for high availability.
For workers, Manu decouples vector search, log archiving and in-
dex building tasks for component-wise scaling, a model suitable for
cloud-based on-demand resource provisioning. The log backbone
allows the system components to interact by writing/reading logs
in their own ways. This enables the system components to evolve
independently and makes it easy to add new components. The log
backbone also provides consistent time semantics in the system,
which are crucial for deterministic execution and failure recovery.

Our customers use vector databases in the entire life-cycle of
their applications. For example, an application usually starts with
data scientists conducting proof of concept (PoC) on their personal
computers. Then, it is migrated to dedicated clusters for testing
and finally deployed on the cloud. Thus, to reduce migration costs,
our customers expect vector databases to adapt to different deploy-
ment scenarios while providing a consistent set of APIs. To this
end, Manu defines unified interface for the system components
but provides different invocation methods and implementations for
different platforms. For example, on cloud, local cluster and per-
sonal computer, Manu uses cloud service APIs, remote procedure
call (RPC) and direct function calls to invoke system functionali-
ties, respectively. The object KV can be the local file system (e.g.,
MinlIO [8]) on personal computers, and S3 on AWS. Thus, Manu

applications can migrate with little or no change across different
deployment scenarios.

4.2 Good Usability

Data pipelines interact with Manu in simple ways: vector collec-
tions, updates for vector data and search requests are fed to Manu,
and Manu returns the identifiers of the search results for each
search request, which can be used to retrieve objects (e.g.. images,
advertisements, movies) in other systems. Because different users
adopt different programming languages and development envi-
ronments, Manu provides APIs in popular languages including
Python, Java, Go, C++, along with RESTful APIs. As an example, we
show key commands of the Python-based PyManu API in Table 2,
which uses the object-relational mapping (ORM) model and most
commands are related to the collection class. As shown in Table 2,
PyManu allows users to manage collections and indexes, update
collections, and conduct vector searches. The search command is
used for similarity-based vector search while the query command
is mainly used for attribute filtering. We show an example of con-
ducting top-k vector search by specifying the parameters in params
in as follows.

query_param = {

"vec": [[0.6, 0.3, ., 0.81],
"field": "vector",

"param": {"metric_type": "Euclidean"},
"limit": 2,

"expr": "product_count > 0",

}

res = collection.search(x*query_param)

In the above example, the search request provides a high dimen-
sional vector [0.6,0.3,...,0.8] as query and searches the feature
vector field of the collection. The similarity function is Euclidean
distance and the targets are the top-2 similar vectors in the collec-
tion (i.e., with limit = 2).

For easy system management, Manu provides a GUI tool called
Attu, for which a screen shot is shown in Figure 5. In the system view,
users can observe overall system status including queries processed
per second (QPS), average query latency, and memory consumption
on the top of screen. By clicking a specific service (e.g., data service),
users can view detailed information of the worker nodes for the
service on the side. We also allow users to add and drop worker
nodes with mouse clicks. In the collection view, users can check the
collections in the system, load/dump collections to/from memory,
delete/import collections, check the index built for the collections,
and build new indexes. In the vector search view, users can check
the search traffic and performance on each collection, configure the

Latency

Disk
24ms 221113080123 480/6406(75%) 800/20486(39%)

Manu/ D 19216811

Manu

Figure 5: A screenshot of Attu, the GUI tool of Manu.

index and search parameters to use for each collection. The vector
search view also allows to issue queries for functionality test.

For vector search, using different parameters for the indexes
(e.g., neighbor size M and queue size L for HNSW [61]) yields dif-
ferent trade-offs among cost, accuracy, and performance. However,
even experts find it difficult to set proper index parameters as the
parameters are interdependent and their influences vary across
collections. Manu adopts a Bayesian Optimization with Hyperband
(BOHB) [32] method to automatically explore good index param-
eter configurations. Users provide a utility function to score the
configurations (e.g., according to search recall, query throughput)
and set a budget to limit the costs of parameter search. BOHB starts
with a group of initial configurations and evaluates their utilities.
Then, Bayesian Optimization is used to generate new candidate
configurations according to historical trials and Hyperband is used
to allocate budgets to different areas in the configuration space.
The idea is to prioritize the exploration of areas close to high util-
ity configurations to find even better configurations. Manu also
supports sampling a subset of the collection for the trails to reduce
search costs. We are still improving the automatic parameter search
module and plan to extend it to searching system configurations
(e.g., the number and type of query nodes).

4.3 Time Travel

Users often need to rollback the database to fix corrupted data or
code bugs. Manu allows users to specify a target physical time T
for database restore, and jointly uses checkpoint and log replay for
rollback. We mark each segment with its progress L and periodi-
cally checkpoints the segment map for a collection, which contains
information (such a route, rather than data) of all its segments. To
restore the database at time T, we read the closest checkpoint before
T, load all segments in the segment map and replay the WAL log for
each segment from its local progress L. This design reduces storage
consumption as we do not write entire collection for each check-
point. Instead, segments that have no changes are shared among
checkpoints. The replay overhead is also reduced as each segment
has its own progress. Users can also specify a expiration period to
delete outdated log and segments to reduce storage consumption.

4.4 Hardware Optimizations

Manu comes with extensively optimized implementations for CPU,
GPU and SSD for efficiency. For more details about our CPU and
GPU optimizations, interested readers can refer to Milvus [81].

—— Manu-2k —— Manu-3k —— Manu-4k
===+ Milvus-2k ===+ Milvus-3k === Milvus-4k
1.25 [
n
A
1.00 R lll‘l ,',‘l
—_ ©~ N n 1 /I A
0 N N I N N 2 N N
= - IR 4 (AN
S0.750 o VYT VALY
% 4
= 0.50 . "
- / I\ oo INQ A
0.25 __/ S NN NN . AN AN
0.00
0 500 1000 1500
Time (s)

Figure 6: Manu and Milvus for mixed workloads, numbers
behind legends (e.g., 1k) indicate insertion rate.

SSD is 100x cheaper than dram and offers 10x larger bandwidth
than HDD. thus, Manu supports using SSD to store large vector
collections on cheap query nodes with limited dram capacity. the
challenge is that SSD bandwidth is still much smaller than dram,
which may lead to low query processing throughput and thus ne-
cessitates careful designs for storage layout and index structure. as
SSD reads are conducted with 4kb blocks (i.e., reading less than
4kb has the same cost as reading 4kb), Manu organizes the vectors
into buckets whose sizes are close to but smaller than 4kb. * this is
achieved by conducting hierarchical k-means for the vectors and
controlling the sizes of the clusters. each bucket is stored on 4kb
aligned blocks on SSD for efficient read and represented by its k-
means center in dram. these centers are organized using existing
vector search indexes (e.g., ivf-flat, hnsw).

vector search with SSD is conducted in two stages. first, we
search the cluster centers in dram for the ones that are most similar
to the query. then, the corresponding buckets are loaded from
SSD for scan. to reduce the amount of data fetched from SSD, we
compress the vectors using scalar quantization, which has negligible
influence on the quality of search results according to our trials.
another problem is that k-means can put vectors similar to a query
into several buckets but the centers of some buckets may not be
similar to the query, which leads to a low recall. to tackle this
problem, Manu uses a strategy similar to multiple hash tables in
locality sensitive hashing [41]. hierarchical k-means is conducted
by multiple times, each time assigning a vector to a bucket. this
means that a vector is replicated multiple times in SSD and we index
all cluster centers for bucket search in dram. Manu’s SSD solution
wins track 2 (search with SSD) of the billion-scale approximate
nearest neighbor search challenge at neurips’2021 [3]. tests results
show that Manu’s solution improves the recall of the competition
baseline by up to 60% at the same query processing throughput.
we notice that another work adopts similar designs for SSD-based
vector search [27].

5 USE CASES AND EVALUATION

Before introducing the use cases of Manu, we first compare Manu
with Milvus, our previous vector database. Milvus adopts an even-
tual consistency model and thus does not support the tunable con-
sistency of Manu. To show the advantages brought by Manu’s

4we set the bucket size to a few times (e.g., 4 and 8) of 4kb if the size of an individual
vector is large.
5for more details about results please refer to [72].

|=l
=i
|=|

RecSys

Multimedia

Medicine

ey O e ©
o)

Figure 7: The use cases of Manu.

fine-grained functionality decomposition, we create a mixed work-
load. Specifically, we start with an empty collection, insert vectors
at a fixed rate (e.g., 2k vectors per second), and measure the latency
for search requests over time. Both Manu and Milvus use 6 nodes
and are properly configured for good performance. The results in
Figure 6 show that the search latency of Milvus is significantly
longer than Manu, especially when insertion rates are high (e.g.,
at 3k and 4k). Milvus has multiple read nodes, but only one write
node, to ensure eventual consistency. The write node responsible
for data insertion and index construction, and thus write tasks and
index building tasks contend for resource. As a result, the index
building latency is long and brute force search is used for a large
amount of data. In contrast, with dedicated index nodes, Manu
finishes index building quickly and thus search latency remains
low over the entire period.

5.1 Overview of Use Cases

We classify our customers into 5 application domains in Figure 7
and briefly elaborate them as follows.

Recommendation: Platforms for e-commerce [79], music [77],
news [55], video [28], and social network [44] record user-content
interactions, and use the data to map users and contents to em-
bedding vectors with techniques such as ALS [75] and deep learn-
ing [50]. Finding contents of interest for a user is conducted by
searching content vectors having large similarity scores (typically
inner product) with user vector.

Multimedia: Multimedia contents (e.g., images, video and audio)
are becoming increasingly popular, and searches for multimedia
contents from large corpus are common online. The general prac-
tice is to embed both user query and corpus contents into vectors
using tools such as CNN [49] and RNN [87]. Searching multimedia
contents is conducted by finding vectors similar to the user query.

Language: Automatic questing answering and machine-based dia-
logue attract much attention recently with products such as Siri [15]
and Xiaoice [21], and searches for text contents is a general need.
With models such as Word2Vec [63] and BERT [31], language se-
quences are embedded into vectors such that retrieving language

—8— Manu-HNSW Vald-NGT —— Vearch-HNSW ES-HNSW
—e— Manu-IVF_FLAT —¥— Vespa-HNSW — Vearch-IVF_FLAT
10k
8k A
B 2 8k’
S e g
@ & 6k
b]
Q 4k TS
> >
1 1
SZK S 2k
0.8 0.9 1.0 0.80 0.85 090 0.95 1.00
Recall Recall

SIFT10M (Euclidean) DEEP10M (Inner Product)

Figure 8: Recall vs. throughout comparison.

contents boils down to finding content vectors that are similar to
user query.

Security: Blocking spams and scanning viruses are important for
security. The common practice is to map spams and viruses into
vectors using hashing [59] or tailored algorithms [39]. After that,
suspicious spams and viruses can be checked by finding the most
similar candidates in the corpus for further check.

Medicine: Many medical applications search for certain chemical
structures and gene sequences for drug discovery or health risk
identification. With tools such as GNN [68] and LSTM [84], chemi-
cal structures and gene sequences can be embedded into vectors
and their search tasks are cast into vector search.

Full-fledged vector databases are necessary for the forgoing do-
mains as they require much more complex functionality support
in addition to vector search. Specifically, as the vector datasets
are large and applications have high requirements for throughput,
they need distributed computing with multiple nodes for scalability.
The vectors are also continuously updated when new user/content
comes, user behavior changes or the embedding model is updated.
Since most of these applications serve end users, they require high
availability and durability. Some of our customers have deployed
Manu in their production environment, and they found Manu satis-
factory in terms of usability, performance, elasticity, and adaptabil-
ity. In what follows, we simulate some typical application scenarios
of our customers to demonstrate the advantages of Manu.

5.2 Example Use Cases

Due to business security, the names of the customers are anony-
mous. For the experiments, we use two datasets widely used for
vector search research, i.e., SIFT [5](with 128-dim vectors) and
DEEP [2] (with 96-dim vectors), and extract sub-datasets with the re-
quired sizes. By default, we use two query nodes, one data node and
one index node for Manu. Each worker node is an EC2 m5.4xlarge
instance running on Amazon Linux AMI version 5.4.129. For in-
dex, we experiment with IVF-FLAT [46] and HNSW [61], which
are widely used in practice. When comparing Manu with other
systems, we always ensure that the systems use the same resource
and are properly configured. Due to time and expense limits, we
are only able to compare with some vector databases in a subset
of the experiments. We search the top-50 most similar vectors for
each query, and ensure that average search recall is above 0.8 if
recall is not reported explicitly.

Nember of Used Query Nodes
2 4 8 16

300
—_— ki
g 8k Query workload 250
S —— Search latency i
& ok 200€
3 150 O
Q 4k S
> 100 =
S 2k 50 =
0

0 4 8 12 16 20 24
Time (hour)

Figure 9: Search workload, query latency, and number of
query nodes used by Manu over time. Different colors indi-
cate different number of query nodes are used.

E-commerce recommendation. Company A is a leading online
shopping platform in China that mainly sells clothing and make-
ups. They use Manu for recommendation, and products are recom-
mended to a user according to their similarity scores with the user
embedding vector. They have three main requirements for vector
database: (1) high throughput as they need to handle the requests
of many concurrent costumers; (2) high quality search results for
good recommendation effect; (3) good elasticity for low costs as
their search requests have large fluctuations over time (peaks in
evening but very low in midnight, very high at promotion events).

In Figure 8, we compare the recall-throughput performance of
Manu with Elasticsearch (ES for short) [6], Vearch [52], Vald [18],
and Vespa [19], four popular open-source vector search systems,
when using a single node. Note that the ES we use is the latest 8.0
version with tailored support for vector search instead of ES Plugin.
We use Euclidean distance for SIFT and inner product for DEEP to
test different similarity functions. Datasets with 10 million (10M)
vectors are used as ES takes too much time to build index for larger
dataset. As Vald only supports the NGT index [10] and Vespa only
supports the HNSW index [61] (both are efficient proximity graphs),
we have only a single curve for them in each plot. The results show
that Manu consistently outperforms the baselines across different
datasets and similarity functions. ES and Vearch achieve signifi-
cantly lower query processing throughput than Manu at the same
recall. This is because that ES is a disk-based solution and Vearch’s
three-layer aggregation procedure (searcher-broker-blender) for
search results introduces high overhead. The performances of Vald
and Vespa are much better than ES and Vearch but still inferior com-
pared with Manu. We conjecture this is because Manu has better
implementations with optimizations for CPU cache and SIMD.

To test the elasticity of Manu, we use the search traffic of an
e-commerce platform over one day period [17], which is plotted as
the purple curve in Figure 9. The results show that search workload
fluctuates violently over time, and the peak is much higher than
the valley. We use SIFT100M as the dataset and Euclidean distance
as the similarity function. Manu is configured to reduce query
nodes by 0.5x when search latency is shorter than 100ms and add
query nodes to 2x when search latency is over 150ms. The colors in
Figure 9 indicate the number of query nodes used by Manu, which
shows that Manu has good elasticity to adapt to query workload.

—&— Manu-IVF

10k

—&— Manu-HNSW Vearch-IVF —+— Vearch-HNSW

N
~

Query per Second
52 o o
= =~ =
Query per Second
B (=)} ©
~ ~ ~

\1

2 4 6 8 10
Query Node Number
SIFT10M (Euclidean)

N

4 6 8 10
Query Node Number
DEEP10M (Inner Product)

Figure 10: Scalability of Manu w.r.t. query nodes.

—8— Manu-IVF
10k

—&— Manu-HNSW Vearch-IVF —+— Vearch-HNSW

N
~

Query per Second
2 o0 ®
~ ~ =

Query per Second

» [=)] ©
~ ~ ~

~_

20M 40M 60M 80M 100M 20M 40M 60M 80M 100M
Dataset Size Dataset Size
SIFT (Euclidean) DEEP (Inner Product)

N
~

—ill

Figure 11: Scalability of Manu w.r.t. data volume.

The black line reports the search latency and shows that Manu can
keep search latency within the target range via scaling.

Video deduplication. Company B is a video sharing website in
Europe, on which users can upload videos and share with others.
They find that there are many duplicate videos that result in high
management costs and thus conduct deduplication before archiving
the videos. They model a video as a set of its critical frames and
encode each frame into a vector. They use vector search to find
videos in the corpus that are most similar to a new video and
conduct further checking on the shortlisted videos to determine if
the new video is a duplicate. They also use vector search to find
videos similar to those viewed by users for recommendation. They
require vector DBMS to have good scalability with respect to both
data volume and computing resource as their corpus grows quickly.

In Figure 10 and Figure 11, we test the scalability of Manu when
changing the number of query nodes and the size of dataset, respec-
tively. The results show that query processing throughput scales
almost linearly with the number of query nodes and the reciprocal
of dataset size. The observation is consistent for different datasets,
indexes and similarity functions. This is because Manu uses seg-
ments to distribute search tasks among query nodes. With segment
size fixed, each query node handles more segments when data vol-
ume increases, and fewer segments when the number of query
nodes increases. Note that better scalability w.r.t. data volume can
be achieved by configuring Manu to use larger segments when
dataset size increases. This is because similarity search indexes
usually have sub-linear complexity w.r.t. dataset size.

Virus scan. Company C is a world leading software security service
provider and one of its main service is scanning viruses for smart
phones. They have a virus base that continuously collects new

0 1000 2000 0 1000 2000

Grace time(ms)

(a) SIFT10M (Euclidean)

Grace time (ms)

(b) DEEP10M (Inner Product)

Figure 12: The relation between search latency and grace
time, legends stand for the time tick interval.

3000 2000
—=— HNSW —=— HNSW
2500
—e— IVF_FLAT 1500, —* IVFFLAT
2000 _
O} 3
L])
21500 21000
" 1000 =
500
500
026M 40M 60M 80M 100M 026M 40M 60M 80M 100M

Dataset Size

(a) SIFT (Euclidean)

Dataset Size

(b) DEEP (Inner Product)

Figure 13: Index construction time of Manu vs. data volume.

viruses and develop specialized algorithms to map virus and user
APK to vector embedding. To conduct a virus scan, they find viruses
in their base that have embedding similar to the query APK and then
compare the search results with the APK in more detail. They have
two requirements for vector DBMS: (1) short delay for streaming
update as new viruses (vectors) are continuously added to their
virus base and vector search needs to observe the latest viruses
with a short delay; (2) fast index building as they frequently adjust
their embedding algorithm to fix problems, which leads to update
of the entire dataset and requires to rebuild index.

In Figure 12, we show the average delay of search requests for
Manu. Recall that grace time (i.e., 7) means that a search request
must observe updates that happen time 7 before it, and is con-
figurable by users. The legends correspond to different time tick
interval, with which the loggers write time tick to WAL. The results
show that search latency decreases quickly with grace time, and
shorter time tick interval results in shorter search latency. This is
because with longer grace time, search requests can tolerate longer
update delay and are less likely to wait for updates. When the time
tick interval reduces, each segment can confirm that all updates
have been received more quickly, thus the search requests wait for
a shorter time. In Figure 13, we report the index building time of
Manu when changing data volume. The results show that index
building time scales linearly with data volume. This is because
Manu builds index for each segment and larger data volume leads
to more segments.

6 RELATED WORK

Vector search algorithms. Vector search algorithms have a long
research history, and most works focus on efficient approximate
search on large-scale datasets. Existing algorithms can be roughly

classified into four categories, i.e., space partitioning tree (SPT),
locality sensitive hashing (LSH), vector quantization (VQ) and prox-
imity graph (PG). SPT algorithms divide the space into areas, and
use tree structures to quickly narrow down search results to some
areas [30, 58, 64, 71, 80]. LSH algorithms design hash functions such
that similar vectors are hashed to the same bucket with high prob-
ability, and examples include [35, 36, 41, 43, 53, 56, 57, 60, 70, 90].
VQ algorithms compress vectors and accelerate similarity compu-
tation by quantizing the vectors using a set of vector codebooks,
and well-known VQ algorithms include [23, 34, 42, 45, 91]. PG al-
gorithms form a graph by connecting a vector with those most
similar to it in the dataset, and conduct vector search by graph
walk [33, 61, 73, 89]. Different algorithms have different trade-offs,
e.g., LSH is cheap in indexing building but poor in result quality,
VQ reduces memory and computation but also harms result quality,
PG has high efficiency but requires large memory. Manu supports
a comprehensive set of search algorithms such that users can trade
off between different factors.

Vector databases. Vector data management solutions have gone
through two stages of development. Solutions in the first stage
are libraries (e.g., Facebook Faiss [46], Microsoft SPTAG [16], HN-
SWIib [61] and Annoy [1]) and plugins (e.g., ES plugins [6], Postgres
plugins [12]) for vector search. They are insufficient for current ap-
plications as full-fledged management functionalities are required,
e.g., distributed execution for scalability, online data update, and
failure recovery. Two OLAP database systems, AnalyticDB-V [82]
and PASE [85] support vector data by adding a table column to
store them but lacks optimizations tailored for vector data.

The second stage solutions are full-fledged vector databases such
as Vearch [52], Vespa [19], Weaviate [20], Vald [18], Qdrant [13],
Pinecone [11], and our previous effort Milvus [81]. ¢ Vearch uses
Faiss as the underlying search engine and adopts a three-layer ag-
gregation procedure to conduct distributed search. Similarly, Vespa
distributes data over nodes for scalability. A modified version of the
HNSW algorithm is used to support online updates for vector data,
and Vespa also allows attribute filtering during search and learning-
based inference on search results (e.g., for re-ranking). Weaviate
adopts a GraphQL interface and allows storing objects (e.g., texts,
images), properties, and vectors. Users can directly import vec-
tors or customize embedding models to map objects to vectors,
and Weaviate can retrieve objects based on vector search results.
Vald supports horizontal scalability by partitioning a vector dataset
into segments and builds indexes without stopping search services.
Qdrant is a single-machine vector search engine with extensive
support for attribute filtering. It allows filtering with various data
types and query conditions (e.g., string matching, numerical ranges,
geo-locations), and uses a tailored optimizer to determine the fil-
tering strategy. Note that Vespa, Weaviate and Vald only support
proximity graph index.

We can observe that these vector databases focus on different
functionalities, e.g., learning-based inference, embedding genera-
tion, object retrieval, and attribute filtering. Thus, we treat evolv-
ability as first class priority when design Manu such that new func-
tionalities can be easily introduced. Manu also differs from these

Pinecone is offered as SaaS and closed source. Thus, we do not know its design
details.

Junwang Zhao
Highlight

Junwang Zhao
Highlight

vector databases in important perspectives. First, the log backbone
of Manu provides time semantics and allows tunable consistency.
Second, Manu decomposes system functionalities with fine granu-
larity and instantiates them as cloud services for performance and
failure isolation, and thus is more suitable for cloud deployment.
Third, Manu comes with more comprehensive optimizations for
usability and performance, e.g., support various indexes, hardware
tailored implementations, and GUI tools.

Cloud native databases. Many OLAP databases are designed to
run on the cloud recently and examples include Redshift [38], Big-
Query [62], Snowflake [29] and AnalyticDB [88]. Redshift is a data
warehouse system offered as a service on Amazon Web Service and
adopts a shared-nothing architecture. It scales by adding or remov-
ing EC2 instances, and data is redistributed in the granularity of
columns. Snowflake uses a shared-data architecture by delegating
data storage to Amazon S3. Compute nodes are stateless and fetch
read-only copies of data for tasks, and thus can be easily scaled. For
efficiency, high-performance local disk is used to cache hot data.

Aurora [78] and PolarDB Serverless [51] are two cloud native
OLTP databases. Aurora uses a shared-disk architecture and pro-
poses the “log is database" principle by pushing transaction pro-
cessing down to the storage engine. It observes that the bottleneck
of cloud-based platforms has shifted from computation and storage
IO to network IO. Thus, it only persists redo log for transaction
processing and commits transaction by processing log according to
LSN. PolarDB Serverless adopts a disaggregation architecture, which
uses high-speed RDMA network to decouple hardware resources
(e.g., compute, memory and storage) as resource pools.

Our Manu follows the general design principles of cloud native
databases to decouple the system functionalities at fine granularity
for high elasticity, fast evolution and failure isolation. However, we
also consider the unique design opportunities of vector databases to
trade the simple data model and weak consistency requirement for
performance, cost and flexibility. Specifically, complex transactions
are not supported and the log backbone is utilized to support tunable
consistency-performance trade-off. Moreover, vector search, index
building and log archiving tasks are further decoupled as their
workloads may have significant variations.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduce the designs of Manu as a cloud native
vector database. To ensure that Manu suits vector data applications,
we set ambitious design goals, which include good evolvability, tun-
able consistency, high elasticity, good efficiency, and etc. To meet
these design goals, Manu trades the simple data model of vectors
and weak consistency requirement of applications for performance,
costs and flexibility. Specifically, Manu conducts fine-grained de-
coupling of the system functionalities for component-wise scaling
and evolution, and uses the log backbone to connect the system
components while providing time semantics and simplifying inter-
component interaction. We also introduce important features such
as high-level API, GUI tool, hardware optimizations, and complex
search. We think Manu is still far from perfect and some of our
future directions include:

e Multi-way search: Many applications jointly search multiple
types of contents, e.g., vector and primary key, vector and text.
The log system of Manu allows to add search engines for other
contents (e.g., primary key and text) as co-processors by sub-
scribing to the log stream. We will explore how multiple search
engines can interact efficiently and how to flexibly coordinate
different search engines to meet application requirements.

e Modularized algorithms: We think vector search algorithms
can be distilled into independent components, e.g., compression
for memory reduction and efficient computation, indexing for
limiting computation to a small portion of vectors, and bucketing
for grouping similar vectors. Existing vector search algorithms
only explore some combinations of techniques for different com-
ponents. We will provide a unified framework for vector search
such that users can flexibly combine different techniques accord-
ing to their desired trade-off between cost and performance.

e Hierarchical storage aware index: Current vector search in-
dex assumes a single type of storage, e.g., GPU memory, main
memory or disk. We will explore indexes that can jointly utilize all
devices on the storage hierarchy. For example, most applications
have some hot vectors (e.g., popular products in e-commerce)
that are frequently accessed by search requests, which can be
placed in fast storage. As a query accesses only a portion of
the vectors and a node processes many concurrent queries, the
storage swap latency may be hidden by pipelining.

e Advanced hardware: NVM [67] costs about one-third of DRAM
for unit capacity but provides comparable read bandwidth and
latency comparable, which makes it a good choice for replacing
expensive DRAM when storing large datasets. RDMA [25, 47]
significantly reduces the communication latency among nodes,
and NVLink [66] directly connects GPUs with much larger band-
width than PCle. By exploiting these fast connections, we will
explore indexes and search algorithms that jointly use multiple
devices. We are also working with hardware vendors to apply
FPGA and MLU for vector search and index building.

o Embedding generation toolbox: For better application level-
integration, we plan to incorporate a application-oriented toolbox
for generating embedding vectors. This toolbox would incorpo-
rate model fine-tuning in addition to providing a number of
pre-trained models that can be used out-of-the-box, allowing for
rapid prototyping.

ACKNOWLEDGMENTS

Manu is a multi-year project open sourced by Zilliz. The devel-
opment of Manu involves many engineers in its community. In
particular, we thank Bingyi Sun, Weida Zhu, Yudong Cai, Yihua
Mo, Xi Ge, Yihao Dai, Jiquan Long, Cai Zhang, Congqi Xia, Xuan
Yang, Binbin Lv, Xiaoyun Liu, Wenxing Zhu, Yufen Zong, Jie Zeng,
Shaoyue Chen, Jing Li, Zizhao Chen, Jialian Ji, Min Tian, Yan Wang
and all the other contributors in the community for their contri-
butions. We also thank Filip Haltmayer for proofreading the paper
and valuable suggestions to improve paper quality.

Junwang Zhao
Highlight

Junwang Zhao
Highlight

REFERENCES

(1]

[13]

=
A

[16

[17]

[18
[19]
[20]
[21
[22

[23]

[24

[25

[26]

[27]

[28]

[29

[30]

(31

[32]

[33

2021. Annoy: Approximate Nearest Neighbors Oh Yeah. https://github.com/
spotify/annoy.

2021. Benchmarks for Billion-Scale Similarity Search. https://research.yandex.
com/datasets/biganns.

2021. Billion-Scale Approximate Nearest Neighbor Search Challenge. https://big-
ann-benchmarks.com.

2021. binlog. https://hevodata.com/learn/using-mysgl-binlog/.

2021. Datasets for approximate nearest neighbor search. http://corpus-texmex.
irisa.fr/.

2021. ElasticSearch: Open Source, Distributed, RESTful Search Engine. https:
//github.com/elastic/elasticsearch.

2021. etcd. https://etcd.io/.

2021. MinlIO. https://min.io/.

2021. MySQL. https://www.mysql.com/.

2021. NGT. https://github.com/yahoojapan/NGT.

2021. Pinecone. https://www.pinecone.io/.

2021. PostgreSQL: The World’s Most Advanced Open Source Relational Database.
https://www.postgresql.org/.

2021. Qdrant. https://qdrant.tech/.

2021. S3. https://aws.amazon.com/cn/s3/.

2021. siri. https://www.apple.com/siri/.

2021. SPTAG: A library for fast approximate nearest neighbor search. https:
//github.com/microsoft/SPTAG.

2021. User Behavior Data from Taobao for Recommendation. https://tianchi.
aliyun.com/dataset/dataDetail?datald=649.

2021. Vald. https://github.com/vdaas/vald.

2021. Vespa. https://vespa.ai/.

2021. Weaviate. https://github.com/semi-technologies/weaviate.

2021. Xiaoice. https://en.wikipedia.org/wiki/Xiaoice.

Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. 2007. Best Position Algo-
rithms for Top-k Queries. In Proceedings of the 33rd International Conference on
Very Large Data Bases (Vienna, Austria). VLDB Endowment, 495-506.

Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache
Locality is Not Enough: High-Performance Nearest Neighbor Search with Product
Quantization Fast Scan. Proc. VLDB Endow. 9, 4, 288-299.

Artem Babenko and Victor S. Lempitsky. 2015. The Inverted Multi-Index. IEEE
Trans. Pattern Anal. Mach. Intell. 37, 6 (2015), 1247-1260. https://doi.org/10.1109/
TPAMI.2014.2361319

Wei Cao, Yinggiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xun-
tao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, et al. 2021. PolarDB Serverless:
A Cloud Native Database for Disaggregated Data Centers. In Proceedings of the
2021 International Conference on Management of Data. 2477-2489.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zhiyong Zheng,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. Advances in Neural Information
Processing Systems 34 (2021).

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191-198.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016. ACM, 215-226.

Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low
dimensional manifolds. In Proceedings of the fortieth annual ACM symposium on
Theory of computing. 537-546.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers). Association for Computational Linguistics, 4171-4186.
https://doi.org/10.18653/v1/n19-1423

Stefan Falkner, Aaron Klein, and Frank Hutter. 2017. Combining hyperband and
bayesian optimization. In NIPS 2017 Bayesian Optimization Workshop (Dec 2017).
Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. Proceedings of
the VLDB Endowment 12, 5 (2019), 461-474.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization for approximate nearest neighbor search. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2946-2953.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vidb, Vol. 99. 518-529.

Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. 2020. iDEC: indexable
distance estimating codes for approximate nearest neighbor search. Proceedings
of the VLDB Endowment 13, 9 (2020).

Ruigi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-
tization based fast inner product search. In Artificial Intelligence and Statistics.
PMLR, 482-490.

Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015. ACM, 1917-1923.

Michael Hersovici, Michal Jacovi, Yoelle S Maarek, Dan Pelleg, Menachem Shtal-
haim, and Sigalit Ur. 1998. The shark-search algorithm. an application: tailored
web site mapping. Computer Networks and ISDN Systems 30, 1-7 (1998), 317-326.
Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072-3084.

Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604-613.

Masajiro Iwasaki and Daisuke Miyazaki. 2018. Optimization of indexing based on
k-nearest neighbor graph for proximity search in high-dimensional data. arXiv
preprint arXiv:1810.07355 (2018).

Omid Jafari, Parth Nagarkar, and Jonathan Montafio. 2020. mmLSH: A Practical
and Efficient Technique for Processing Approximate Nearest Neighbor Queries on
Multimedia Data. In International Conference on Similarity Search and Applications.
Springer, 47-61.

Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In Proceedings of the
fourth ACM conference on Recommender systems. 135-142.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117-128.

[46] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity

search with gpus. IEEE Transactions on Big Data (2019).

Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA
efficiently for key-value services. In Proceedings of the 2014 ACM Conference on
SIGCOMM. 295-306.

Timothy King. 2019. 80 Percent of Your Data Will Be Unstructured in Five
Years. https://solutionsreview.com/data- management/80-percent- of-your-data-
will-be-unstructured-in-five-years/.

Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks 3361,
10 (1995), 1995.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436-444.

Feifei Li. 2019. Cloud native database systems at Alibaba: Opportunities and
Challenges. Proc. VLDB Endow. 12, 12 (2019), 2263-2272.

[52] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang,

and Yuan Chen. 2018. The design and implementation of a real time visual
search system on jd e-commerce platform. In Proceedings of the 19th International
Middleware Conference Industry. 9-16.

Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W Tsang, and Xuemin
Lin. 2020. I/O efficient approximate nearest neighbour search based on learned
functions. In 2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 289-300.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2019. Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475-1488.

Jiahui Liu, Peter Dolan, and Elin Renby Pedersen. 2010. Personalized news
recommendation based on click behavior. In Proceedings of the 15th international
conference on Intelligent user interfaces. 31-40.

Wangi Liu, Hanchen Wang, Ying Zhang, Wei Wang, and Lu Qin. 2019. I-LSH:
1/O efficient c-approximate nearest neighbor search in high-dimensional space.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE,
1670-1673.

Kejing Lu and Mineichi Kudo. 2020. R2LSH: A Nearest Neighbor Search Scheme
Based on Two-dimensional Projected Spaces. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1045-1056.

Kejing Lu, Hongya Wang, Wei Wang, and Mineichi Kudo. 2020. VHP: approximate
nearest neighbor search via virtual hypersphere partitioning. Proceedings of the
VLDB Endowment 13, 9 (2020), 1443-1455.

https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://research.yandex.com/datasets/biganns
https://research.yandex.com/datasets/biganns
https://big-ann-benchmarks.com
https://big-ann-benchmarks.com
https://hevodata.com/learn/using-mysql-binlog/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://etcd.io/
https://min.io/
https://www.mysql.com/
https://github.com/yahoojapan/NGT
https://www.pinecone.io/
https://www.postgresql.org/
https://qdrant.tech/
https://aws.amazon.com/cn/s3/
https://www.apple.com/siri/
https://github.com/microsoft/SPTAG
https://github.com/microsoft/SPTAG
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://github.com/vdaas/vald
https://vespa.ai/
https://github.com/semi-technologies/weaviate
https://en.wikipedia.org/wiki/Xiaoice
https://doi.org/10.1109/TPAMI.2014.2361319
https://doi.org/10.1109/TPAMI.2014.2361319
https://doi.org/10.18653/v1/n19-1423
https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years/
https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years/

(59

[60

[61]

[62

o
&

[64]

[65

[66]

[67]

[68

[69

[73

[74

[75

[76]

[77]

<)
&

[79]

Lailong Luo, Deke Guo, Richard TB Ma, Ori Rottenstreich, and Xueshan Luo.
2018. Optimizing bloom filter: Challenges, solutions, and comparisons. IEEE
Communications Surveys & Tutorials 21, 2 (2018), 1912-1949.

Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2017. In-
telligent probing for locality sensitive hashing: Multi-probe LSH and beyond.
(2017).

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824-836.
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of
Web-Scale Datasets. Proc. VLDB Endow. 3, 1 (2010), 330-339.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227-2240.

Michael P Papazoglou and Willem-Jan Van Den Heuvel. 2006. Service-oriented
design and development methodology. International Journal of Web Engineering
and Technology 2, 4 (2006), 412-442.

Carl Pearson, I-Hsin Chung, Zehra Sura, Wen-Mei Hwu, and Jinjun Xiong. 2018.
NUMA-aware data-transfer measurements for power/NVLink multi-GPU sys-
tems. In International Conference on High Performance Computing. Springer, 448—
454.

Jie Ren, Minjia Zhang, and Dong Li. 2020. Hm-ann: Efficient billion-point nearest
neighbor search on heterogeneous memory. Advances in Neural Information
Processing Systems 33 (2020).

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61-80.

Falk Scholer, Hugh E Williams, John Yiannis, and Justin Zobel. 2002. Compression
of inverted indexes for fast query evaluation. In Proceedings of the 25th annual
international ACM SIGIR conference on Research and development in information
retrieval. 222-229.

Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS). Advances in neural information
processing systems 27 (2014).

Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast image
descriptor matching. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 1-8.

Harsha Vardhan Simhadri, George Williams, Martin Aumiiller, Matthijs Douze,
Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar
Krishnaswamy, Gopal Srinivasa, et al. 2022. Results of the NeurIPS’21 Chal-
lenge on Billion-Scale Approximate Nearest Neighbor Search. arXiv preprint
arXiv:2205.03763 (2022).

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnaswamy, and Rohan Kadekodi. 2019. Rand-NSG: Fast Accurate Billion-
point Nearest Neighbor Search on a Single Node. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. 13748—
13758.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1493-1509.
Gabor Takacs and Domonkos Tikk. 2012. Alternating least squares for personal-
ized ranking. In Proceedings of the sixth ACM conference on Recommender systems.
83-90.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626-1629.

Aéron Van Den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Neural Information Processing Systems
Conference (NIPS 2013), Vol. 26. Neural Information Processing Systems Founda-
tion (NIPS).

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1041-1052.

Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 839-848.

[80] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang Zeng, Hongbin Zha, and

[81

[82

(84

(85

(86

(88

[89

[90

]

]

Xian-Sheng Hua. 2014. Trinary-Projection Trees for Approximate Nearest Neigh-
bor Search. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2 (2014), 388-403.
Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A Purpose-Built Vector Data Management System. In Proceedings of the 2021
International Conference on Management of Data. 2614-2627.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and
Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards Query
Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12 (2020),
3152-3165.

Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N
Holtmann-Rice, David Simcha, and Felix Yu. 2017. Multiscale quantization for
fast similarity search. Advances in Neural Information Processing Systems 30
(2017), 5745-5755.

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. In Advances in neural information processing
systems. 802-810.

Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. PASE: PostgreSQL Ultra-High-
Dimensional Approximate Nearest Neighbor Search Extension. In Proceedings of
the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM, 2241-2253.
Matei Zaharia, Mosharaf Chowdhury, Michael] Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329 (2014).

Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaogiang Peng, Liang Lin, Sheng
Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. 2019. Analyticdb: Real-time
olap database system at alibaba cloud. Proceedings of the VLDB Endowment 12,
12 (2019), 2059-2070.

Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest Neigh-
bor Search on GPU. In 36th IEEE International Conference on Data Engineering,
ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 1033-1044.

Bolong Zheng, Zhao Xi, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu,
and Christian S Jensen. 2020. PM-LSH: A fast and accurate LSH framework for
high-dimensional approximate NN search. Proceedings of the VLDB Endowment
13, 5 (2020), 643-655.

Wengang Zhou, Yijuan Lu, Hougiang Li, and Qi Tian. 2012. Scalar quantization for
large scale image search. In Proceedings of the 20th ACM international conference
on Multimedia. 169-178.

	Abstract
	1 Introduction
	2 background and motivation
	3 The Manu System
	3.1 Schema, Collection, Shard, and Segment
	3.2 System Architecture
	3.3 The Log Backbone
	3.4 Tunable Consistency
	3.5 Index Building
	3.6 Vector Search

	4 Feature Highlights
	4.1 Cloud Native and Adaptive
	4.2 Good Usability
	4.3 Time Travel
	4.4 Hardware Optimizations

	5 Use Cases and Evaluation
	5.1 Overview of Use Cases
	5.2 Example Use Cases

	6 Related Work
	7 Conclusions and Future Directions
	Acknowledgments
	References

