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This article is an eight-year retrospective on development priorities for RocksDB, a key-value store developed
at Facebook that targets large-scale distributed systems and that is optimized for Solid State Drives (SSDs).
We describe how the priorities evolved over time as a result of hardware trends and extensive experiences
running RocksDB at scale in production at a number of organizations: from optimizing write amplification, to
space amplification, to CPU utilization. We describe lessons from running large-scale applications, including
that resource allocation needs to be managed across different RocksDB instances, that data formats need
to remain backward- and forward-compatible to allow incremental software rollouts, and that appropriate
support for database replication and backups are needed. Lessons from failure handling taught us that data
corruption errors needed to be detected earlier and that data integrity protection mechanisms are needed at
every layer of the system. We describe improvements to the key-value interface. We describe a number of
efforts that in retrospect proved to be misguided. Finally, we describe a number of open problems that could
benefit from future research.
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1 INTRODUCTION

RocksDB [19, 94] is a high-performance, persistent key-value storage engine created in 2012 by
Facebook, based on Google’s LevelDB code base [39]. It is optimized for the specific characteristics
of Solid State Drives (SSDs), targets large-scale (distributed) applications, and is designed as a
library component that is embedded in higher-level applications. As such, each RocksDB instance
manages data on storage devices of just a single server node; it does not handle any inter-host oper-
ations, such as replication and load balancing, and it does not perform high-level operations, such
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Table 1. Some RocksDB Use Cases and Their Workload Characteristics

Read/Write Read Types Special Characteristics
Databases Mixed Get + Iterator  Transactions; backups
Stream Processing Write-heavy Get or Iterator Time windows; checkpoints
Logging/Queues  Write-heavy Iterator Uses both SDD and HDD media
Index Services Read-heavy Iterator Bulk loading
Cache Write-heavy Get Dropping data acceptable

as checkpoints—it leaves the implementation of these operations to the application, but provides
appropriate support so they can do it effectively.

RocksDB and its various components are highly customizable, allowing the storage engine to be
tailored to a wide spectrum of requirements and workloads; customizations can include the write-
ahead log (WAL) treatment, the compression strategy, and the compaction strategy (a process that
removes dead data and optimizes LSM-trees, as described in Section 2). RocksDB may be tuned for
high write throughput, high read throughput, space efficiency, or something in between. Due to
its configurability, RocksDB is used by many applications, representing a wide range of use cases.
At Facebook alone, RocksDB is used by over 30 different applications, in aggregate storing many
hundreds of petabytes of production data. Besides being used as a storage engine for databases
(e.g., MySQL [61], Rocksandra [44], CockroachDB [91], MongoDB [76], and TiDB [46]), RocksDB
is also used for the following types of services with highly disparate characteristics, summarized
in Table 1:

e Stream processing: RocksDB is used to store staging data in Apache Flink [10], Kafka
Stream [51], Samza [69], and Facebook’s Stylus [13]. These systems use RocksDB in unique
ways. For example, some require the ability to checkpoint the state of RocksDB when check-
pointing the stream processing system. Others require time window functions so they can
lay out the data in a way that allows them to query and reclaim time windows in an efficient
way.

o Logging/queuing services: RocksDB is used by Uber’s Cherami [68], Iron.io [49], and Face-
book’s LogDevice (which uses both SSDs and HDDs) [59]. These services demand high write
throughput and low write amplification. By taking advantage of RocksDB’s customizable
compaction scheme, the services are able to write almost as efficiently as appending to a
single file while still benefiting from features such as indexing.

e Index services: RocksDB is used by Rockset [87], Airbnb’s personalized search [98], and
Facebook’s Dragon [86]. These services demand good read performance and the ability to
load offline-generated data into index services at large scale, for which RocksDB’s bulk load-
ing feature was initially created.

e Caching on SSD: Several in-memory caching services use RocksDB to store data evicted
from DRAM onto SSDs; these include Netflix’s EVCache [57], Qihoo’s Pika [80], and
Redis [74]. These services tend to have high write rates and mostly issue point lookups.
Some implement admission control, so not all data evicted from DRAM cache is written to
RocksDB.

There are also other types of use cases, such as in Ceph’s BlueStore, which uses RocksDB to store
metadata, and the WAL [2] and DNANexus’ DNA sequencing [55]. A prior paper presented an
analysis of several applications using RocksDB [9]. Table 2 summarizes some of the system metrics
obtained from production workloads.
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Table 2. System Metrics for a Typical Use Case from Each of the Application Categories

CPU Utilization = Space Utilization Flash Endurance Read Bandwidth

Stream Processing 11% 48% 16% 1.6%
Logging/Queues 46% 45% 7% 1.0%
Index Services 47% 61% 5% 10.0%
Cache 3% 78% 74% 3.5%

Having a storage engine that can support many different use cases offers the advantage that
the same storage engine can be used across different applications. Indeed, having each application
build its own storage subsystem is problematic, as doing so is challenging. Even simple applica-
tions need to protect against media corruption using checksums, guarantee data consistency after
crashes, issue the right system calls in the correct order to guarantee durability of writes, and han-
dle errors returned from the file system in a correct manner. A well-established common storage
engine can deliver sophistication in all those domains.

Additional benefits from having a common storage engine are achieved when the client appli-
cations run within a common infrastructure: the monitoring framework, performance profiling
facilities, and debugging tools can all be shared. For example, different application owners within
a company can take advantage of the same internal framework that reports statistics to the same
dashboard, monitor the system using the same tools, and manage RocksDB using the same em-
bedded admin service. This consolidation not only allows expertise to be easily reused among
different teams, but also allows information to be aggregated to common portals and encourages
developing tools to manage them.

Given the diverse set of applications that have adopted RocksDB, it is natural for the devel-
opment priorities of RocksDB to have evolved over time. This article describes how our priorities
evolved over the past eight years as we learned practical lessons from real-world applications (both
within Facebook and other organizations) and observed changes in hardware trends, causing us to
revisit some of our early assumptions. We also describe our RocksDB development priorities for
the near future.

Section 2 provides background on SSDs and Log-Structured Merge (LSM) trees [72]. From the
beginning, RocksDB chose the LSM-tree as its primary data structure to address the asymmetry
in read/write performance and the limited endurance of flash-based SSDs. We believe LSM-trees
have served RocksDB well and argue they will remain a good fit even with upcoming hardware
trends (Section 3). The LSM-tree data structure is one of the reasons RocksDB can accommodate
different types applications with disparate requirements. But Section 3 describes how our primary
optimization target shifted from minimizing write amplification to minimizing space amplification,
and from optimizing performance to optimizing efficiency.

Sections 4-8 describe some of our experiences and lessons learned over the years. For ex-
ample, lessons learned from serving large-scale distributed systems (Section 4) include (i) re-
source allocation must be managed across multiple RocksDB instances, since a single server may
host multiple instances; (ii) the data format used must be backward- and forward-compatible,
since RocksDB software updates are deployed/rolled-back incrementally; and (iii) proper support
for database replication and backups is important. Lessons learned from dealing with failures
(Section 5) include (i) data corruption needs to be detected early to minimize data unavailability
and loss; (ii) integrity protection must cover the entire system to prevent silent corruptions from
propagating to replicas and clients; and (iii) errors need to be treated in a differentiated manner.
Lessons related to configuration management (Section 6) indicate that having RocksDB be highly
configurable has enabled many different types of applications and that suitable configurations can
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Fig. 1. RocksDB LSM-tree using leveled compaction. Each white box is an SSTable.

have a large positive performance impact, but also that configuration management is perhaps too
challenging and needs to be simplified and automated. Lessons on the RocksDB API (Section 7) in-
dicate that the core interface is simple and powerful given its flexibility, but limits the performance
for some important use cases; we present our thoughts on improving the interface by supporting
application-defined timestamps and columns. Finally, we present a number of development initia-
tives that in retrospect turned out to be misguided (Section 8).

Section 10 lists several areas where RocksDB would benefit from future research. We close with
concluding remarks in Section 11.

2 BACKGROUND

The characteristics of flash-based SSDs have profoundly impacted the design of RocksDB. The
asymmetry in read/write performance and limited endurance pose challenges and opportunities
in the design of data structures and system architectures. As such, RocksDB employs flash-friendly
data structures and optimizes for modern hardware.

2.1 Embedded Storage on Flash-based SSDs

Over the past decade, we have witnessed the proliferation of SSDs for serving online data. The
low latency and high throughput device not only challenged software to take advantage of its full
capabilities, but also transformed how many stateful services are implemented. An SSD offers hun-
dreds of thousands of Input/Output Operations per Second (IOPS) for both of read and write,
which is thousands of times faster than a spinning hard drive (HDD). It can also support hun-
dreds of MBs of bandwidth. Yet high write bandwidth cannot be sustained due to a limited number
of program/erase cycles. These factors provide an opportunity to rethink the storage engine’s data
structures to optimize for this hardware.

The high performance of the SSD, in many cases, also shifted the performance bottleneck from
device I/O to the network for both latency and throughput. It became more attractive for appli-
cations to design their architecture to store data on local SSDs rather than use a remote data
storage service. This increased the demand for a key-value store engine that can be embedded in
applications.

RocksDB was created to address these requirements. We wanted to create a flexible key-value
store to serve a wide range of applications using local SSD drives while optimizing for the charac-
teristics of SSDs. LSM-trees played an important role in achieving these goals.

2.2 RocksDB Architecture and Its Use of LSM-trees

RocksDB uses LSM trees [72] as its primary data structure to store data with the following key
operations:
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Writes. Whenever data is written to RocksDB, the written data is added to an in-memory write
buffer called MemTable, as well as an on-disk Write Ahead Log (WAL). MemTable is implemented
as a skiplist to keep the data ordered with O(log n) insert and search overheads. The WAL is used
for recovery after a failure, but is not mandatory. Once the size of the MemTable reaches a config-
ured size, then (i) the MemTable and WAL become immutable, (ii) a new MemTable and WAL are
allocated for subsequent writes, (iii) the contents of the MemTable are flushed to a Sorted String
Table (SSTable) data file on disk, and (iv) the flushed MemTable and associated WAL are discarded.
Each SSTable stores data in sorted order, divided into uniformly sized blocks. Once written, each
SSTable is immutable. Every SSTable also has an index block with one index entry per SSTable
block for binary search.

Compaction. The LSM-tree has multiple levels, as shown in Figure 1. The newest SSTables are
created by MemTable flushes, as described above, and are placed in Level-0. The other levels are
created by a process called compaction. The maximum size of each level is limited by configu-
ration parameters. When level-L’s size target is exceeded, some SSTables in level-L are selected
and merged with the overlapping SSTables in level-(L+1) to create a new SSTable in level-(L+1).
In doing so, deleted and overwritten data is removed, and the new SSTable is optimized for read
performance and space efficiency. This process gradually migrates written data from Level-0 to
the last level. Compaction I/O is efficient, as it can be parallelized and only involves bulk reads
and writes of entire files. (To avoid confusion with the terms “higher” and “lower,” given that lev-
els with a higher number are generally located lower in images depicting multiple levels, we will
refer to levels with a higher number as older levels.)

MemTables and level-0 SSTables have overlapping key ranges, since they contain keys anywhere
in the keyspace. Each older level, i.e., a level-1 or older level, consists of SSTables covering non-
overlapping partitions of the keyspace. To save disk space, the blocks of SSTables in older levels
may optionally be compressed.

Reads. In the read path, a key lookup occurs by first searching all MemTables, followed by search-
ing all Level-0 SSTables, followed by the SSTables in successively older levels whose partition cov-
ers the lookup key. Binary search is used in each case. The search continues until the key is found,
or it is determined that the key is not present in the oldest level.! Hot SSTable blocks are cached
in a memory-based block cache to reduce I/O as well as decompression overheads. Bloom filters
are used to eliminate most unnecessary searches within SSTables.

RocksDB supports multiple different types of compaction [23]. Leveled Compaction was adapted
from LevelDB and then improved [19]. In this compaction style, levels are assigned exponentially
increasing size targets as exemplified by the dashed boxes in Figure 1. Compactions are initiated
proactively to ensure the target sizes are not exceeded. Tiered Compaction (called Universal Com-
paction in RocksDB [26]) is similar to what is used by Apache Cassandra or HBase [36, 37, 58].
Multiple SSTables are lazily compacted together, either when the sum of the number of level-0
files and the number of non-zero levels exceeds a configurable threshold or when the ratio be-
tween total DB size over the size of the largest level exceeds a threshold. In effect, compactions
are delayed until either read performance or space efficiency degenerates, so more data can be
compacted altogether. Finally, FIFO Compaction simply discards old SSTables once the DB hits a
size limit and only performs lightweight compactions. It targets in-memory caching applications.

Being able to configure the type of compaction allows RocksDB to serve a wide range of
use cases. By using different compaction styles, RocksDB can be configured as read-friendly,
write-friendly, or very write-friendly (for special cache workloads). However, application owners

IScans require that all levels be searched.
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Table 3. Write Amplification, Overhead, and Read 1/O for Three Major Compaction
Types under RocksDB 5.9

. . Write Max Avg Space #1/ O per Get()  #1/O per # I/O per
ompaction Amplification Space Overhead with bloom Get() iterator
Overhead filter without filter seek
Leveled 16.07 9.8% 9.5% 0.99 1.7 1.84
Tiered 4.8 94.4% 45.5% 1.03 3.39 4.80
FIFO 2.14 N/A N/A 1.16 528 967

Results of a random write micro-benchmark with 16-byte keys and 100 byte values (on average 50 bytes after
compression) with a total of 500 million keys. After the data is fully populated, random keys are overwritten with the
ingestion rate limited to 2 MB/s and results are collected in this phase. The number of sorted runs is set to 12 for
Tiered Compaction, and 20 bloom filter bits per key are used for FIFO Compaction. Direct I/O is used and the block
cache size is set to be 10% of the fully compacted DB size. Write amplification is calculated as total SSTable file writes
vs. the number of MemTable bytes flushed. WAL writes are not included. The number of I/Os per Get() without a filter
is particularly high for FIFO compaction, because without the bloom filter, each SSTable needs to be searched until the
result is found.

will need to consider tradeoffs among the different metrics for their specific use case[4]. A lazier
compaction algorithm improves write amplification and write throughput, but read performance
suffers. In contrast, a more aggressive compaction sacrifices write amplification but allows for
faster reads. Services such as logging or stream processing can use a write-heavy setup, while data-
base services need a balanced approach. Table 3 depicts this flexibility by way of micro-benchmark
results.

In 2014, we added a feature called column family? [22], which allows different independent key
spaces to co-exist in one DB. Each KV pair is associated with exactly one column family (by default
the default column family), while different column families can contain KV pairs with the same
key. Each column family has its own set of MemTables and SSTables, but they share the WAL.
Benefits of column families include the following:

(1) each column family can be configured independently; that is, they each can have different
compaction, compression, merge operators (Section 6.2), and compaction filters (Section 6.2);

(2) the shared WAL enables atomic writes to different column families®; and

(3) existing column families can be removed, and new column families can be created, dynami-
cally and efficiently.

Column families are widely used. One way they are used is to allow different compaction strate-
gies for different classes of data in the same database; e.g., in a database, some data ranges might be
write-heavy and other ranges might be read-heavy, in which case compaction can be made more
effective overall by placing the two different classes of data into two different column families con-
figured to use different compaction strategies. Another way column families are used is to exploit
the fact that a column family can be removed efficiently: If the data known to become obsolete*
within a time period is placed in the same column family, then a column family can be removed at
the appropriate time without having to explicitly delete the KV pairs contained therein.

2 The name of this feature, “column family,” was poorly chosen and not to be confused with “columns” in database tables
(discussed in Section 7.2). While the initial motivation was to provide support for implementing columnar databases, it
was never used for that purpose. A key lesson we learned was that the naming of features is important and should be
done carefully, as it is hard to change a name once it is in use. Unfortunately, the name “column family” started to cause
confusion even before the feature was completed.

3 Atomic writes can either be part of a transaction or part of a write batch.

4For example, data with time-to-live (TTL) parameters.
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Table 4. Micro-benchmark Measurement of RocksDB Space Efficiency

Dynamic Leveled Compaction LevelDB-style Compaction
Extra Extra
# keys Compacted Steady DB space Compacted Steafiy DB space
size size overhead size size overhead

200,000,000 12.01 GB 13.50 GB 12.4% 12.01 GB 15.09 GB 25.6%
400,000,000 24.03 GB 26.86 GB 11.8% 24.03 GB 26.95 GB 12.2%
600,000,000 36.04 GB 40.45 GB 12.2% 36.36 GB 42.50 GB 16.9%
800,000,000 48.05 GB 54.16 GB 12.7% 48.33 GB 57.86 GB 19.7%
1,000,000,000 60.06 GB 67.52 GB 12.4% 60.28 GB 73.77 GB 22.4%

Data is pre-populated and each write is to a key chosen randomly from the pre-populated key space. RocksDB 5.9
with all default options. Constant 2 MB/s write rate.

100
X
© 10
i
S
o *
T X X
5o 1 X % 2 4
o 2 *
3 X X ¢ L L3
2 o1 32 *
X Tiered compaction @ Leveled compaction
0.01
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Write Amplification

Fig. 2. Survey of write amplification and write rates across 42 randomly sampled ZippyDB and MyRocks
applications. Note the logarithmic scale of the y-axis.

3 EVOLUTION OF RESOURCE OPTIMIZATION TARGETS

In this section, we describe how our resource optimization target evolved over time: from write
amplification to space amplification to CPU utilization.

3.1 Write Amplification

When we started developing RocksDB, we initially focused on saving flash erase cycles and thus
write amplification, following the general view of the community at the time (e.g., Reference [54]).
This was rightly an important target for many applications, in particular for those with write-
heavy workloads where it continues to be an issue; see Table 1.

Write amplification emerges at two levels. SSDs themselves introduce write amplification: by our
observations between 1.1 and 3. Storage and database software also generate write amplification;
this can sometimes be as high as 100 (e.g., when an entire 4KB/8KB/16KB page is written out for
changes of less than 100 bytes).

Leveled Compaction in RocksDB usually exhibits write amplification between 10 and 30, which
is several times better than when using B-trees in many cases. For example, when running
LinkBench on MySQL, RocksDB issues only 5% as many writes per transaction as InnoDB, a B-tree
based storage engine [61]. Still, write amplification in the 10-30 range is too high for write-heavy
applications. For this reason, we added Tiered Compaction, which brings write amplification down
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to the 4-10 range although with lower read performance; see Table 3. Figure 2 depicts RocksDB’s
write amplification under different data ingestion rates as measured on applications running in
production. RocksDB application owners often pick a compaction method to reduce write ampli-
fication when the write rate is high and compact more aggressively when the write rate is low to
achieve space efficiency and better read performance.

3.2 Space Amplification

After several years of development, we observed that for most applications, space utilization was
far more important than write amplification, given that neither flash write cycles nor write over-
head were usually constraining. In fact, the number of IOPS utilized in practice was low compared
to what the SSD could provide (yet still high enough to make HDDs unattractive, even when ig-
noring maintenance overhead). As a result, we shifted our resource optimization target to disk
space.

Fortunately, LSM-trees also work well when optimizing for disk space due to their non-
fragmented data layout. However, we saw an opportunity to improve Leveled Compaction by re-
ducing the amount of dead data (i.e., deleted and overwritten data) in the LSM-tree. We developed
Dynamic Leveled Compaction, where the size of each level in the tree is automatically adjusted
based on the size of the oldest (last) level, instead of setting the size of each level statically [19].
The size of the newer levels relative to the size of the oldest level can be a good indication of the
magnitude of dead data in the LSM-tree. Hence, capping the ratio between the sizes of the newer
levels and the oldest level tends to limit space overhead, something LevelDB-style leveled com-
paction fails to accomplish. For this reason, Dynamic Leveled Compaction achieves better overall
and more stable space efficiency than Leveled Compaction. With the improved approach, we man-
aged to reduce the space footprint of UDB, one of Facebook’s databases, to 50% when we replaced
InnoDB, a B+Tree based storage engine [60], with RocksDB. Table 4 shows space efficiency mea-
sured in a random write benchmark: Dynamic Leveled Compaction limits space overhead to 13%,
while Leveled Compaction can add more than 25%. In the worst case, space overhead under Leveled
Compaction can be as high as 90%, while it is stable for dynamic leveling.

3.3 CPU Utilization

An issue of concern sometimes raised is that SSDs have become so fast that software is no longer
able to take advantage of their full potential. That is, with SSDs, the bottleneck has shifted from
the storage device to the CPU, so fundamental improvements to the software are necessary. We do
not share this concern based on our experience, and we do not expect it to become an issue with
future NAND flash-based SSDs. This is for two reasons. First, only a few applications are limited
by the IOPS provided by the SSDs; as we discuss below, most applications are limited by space.

Second, we find that any server with a high-end CPU has more than enough compute power to
saturate one high-end SSD. RocksDB has never had an issue making full use of SSD performance in
our environment. Of course, it is possible to configure a system that results in the CPU becoming a
bottleneck; e.g., a system with one CPU and multiple SSDs. However, effective systems are typically
those configured to be well-balanced, which today’s technology allows. We also note that intensive
write-dominated workloads may indeed cause the CPU to become a bottleneck. However, for some,
this can be mitigated by configuring RocksDB to use a more lightweight compression option. For
the other cases, the workload may simply not be suitable for SSDs, since it would exceed the typical
flash endurance budget that allows the SSD to last 2-5 years.

To confirm our view, we surveyed 42 different deployments of ZippyDB [92] and MyRocks [61]
in production, each serving a different application. Figure 3 shows the result. Most of the workloads
are space-constrained. Some are indeed CPU-heavy, but hosts are generally configured to not be
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Fig. 3. Resource utilization across four metrics. Each line represents a different deployment with a different
workload. Measurements were taken over the course of one month. All numbers are the average across
all hosts in the deployment. CPU and read bandwidth are for the highest hour during the month. Flash
endurance and space utilization are average across the entire month.

fully utilized to leave headroom for growth and for handling data center or region-level failures.
Most of these deployments include hundreds of hosts, so averages give an idea of the resource
needs for these use cases, considering that workloads can be freely (re-)balanced among those
hosts (Section 4).

Nevertheless, reducing CPU overheads has become an important optimization target, given that
the low-hanging fruit of reducing space amplification has been harvested. Reducing CPU over-
heads improves the performance of the few applications where the CPU is indeed constraining.
More importantly, optimizations that reduce CPU overheads allow for hardware configurations
that are more cost-effective—until several years ago, the price of CPUs and memory was reason-
ably low relative to SSDs, but CPU and memory prices have increased substantially, so decreas-
ing CPU overhead and memory usage has increased in importance. Early efforts to lower CPU
overhead included the introduction of prefix bloom filters, applying the bloom filter before index
lookups, and other bloom filter improvements. There remains room for further improvement.

3.4 Adapting to Newer Technologies

New architectural improvements related to SSDs could easily disrupt RocksDB’s relevancy. For ex-
ample, open-channel SSDs [79, 95], multi-stream SSDs [99], and ZNS [6] promise to improve query
latency and save flash erase cycles. However, these new technologies would benefit only a small mi-
nority of the applications using RocksDB, given that most applications are space-constrained, not
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erase cycle, or latency constrained. Further, having RocksDB accommodate these technologies di-
rectly would challenge the unified RocksDB experience. One possible path worth exploring would
be to delegate the accommodation of these technologies to the underlying file system, perhaps
with RocksDB providing additional hints.

In-storage computing might potentially offer significant gains, but it is unclear how many
RocksDB applications would actually benefit from this technology. We suspect it would be chal-
lenging for RocksDB to adapt to in-storage computing, as it would likely require API changes to
the entire software stack to fully exploit. We look forward to future research on how best to do
this.

Disaggregated (remote) storage appears to be a much more interesting optimization target and
is a current priority. So far, our optimizations have assumed the SSDs are locally attached, as
our system infrastructure is primarily configured this way. However, faster networks currently
allow many more I/Os to be served remotely, so the performance of running RocksDB with remote
storage has become viable for an increasing number of applications. With remote storage, it is
easier to make full use of both CPU and SSD resources at the same time, because they can be
separately provisioned on demand (something much more difficult to achieve with locally attached
SSDs). As a result, optimizing RocksDB for remote flash storage has become a priority. We are
currently addressing the challenge of long I/O latency by trying to consolidate and parallelize
I/Os. We have adapted RocksDB to handle transient failures, pass QoS requirements to underlying
systems, and report profiling information. However, more work is needed.

Byte-addressable, non-volatile memory (NVM) [12], such as Intel’s Optane DC [47], is a
promising technology being commercialized. We are investigating how best to take advantage
of of this technology. Several possibilities worth considering are:

(1) use NVM as an extension of DRAM—this raises the questions of (i) how best to implement
key data structures (e.g., block cache or MemTable) with a combination of DRAM and NVM,
and (ii) what overheads are introduced when trying to exploit the offered persistency;

(2) use NVM as the main storage of the database—however, we note that RocksDB tends to be
bottlenecked by space or CPU, rather than I/O; and

(3) use NVM for the WALs—it is questionable whether this use case alone justifies the costs of
NVM, considering that we only need a small staging area before it is moved to SSD.

3.5 Appropriateness of LSM-trees Revisited

We continuously revisit the question of whether LSM-trees remain appropriate, but repeatedly
come to the conclusion that they do. The price of SSDs has not dropped enough to change the
space and flash endurance bottlenecks for most use cases. While our main conclusion remains
the same, we continue to hear requests to further reduce write amplification to below that which
RocksDB can provide. We noted that some of the high write rate use cases have many large objects.
If we separate large objects and store them separately, then they can be compacted less frequently
so we can write less to SSDs. It is not uncommon for databases to store large objects separately for
different reasons, including recent systems WiscKey [56] and ForrestDB [3]. We are also adding
similar support with a new feature (called BlobDB [93]).

4 LESSONS ON SERVING LARGE-SCALE SYSTEMS

RocksDB is a building block for a wide variety of large-scale distributed systems with disparate
requirements. Over time, we learned that improvements were needed with respect to resource
management, support for replication and backups, WAL treatment, and data format compatibility.
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Fig. 4. Typical database service using RocksDB.

4.1 Resource Management

Large-scale distributed data services typically partition the data into shards that are distributed
across multiple server nodes for storage. For example, Figure 4 shows how a database service
might be using RocksDB. The size of shards is limited, because a shard is the unit for both load
balancing and replication, so shards in a consistent state need to be copied between nodes. As a
result, each server node will typically host tens or hundreds of shards. In our context, a separate
RocksDB instance is used to service each shard, which means that a storage host will have many
RocksDB instances running on it. These instances can either all run in one single address space or
each in its own address space.

The fact that a host may run many RocksDB instances has resource management implications.
Resources that need to be managed include: (1) the memory for write buffer, MemTables, and block
cache, (2) compaction I/O bandwidth, (3) compaction threads, (4) total disk usage, and (5) file dele-
tion rate (described below). Some of these resources need to be managed on a per-I/O device basis.
Given that multiple instances share the host’s resources, the resources need to be managed both
globally (per host) and locally (per instance) to ensure they are used fairly and efficiently. RocksDB
allows applications to create one or more resource controllers (implemented as C++ objects passed
to different DB objects) for each type of resource mentioned above and also do so on a per instance
basis [28, 29, 31]. For example, a C++ object implementing a compaction rate limiter that, say, lim-
its the total compaction rate to 100 MB/s can be passed to multiple instances, so in aggregate the
compaction rate will not exceed this rate. Finally, we learned it is important to support prioritiza-
tion among RocksDB instances to make sure a resource is prioritized for the instances that need
it most.

Another lesson we learned when running multiple instances in one process: Threads doing sim-
ilar type of work (e.g., background flushes) should be in a pool that is shared across all similar
instances (e.g., shards of a database) on a host. A shared host-wide pool limits the number of CPU
cores that can be simultaneously saturated to the size of the thread pool. Since RocksDB back-
ground threads involve I/O intensive work, capping the number of those threads also limits I/O.
Unpooled or private, per instance thread pools would not be able to limit parallelism across in-
stances, and CPU and I/O spikes can occur when demand for background work is simultaneously
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high across many instances. However, with a shared pool, instances not lucky enough to be allo-
cated a thread from the pool will need to enter their work into a queue. In extreme cases, delaying
background work for a long period of time can cause the LSM-tree to become bloated with an
attendant increase in read- and space-amplification, or can cause the configuration limits set to
protect those amplification factors to be breached, possibly causing foreground write stalls.
Global (per host) resource management is more challenging when the RocksDB instances run in
separate processes, given that the processes execute independently and do not naturally share in-
formation. Two strategies can be applied. First, each instance could be configured to use resources
conservatively, as opposed to greedily. For example, with compaction, each instance would initiate
fewer compactions than “normal” and ramp up only when compactions are behind. The downside
of this strategy is that the global resources may not be fully exploited, leading to sub-optimal re-
source usage. The second, more challenging, strategy is for the instances to share resource usage
information among themselves and to adapt accordingly in an attempt to optimize resource usage
more globally. More work will be needed to improve host-wide resource management in RocksDB.

4.2 Support for Replication and Backups

RocksDB is a single node library. The applications that use RocksDB are responsible for replication
and backups if needed. Each application implements these functions in its own way (for legitimate
reasons), so it is important that RocksDB offers appropriate support for these functions.

4.2.1 Replication. Bootstrapping a new replica by copying all the data from an existing one can
be done in two ways. First, all the keys can be read from a source replica and then written to the
destination replica. We call this logical copying. On the source side, snapshots ensure a consistent
view of the source data. Further, RocksDB supports data scanning operations by offering the ability
to minimize the impact on concurrent online queries; e.g., by providing the option to not cache the
result of these operations and thus prevent cache trashing. On the destination side, bulk loading
is supported and also optimized for this scenario.

Second, bootstrapping a new replica can be done by copying SSTables and other files directly.
We call this physical copying. RocksDB assists physical copying by identifying existing database
files at a current point in time and preventing them from being mutated or deleted while the
copy is ongoing. Supporting physical copying is an important reason RocksDB stores data on an
underlying file system, as it allows each application to use its own tools. We believe the potential
performance gains of RocksDB directly using a block device interface or heavily integrating with
the SSD Flash Translation Layer (FTL) does not outweigh the aforementioned benefit.

4.2.2  Backups. Backup is an important feature for most databases and other applications. For
backups, applications have the same logical vs. physical choice as with replication. One differ-
ence between backups and replication is that applications often need to manage multiple backups.
While most applications implement their own backups (to accommodate their own requirements),
RocksDB provides a backup engine for applications to use if their backup requirements are simple.
This feature helps users bootstrap functionality that is important, but easily over-looked.

4.2.3 Challenges on Updating Replicas. With replicas, updates need to be applied to each replica
in a consistent order. A straightforward solution is to issue the writes to each replica sequentially,
but this has negative performance implications, as the application will not be able to issue the
writes concurrently from multiple threads. Further, when a replica falls behind in its updates, one
needs a mechanism for it to catch up faster.

While various solutions have been used by different applications to address these issues, they
all have limitations [33]. The challenge is that applications could increase write throughput by
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issuing writes slightly out of order, but then they will not be able to serve reads from a consistent
state. One possible solution is for users to do snapshot reads with their own sequence numbers if
RocksDB supports multi-versioning with user defined timestamps, as described in Section 7.

4.3 WAL Treatment

Traditional databases tend to force a write-ahead-log (WAL) write upon every write operation
to ensure durability. In contrast, large-scale distributed storage systems typically replicate data for
performance and availability, and they do so with various consistency guarantees. For example, if
copies of the same data exist in multiple replicas, and one replica becomes corrupted or inaccessible,
then the storage system uses valid replica(s) from other unaffected hosts to rebuild the replica
of the failed host. For such systems, RocksDB WAL writes are less critical. Further, distributed
systems often have their own replication logs (e.g., Paxos logs), in which case RocksDB WALSs are
not needed at all.

We learned it is helpful to provide options for tuning WAL sync behavior to meet the needs of
different applications [32]. Specifically, we introduced differentiated WAL operating modes: (i) syn-
chronous WAL writes, (ii) buffered WAL writes, and (iii) no WAL writes at all. For buffered WAL
treatment, the WAL is periodically written out to disk in the background at low priority so as not
to impact RocksDB’s traffic latencies.

4.4 Data Format Compatibility

Large-scale distributed applications run their services on many hosts, and they expect zero down-
time. As a result, software upgrades are incrementally rolled out across the hosts, and when issues
arise, the updates are rolled back. In light of continuous deployment [84], these software upgrades
occur frequently; for example, RocksDB issues a new release once a month. For this reason, it is
important that the data on disk remain both backward- and forward-compatible across the differ-
ent software versions. A newly upgraded (or rolled back) RocksDB instance must be able to make
sense of the data stored on disk by the previous instance. Further, RocksDB data files may need to
be copied between distributed instances for replica building or load balancing, and these instances
may be running different versions. A lack of a forward compatibility guarantee caused operational
difficulties in some RocksDB deployments, which led us to add this guarantee.

RocksDB goes to great lengths to ensure data remains both forward- and backward-compatible
(except for new features). This is challenging both technically and process-wise, but we have found
that the effort pays off. For backwards compatibility, RocksDB must be able to understand all for-
mats previously written to disk, which adds considerable software and maintenance complexities.
For forward compatibility, future data formats need to be understood, and we aim to maintain for-
ward compatibility for at least one year. This can be achieved, in part, by using generic techniques,
such as those used by Protocol Buffer [43] or Thrift [90]. For configuration file entries, RocksDB
needs to be able to identify new, unknown configuration entries and use best-effort guesses on
how to apply the entries or when to disregard the entries. We continuously test different versions
of RocksDB with different versions of its data.

5 LESSONS ON FAILURE HANDLING

Through production experience, we have learned three major lessons with respect to failure han-
dling. First, data corruption needs to be detected early to minimize the risk of data unavailability
or data loss, and in doing so to pinpoint where the error originated. The longer corrupted data
is left in place, the higher the risk the remaining replicas will have a simultaneous outage, which
would result in data unavailability; and the higher the risk the same data in the remaining replicas
is also corrupted, which could result in permanent data loss. RocksDB achieves early detection by

ACM Transactions on Storage, Vol. 17, No. 4, Article 26. Publication date: October 2021.



26:14 S. Dong et al.

Client
[Write] [Read]
Pass in K/V Check block and
Checksums KV Checksums
Memtables | [Memtable SSTable

Flush] 1
Per K/V
Check K/V | Block
checksums checksums
checksums "
! .
[Compaction] ! Underlying
check block and\ Storage
K/V cksums "
1

DB Metadata PEN SSTable

File FS Handoff
checksums Checksums Block
checksums

X

[Backup/Restore]
Check file checksum,

[Replica File Copy]
Check file checksums

Backup

Storage Another Replica
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checksumming data at multiple layers and verifying those checksums as the data traverses through
the system.

Second, integrity protection must cover the entire system to prevent silent hardware data cor-
ruptions [18, 45] from being exposed to RocksDB clients or spreading to other replicas (see Fig-
ure 5). Detecting corruptions only when the data is at rest, or when data is sent over the wire,
is insufficient, because corruptions can be introduced by faulty software, a faulty CPU, or other
faulty hardware components. While infrastructure services continuously scan all hosts in a fleet
to remove those with faulty hardware, some hardware flaws may not be detected by the scan.

Third, errors need to be treated in a differentiated manner. Initially, we treated all non-EINTR
filesystem errors the same. If an error was encountered in the read path, then we simply prop-
agated the error to the client that issued the request. If an error was encountered in the write
path, then we treated it as unrecoverable and permanently froze all writes; to resume writing, the
RocksDB instance had to be restarted, with attendant operational overheads. To minimize such oc-
currences, we began classifying errors by severity and only interrupt operations for errors deemed
unrecoverable.

5.1 Frequency of Silent Corruptions

An interesting question is how frequent silent data corruptions occur in practice within RocksDB.
This is not straightforward to assess. Storage devices that do not offer end-to-end data protection
(e.g., DIF/DIX®) support are typically used, primarily for cost reasons. Instead, applications rely
on RocksDB block checksums to detect storage media corruptions. While applications that use
RocksDB often run data consistency checks that compare replicas for integrity, the errors they
catch could have been introduced either by RocksDB or by the client application (e.g., when repli-
cating, backing up, or restoring data).

5 DIF: Data Integrity Field (a.k.a. T10 PI) [14]. DIX: Data Integrity Extension.

ACM Transactions on Storage, Vol. 17, No. 4, Article 26. Publication date: October 2021.



RocksDB: Evolution of Development Priorities 26:15

However, one way we can estimate the frequency of corruptions introduced at the RocksDB
level is to compare primary and secondary indexes in the MyRocks database tables that have both;
any inconsistencies would have been introduced at the RocksDB level and would include those
caused by CPU or memory corruption. Based on our measurements, corruptions are introduced
at the RocksDB level roughly once every three months for each 100 PB of data. Worse, in 40% of
those cases, the corruption had already propagated to other replicas.

Data corruptions also occur when transferring data, often because of software bugs. For example,
a bug in the underlying storage system when handling network failures caused us to see, over a
period of time, roughly 17 checksum mismatches for every petabyte of physical data transferred.

5.2 Multi-layer Protection

Data corruptions need to be detected as early as possible, before they are further propagated, to
minimize downtime and data loss. Most RocksDB applications have their data replicated on mul-
tiple hosts and, often, they run consistency checks by comparing the checksums of the replicas.
When a checksum mismatch is detected, the corrupt replica is discarded and replaced with a correct
one. However, this is a viable option only as long as a correct replica still exists and is accessible.

Today, RocksDB checksums file data at multiple levels to identify corruptions that may have
occurred in the layers beneath it. The different checksums (as well as the planned application
layer checksum) are shown in Figure 5. Having multiple levels of checksums is important, as it
helps detect corruptions early and protects against different types of threats.

5.2.1 Block Integrity. Block checksums, inherited from LevelDB, prevent data corrupted at or
below the file system from being exposed to the client. Specifically, each SSTable block or WAL
fragment has a checksum attached to it, generated when the data is created. Unlike the file check-
sum that is verified only when the file is moved, this checksum is verified every time the block is
read, either to serve a request from the application or for compactions, due to its smaller scope.

5.2.2 SSTable Integrity. SSTable file checksums, added in 2020, protect against corruption
caused by the underlying storage system from being propagated to other replicas and against cor-
ruption caused during the process of transferring SSTable files over the wire. Thus, each SSTable
is protected by its own checksum, generated when the table is created. An SSTable’s checksum is
recorded in the metadata’s SSTable file entry and is validated with the SSTable file wherever it is
transferred.® However, we note that other files, such as WAL files, are still not protected this way.

5.2.3 Handoff Integrity. An established technique for detecting write corruptions early is to
generate a handoff checksum on the data to be written to the underlying file system and pass it
down along with the data, where it is verified by the lower layers [77, 101]. We wish to protect WAL
writes using such a write API, since, unlike SSTables, WALs benefit from incremental validation on
each append. Unfortunately, local file systems rarely support this.” However, when using remote
storage, the write API can be changed to accept a separate checksum, hooking into the storage
service’s internal ECC. RocksDB can then use checksum combining techniques on the existing
WAL fragment checksums to efficiently compute a write handoff checksum. Since our storage
service performs write-time verification, we expect it to be extremely rare that corruptions will
not be detected until they are read.

¢ These corruptions would eventually be detected when the corrupted blocks are read to serve client queries or for com-
paction. However, this might be too late, as a copy of the uncorrupted data may then no longer be available.
7Some specialized stacks, such as Oracle ASM [78], do support this.
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5.3 End-to-end Protection with Key-value Integrity Protection

While the layers of protection described above prevent clients from being exposed to corrupt
data in many cases, they are not comprehensive. One deficiency of the protections mentioned so
far is that data is unprotected above the file I/O layer; e.g., data in the MemTable and the block
cache. Data corrupted at this level will be undetectable and thus will eventually be exposed to
the application. Further, flush or compaction operations can persist corrupted data, making the
corruption permanent.

To address this problem, we are currently implementing per-KV checksums to detect corrup-
tions that occur above the file I/O layer. This checksum will be transferred along with the KV pair
wherever it is copied, although we will elide it from file data where alternative integrity protection
already exists.

5.4 Severity-based Error Handling

Most of the faults RocksDB encounters are errors returned by the underlying storage system. These
errors can stem from a multitude of issues, from severe problems like a read-only file system,
to transient problems such as a full disk or a network error accessing remote storage. Early on,
RocksDB reacted to such issues either by simply returning error messages to the client in the case
of reads or by permanently halting all write operations.

Today, we aim to interrupt RocksDB operations only if the error is not locally recoverable; e.g.,
transient network errors should not require user intervention to restart the RocksDB instance.
To implement this, we improved RocksDB to periodically retry operations after encountering an
error classified as transient. By doing so, we obtain operational benefits, as clients do not need to
manually mitigate RocksDB for a significant portion of faults that occur.

6 LESSONS FROM CONFIGURATION MANAGEMENT AND CUSTOMIZABILITY

RocksDB is highly configurable so applications can optimize for their workload. However, we
have found configuration management to be a challenge (Section 6.1). At the same time, we have
found customizability through call-back functions to be surprisingly powerful (Section 6.2). In
Section 6.3 and Section 6.4, we highlight some of the configuration complexities associated with
KV-pair deletions and memory management.

6.1 Managing Configurations

Initially, RocksDB inherited LevelDB’s method of configuring parameters where the parameter
options were directly embedded in the code. This caused two problems. First, parameter options
were often tied to the data stored on disk, causing potential compatibility issues when data files
created using one option could not be opened by a RocksDB instance newly configured with an-
other option. Second, configuration options not explicitly specified in the code were automatically
set to RocksDB’s default values. When a RocksDB software update included changes to the default
configuration parameters (e.g., to increase memory usage or compaction parallelism), applications
would sometimes experience unexpected consequences.

To address these issues, RocksDB first introduced the ability for a RocksDB instance to open a
database with a string parameter containing the specified configuration options. Later, RocksDB
introduced support for optionally storing an options file along with the database. We also intro-
duced two tools: (i) a validation tool that validates whether the options for opening a database
was compatible with the target database; and (ii) a migration tool that rewrites a database to be
compatible with the desired options (although this tool is limited).
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Table 5. The Number of Distinct Configurations Used across 39 ZippyDB Deployments

Config Area: Compaction I/O Compression SSTable file Plug-in functions
Configurations: 14 4 2 7 6

A more serious problem with RocksDB configuration management is the large number of config-
uration options. In the early years of RocksDB, we consciously made the design choice of support-
ing many configuration options, and over time, we introduced many new “knobs” and introduced
support for pluggable components, all with the goal of allowing applications to realize their per-
formance potential. This proved to be a successful strategy for gaining traction early on. However,
a common complaint now is that there are far too many options and that it is too difficult to
understand their effects; i.e., it has become very difficult to specify an “optimal” configuration.

More daunting beyond having many configuration parameters to tune is the fact that the opti-
mal configuration depends not just on the application that has RocksDB embedded, but also on the
workload generated by the clients of that application. Consider, for example, ZippyDB, an in-house
developed, large-scale distributed key-value store with RocksDB embedded [92]. ZippyDB serves
numerous different applications, sometimes individually, sometimes in a multi-tenant setup. Al-
though significant efforts go into using uniform configurations across all ZippyDB use cases wher-
ever possible, the ZippyDB workloads are so different for the different use cases, a uniform config-
uration is not practically feasible when performance is important. Table 5 shows that across the
39 ZippyDB deployments we sampled, over 25 distinct RocksDB configurations were being used.

Tuning configuration parameters is particularly challenging for applications with RocksDB em-
bedded that are shipped to third parties. Consider a third party using a database such as MySQL
or ZippyDB for one of their applications. The third party will typically know very little about
RocksDB and how it is best tuned. And the database owners have little appetite for tuning the
systems of their clients.

These real-world lessons triggered changes in our configuration support strategy. We have spent
considerable effort on improving out-of-box performance and simplifying configurations. Our cur-
rent focus is on providing automatic adaptivity, while continuing to support extensive explicit con-
figuration given that RocksDB continues to serve specialized applications. We note that pursuing
adaptivity while retaining explicit configurability creates significant code maintenance overhead,
but we believe the benefits of having a consolidated storage engine outweighs the code complexity.

6.2 The Power of Call-back Functions

LSM-trees require data to be compacted periodically, where RocksDB re-writes the data to older
levels. We believed it would be beneficial to have the application participate in the compaction
process to allow them to add extra functionality that otherwise would require extra read and write
operations. We added support for two call-back functions, referred to as compaction filter [24] and
merge operator [25], that are defined by the application. Both are widely used today.

6.2.1 Compaction Filter. A compaction filter is a call-back function that is called during com-
paction by RocksDB for each KV-pair being processed. The application can then decide whether
to (i) discard (remove) the KV-pair, (ii) modify the value, or (iii) leave the KV-pair as is.

This feature became popular almost immediately after it was released, and over time, it was
being used in more and more ways. For example, it was used to implement time-to-live (TTL)
functionality, where the expiration time was encoded within each KV pair, allowing the filter to
remove the expired data during compaction. Or it was used to implement garbage collection as
part of a multi-version concurrency control (MVCC) solution. Compaction filters were also
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used to modify data, say, to migrate old data to a new format or to alter data based on time. Finally,
compaction filters were sometimes used simply to collect statistics.

Compaction filters also turned out to be beneficial for certain administrative tasks that required
all data to be scanned. While users can scan the entire dataset, and possibly delete or modify some
of the data using delete() or put() operations, using compaction filters leads to a more efficient
solution with significantly fewer I/O operations. Using compaction filters is also more convenient
for many users in that they no longer have to manage periodic tasks and be concerned about write
spikes that can be an operational challenge.

Using compaction filters has some serious limitations, however. For example, improperly using
compaction filters can break some basic data consistency guarantees, and snapshot reads may no
longer be repeatable (if the data is modified between reads). Hence, compaction filters are easier to
use when consistency is not required. We consider the question of how to implement compaction
filters more safely an open problem. Another limitation of compaction filters is that they do not
allow multiple KV pairs to be atomically dropped or modified; e.g., it is not possible to atomically
drop a KV-pair and the corresponding data in a secondary index. Despite these limitations, com-
paction filters are widely used, which in our view demonstrates that even imperfect solutions can
go a long way if the application can find appropriate workarounds.

6.2.2 Merge Operator. RocksDB natively supports three types of operations to update the
stored data: put(), delete(), and merge(). Each such operation results in the writing of a corre-
sponding record to the MemTable and then SSTables. The merge operation allows the application
to update the value of an existing key without first having to read the KV pair and without hav-
ing to write out the entire KV-pair. On subsequent read or compaction operations, the contents
of a merge record is “merged” with the contents of previous put or merge records of the same
key. When a read operation or a compaction process encounters a merge record and a previous
put record, or multiple merge records, RocksDB invokes an application-specified call-back merge
operator, which can be used to combine them into a single one, which can be a put record or a
merge record.

A powerful use case of the merge operator is the implementation of read-modify-write oper-
ations, say, to implement a counter or to update an individual field within a complex document.
Using the merge operator leads to far lower overheads compared to implementing it with sepa-
rate reads and writes of entire KV pairs. However, it negatively affects read performance in that
the search for a KV pair does not necessarily end when the first entry is found, and in the worst
case, the search must traverse all levels or until a Put record is found for the key. (More frequent
compactions mitigates this downside.)

As with the compaction filter, we learned that many applications are willing to adopt a feature
such as the merge operator, even with disadvantages; in particular, they accept the disadvantages
to be able to benefit from reducing the amount of write I/O.

6.3 Optimizing Deletions

Deletion is often an overlooked operation on LSM-trees. Since there is no way to directly remove
key-value pairs, deletion is achieved by adding a special marker to the LSM-tree, called a Tombstone,
to indicate that a key has been deleted. This makes deletes fast, but can make subsequent queries
slower. We note that a tombstone for a given key cannot be removed from an SSTable during
compaction unless it is certain that the key is not present in any SSTable at one of the older levels.?

8In our current implementation, a tombstone is removed only when it reaches the oldest level or when the key ranges
maintained in the metadata of each SSTable indicate that the key is not present in any older level.
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6.3.1 Range Scans over a Large Range of Tombstones. Applications often delete a large range
of consecutive or nearby keys. If that is the case, then scans that require iterating over a key
range may encounter many tombstones that have to be skipped over, negatively impacting query
latencies and wasting CPU and I/O resources. For example, if keys are full path names of files in
a file system, then deleting a directory will result in a (potentially) large sequence of keys that
have been deleted. As another example, consider the implementation of a queue, where entries are
deleted after they have been dequeued. The head of the queue will then naturally follow a large
number of deleted keys. Iterating over these deleted entries can cause significant overhead but
does not contribute to the query result. In the extreme, we have observed queries having to iterate
over millions of tombstones, just to return a few KV-pairs.

One way to address this issue is to initiate compactions when there are many consecutive tomb-
stones. We first added a feature whereby the likelihood of compaction is increased whenever
the ratio of the number of tombstones to the number of total entries crosses the 50% threshold,
and the likelihood is further increased as the ratio increases. This helps in some cases, but not
when the ratio does not cross the 50% threshold, yet many tombstones happen to be adjacent to
each other. Hence, we added another feature that allowed the application to tag an SSTable for com-
paction after it has been generated. Specifically, when generating an SSTable during compaction,
each entry is fed to a plug-in, and when the SSTable file is complete, the plug-in is queried to
determine whether the file should be further compacted, in this case to further push tombstones
to older levels and ultimately be removed when they reach the oldest level. RocksDB can also re-
port the number of tombstones scanned on a query, allowing the application to issue an explicit
compaction request. Finally, we added a feature whereby scan operations cease iterating over the
keys once a set number of tombstones have been encountered. The result of the scan will then be
incomplete, which informs the application of a tombstone-heavy range it may wish to compact,
and yields control to the application to decide whether to continue the scan or give up.

These features can mitigate the problem for many applications, at least to some degree. But
they also have serious limitations. For one, compactions take time, and scans will continue to
perform poorly while compaction is ongoing. Further, with a higher frequency of compactions,
write amplification may increase substantially, which some applications may not be able to tolerate.
One idea we have been exploring is to support range deletes. Then, when iterating over a deleted
range, all keys in the range can be skipped over by seeking to the end of the range. However,
finding an efficient implementation has been more challenging than we expected. To work well, it
needs to scale to frequent range deletes. It also needs to be compatible with multi-versioning, so
when two ranges overlap, they cannot simply be merged. Further work is still needed to achieve
the performance we desire. For us, it is perhaps one of the more challenging issues RocksDB faces
today, and we are seeking ideas for a better solution.

6.3.2 Reclaiming Disk Space. Typically, when data gets deleted, applications expect that the
data will ultimately no longer consume disk space. But this can take time, namely, until the tomb-
stone reaches the oldest level. This is a problem given that the only way for applications to reclaim
disk space is by deleting data. Applications may wish to have deleted KV pairs removed from disk
within a limited period of time. Compaction based on the number of deletes can help to speed
up data removal, but it is often not fast enough. For this reason, we added a feature whereby the
application can specify a time threshold and RocksDB will ensure that any tombstone represent-
ing deleted data will reach the oldest level within that threshold. This feature is implemented by
having the SSTable maintain (in its metadata) the earliest (i.e., oldest) time an entry in the SSTable
was first added to the system, with compactions scheduled accordingly.

ACM Transactions on Storage, Vol. 17, No. 4, Article 26. Publication date: October 2021.



26:20 S. Dong et al.

100% 100%
90% 90%
80% 80%
70% 70%
60% 60%
50% 50%
40% 40%
30% 30%
20% 20%
10% 10%

0% 0%
S0 S0 0 g S0 0 gl (g\o\s\e\\g\e'\(ﬁ\n\rﬁ\eq/s\eq/\o\omb?\e S0 g o slo e g (g\o\bg\e\'\o\o\rﬁ\o\{g\o\b?\o\(g\n\qg\e (\g\e

Overhead
Overhead

Fig. 6. CDF of memory overheads (external fragmentation + metadata) using jemalloc. Left: Samples taken
from 40 ZippyDB clusters, with each data point representing the average of the cluster. Right: Samples taken
from 953 hosts from a single representative ZippyDB cluster.

6.3.3 Rate-limited File Deletions. RocksDB typically interacts with the underlying storage de-
vice via a file system. These file systems are flash-SSD-aware; e.g., XFS, with realtime discard,
may issue a TRIM command [48] to the SSD whenever a file is deleted. TRIM commands are com-
monly believed to improve performance and flash endurance [38], as validated by our production
experience. However, they may also cause performance issues. TRIM is more disruptive than we
originally thought: In addition to updating the address mapping (most often in the SSD’s internal
memory), the SSD firmware also needs to write these changes to FTL’s’ journal in flash, which in
turn may trigger SSD’s internal garbage collection, causing considerable data movement with an
attendant negative impact on foreground I/O latencies. To avoid TRIM activity spikes and associ-
ated increases in I/O latency, we introduced rate limiting for file deletion to prevent multiple files
from being deleted simultaneously (which happens after compactions).

6.4 Managing Memory

RocksDB has to manage a large amount of DRAM. Most of it is used for the SSTable block cache
and for storing the MemTables. While databases tend to manage their own buffer pools, RocksDB
instead relies on a third-party allocator; in particular, jemalloc [21]. This simplifies RocksDB’s
management of the block cache, as it only needs to track the allocations and the associated book-
keeping.

While the block size is configurable in RocksDB, fixed-sized blocks are not actually used, as for
example in the case of the Unix buffer cache. Instead, RocksDB uses variable-sized blocks that are
sized as close to the specified block size as possible. For example, if a key-value pair size exceeds the
specified block size, then a larger block size is chosen to accommodate the pair exactly. Similarly,
if a sequence of KV pairs fit within a block of the specified block size, but the next KV pair to be
included would cause the block size to be larger than the specified size, then this next KV pair
is not included and a smaller block size is used that exactly accommodates the original sequence.
Finally, the top-level index and the bloom filter blocks are not of fixed size. Unlike in-place-update
data structures, like B-trees, there are few benefits to using fixed-sized blocks strictly, so instead
RocksDB delegates the management of variable block sizes to jemalloc.

In our experience, having jemalloc manage memory generally results in reasonable allocation
and deallocation overheads. Memory overheads, including external fragmentation and metadata,
are also reasonable for most applications. Figure 6 shows the cumulative distribution of memory
overheads using jemalloc. The left curve depicts the distribution of average memory overheads for

9FTL: Flash Translation Layer.
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40 ZippyDB application clusters in our operating environment; the memory overheads vary from
between 2% and 25%. Still, external fragmentation can be an issue for some applications. These
applications can, in principle, use a different allocator, or they can tune jemalloc appropriately
(e.g., by following jemalloc’s tuning guide [97]). For instance, one user noted that the source of
a significant amount of fragmentation was in thread-specific memory pools (jemalloc’s “tcache”),
so they tuned related settings, which resulted in a memory saving of 12%. Another user found
that jemalloc became inefficient over time. An investigation revealed this was due to interleaving
allocations of long-term and short-term objects, causing memory usage to slowly grow, similar to
when there is a memory leak. The user was able to address this issue by configuring RocksDB to
allocate blocks in the block cache (which tend to be long-lived) from a separate jemalloc arena.

Nevertheless, RocksDB users often struggle to select effective memory-related configuration pa-
rameters. For example, many applications wish to allocate most of the host’s DRAM to RocksDB,
but find it difficult to appropriately set the amount of memory to use for the block cache and the
MemTables. RocksDB is able to monitor allocated memory and internal fragmentation through
malloc_usable_size() calls, so the memory limit users provide for the block cache and MemTa-
bles include both. However, RocksDB has little visibility to jemalloc’s external fragmentation and
metadata overheads, so users have to guess how much memory to reserve for them. Significant
experimentation is often needed to find the best parameter settings. This is complicated by the
fact that memory overheads may differ significantly across RocksDB instances even when sup-
porting the same application. This is shown in the right graph of Figure 6 for a typical ZippyDB
application. To avoid the fine-tuning of memory parameters for the different instances, users of-
ten just use conservative settings, which can result in suboptimal memory utilization with a good
amount of DRAM not being used effectively. Ideally, memory configuration tuning would be fully
automated.

We believe that the decision to rely on a third-party memory allocator was appropriate at the
time, as it allowed us to focus on other, arguably more important areas to improve RocksDB. How-
ever, the memory manageability issues will likely have to be addressed in the near future to help
users maximize the usage of a specified amount of physical memory without exceeding it.

7 LESSONS ON THE KEY-VALUE INTERFACE

The core key-value (KV) interface is surprisingly versatile with just four key operations: put (),
delete(), get(), and iterators (scans). Almost all storage workloads can be served by a datastore
with a KV APL; we have rarely seen an application not able to implement the needed functionality
using this interface. This is perhaps a reason why KV-stores are so popular. The KV interface is
generic. Both keys and values are variable-length byte arrays. Applications have great flexibility
in determining what information to pack into each key and value, and they can freely choose from
a rich set of encoding schemes. Consequently, it is the application that is responsible for parsing
and interpreting the keys and values. Another benefit of the KV interface is its portability. It is
relatively easy to migrate from one key-value system to another.

However, while many use cases achieve excellent performance with this simple interface, we
have noticed that it can limit performance for some applications. For example, building concur-
rency control outside of RocksDB is possible but hard to make efficient, especially if two-phase-
commit requires some data persistence before committing the transaction. We added transaction
support for this reason, which is used by MyRocks (MySQL+RocksDB) [61]. We continue to add
features; e.g., range locking and large transactions support.

In other cases, the limitation is caused by the key-value interface itself. Accordingly, we have
started to investigate possible extensions to the basic key-value interface. Here, we describe two
possible extensions: support for application-specified timestamps and support for columns.
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7.1 Versions and Timestamps

Over the past few years, we have come to understand the importance of data versioning. We have
concluded that version information should become a first-class citizen in RocksDB to properly
support features, such as multi-version concurrency control (MVCC) and point-in-time reads.
To achieve this, RocksDB needs to be capable of accessing different versions efficiently.

To date, RocksDB has been using 56-bit sequence numbers internally to identify different ver-
sions of KV-pairs. The sequence number is generated by RocksDB and incremented on every client
write (hence, all data is logically arranged in sorted order). The client application cannot affect the
sequence number. However, RocksDB allows the application to take a Snapshot of the DB, after
which RocksDB guarantees that all KV pairs that existed at the time of the snapshot will persist
until the snapshot is explicitly released by the application. As a result, multiple KV-pairs with the
same key may co-exist, differentiated by their sequence numbers.

This approach to versioning is inadequate, as it does not satisfy the requirements of many appli-
cations. To read from a past state, a snapshot must have already been taken at the previous point
in time. RocksDB does not support taking a snapshot of the past, since there is no API to specify
a time-point. Moreover, it is inefficient to support point-in-time reads. Finally, each RocksDB in-
stance assigns its own sequence numbers, and snapshots can be obtained only on a per-instance
basis. This complicates versioning for applications with multiple, (possibly replicated) shards, each
of which is a RocksDB instance. As a result, it is effectively impossible to create versions of data
that offer cross-shard consistent reads.

Applications can work around these limitations by encoding timestamps within the key or
within the value. However, they will experience performance degradations in either case. Encoding
within the key sacrifices performance for point-lookups, while encoding within the value sacrifices
performance for out-of-order writes to the same key and complicates the reading of old versions of
keys. We believe adding support for application-specified timestamps would better address these
limitations, where the application can tag its data with timestamps that can be understood globally,
and do so outside the key or value.

We have added basic support for application-specified timestamps [27] and evaluated this ap-
proach with DB-Bench. The results are shown in Table 6. Each workload has two steps: The first
step populates the database, and in the second step, we measure performance. For example, in
“fill_seq + read_random” we populate the initial database by writing a number of keys in
ascending order and in step 2 perform random read operations. Relative to the baseline where
the application encodes a timestamp as part of the key (transparent to RocksDB), the application-
specified timestamp API can lead to a 1.2X or better throughput gain. The improvements arise from
treating the timestamp as metadata separate from the key, because then point lookups can be used
instead of iterators to get the newest value for a key, and Bloom filters may identify SSTables not
containing that key. Additionally, the timestamp range covered by an SSTable can be stored in its
properties, which can be leveraged during a search to exclude SSTables that would only contain
stale values.

We hope this feature will make it easier for users to implement multi-versioning in their systems
for single node MVCC, distributed transactions, or resolving conflicts in multi-master replication.
The more complicated API, however, is less straightforward to use and perhaps prone to misuse.
Further, the database would consume more disk space than when storing no timestamps and would
be less portable to other systems.

7.2 Column Support

Some RocksDB applications expose data organized into columns, including SQL-based database
implementations (e.g., MyRocks [61], Rocksandra [44], CockroachDB [91], and TiDB [46]). In
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Table 6. DB_bench Micro-benchmark Using the
Timestamp API Sees > 1.2x Throughput Improvement

workload throughput gain
fill_seq + read_random 1.2
fill_seq + read_while_writing 1.9
fill random + read_random 1.9
fill_random + read_while_writing 2.0

principle, data with columns can be naturally stored in RocksDB using the standard key-value
interface; for example, by encoding an entire row within one key-value entry. The resulting per-
formance is often reasonable, perhaps after applying a few straightforward application-level opti-
mizations. However, supporting columns directly allows for significant optimizations for a number
of use cases.

For example, if large objects are stored in some columns and other columns are updated fre-
quently, then the updates incur high overheads, because the entire row has to be written each
time any column element is modified (assuming a row per key-value pair organization). Support-
ing columns directly would allow the data of some columns to be written without having to write
out the entire row. The performance benefits of column support would be even more pronounced
when versioned updates that might arrive out of order are involved. As another example, if a query
only involves a subset of the columns, or if only a subset of columns are being written to blindly,
then reading entire rows can be avoided if columns are supported.

Some applications have attempted to improve performance for cases similar to those described
in these examples. For example, Rocksandra applies partial updates of rows by using the merge op-
erator. This improves update performance but at the cost of read performance. Another approach
is to encode each column of a row as a separate KV pair. The downsides of this approach are that
(i) reading an entire row now becomes a range query with attendant extra overheads, and (ii) delet-
ing or replacing entire rows becomes much more complex and difficult to do using blind writes.

We believe that adding direct support for columns—which requires an extended API—would
enable substantial performance benefits for some important use cases in that:

(1) updates and reads of individual column data can be made much more efficient;

(2) when applications issue a query filtering out values for specific columns, some filtering could
be pushed down with specialized filters at the SSTable level,

(3) some columns can be stored in separate column families (Section 2.2); and

(4) when columns are identified explicitly, data can be compressed more efficiently using tech-
niques similar to those used in columnar databases [1].

Further, having direct support for columns would allow RocksDB to validate data integrity between
primary and secondary indexes.

8 LESSONS FROM FAILED INITIATIVES

While developing RocksDB, we designed and implemented a number of features that in retrospect
turned out to not be as effective as we thought they would. We highlight three of them.

8.1 Support for DRAM-based Storage Media

In 2014, we decided to optimize RocksDB for media with access latencies far lower than those of
SSDs; Ramfs was a primary target. To allow users to realize the potential performance benefits of
using DRAM directly, we made both the SSTable format and the MemTable format pluggable [30],
and we developed Ramfs-friendly plugins. For example, instead of using a standard block-based
SSTable, we introduced Ramfs “plain tables” that could be mmapped. This allowed the tables to
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be accessed using byte addressing without the extra memory copying, block lookups, and block
caching otherwise required when using block-based tables. Further, hash-based indexes could be
used for faster lookup within the SSTable and MemTable.

In a sense, this effort was successful in that some applications did indeed adopt and use these
features. Strategically, however, this effort was introduced too early in retrospect. Large-scale, pure
in-memory persistent storage systems simply never gained as much traction as we had originally
expected. In-memory data applications, such as in-memory caches (e.g., Memcached), search in-
dexes, and machine learning inference systems, generally did not incorporate RocksDB as part of
their solutions, likely because using DRAM directly typically led to far better efficiencies.

8.2 Support for Hybrid Storage Media

SSDs are faster and offer far higher bandwidth than HDDs, but come at a higher cost and have
limited write endurance. Hence, we believed the future would include hybrid SSD/HDD storage so-
lutions that lead to better price-performance tradeoffs for many workloads. As a result, we started
to add experimental features to support hybrid storage media. For example, in 2014, we added sup-
port to allow assigning different data paths to different LSM-tree levels so different levels could re-
side on different storage media. We also experimented with adding support for alternative caching
solutions, such as Flashcache [63], and a new proprietary persistent cache that we integrated into
the RocksDB core logic so it could evolve faster.

While these features were just early initial steps, we had hoped users would start using them
and we could evolve the features from there. In reality, few users expressed interest. At the time,
the hybrid solution required mounting both SSD and HDD media on a host to work well, but we
found this type of configuration to be rare in practice. We concluded that hybrid storage solutions
were more likely to be of interest with the advent of remote storage, something we had only started
to work on in 2018. We have recently revived the hybrid storage media project to support hybrid
local/remote storage, but believe more sophisticated approaches are necessary. For example, we
noticed that in some applications hot and cold data might be collocated within a data block, so we
need to separate them in compaction. Another lesson is that some extra information associated
with KV pairs, such as the age of the data, can be useful to predict data coldness.

8.3 Richer, Higher-level Interfaces

RocksDB primarily supports the traditional key-value interface. Over the years, we made several
attempts to extend this interface to make RocksDB more convenient to use for some applications.
For example, we added an interface to support functionality similar to Redis lists in 2013; two
spatial interfaces, namely, GeoDB and SpatialDB, in 2014; and support for documents in 2015. All
of these interfaces were implemented in a layer on top of the core key-value interface.

However, none of these interfaces were adopted in a significant way, and they were ultimately
deprecated and removed. We concluded—after the fact—that investments in improving core func-
tionality creates far more value. Most RocksDB users were satisfied with the simple KV interface
and were able to easily build their own high-level interfaces on top of that without needing ex-
plicit support from RocksDB. Their primary pain points were in fact efficiency and manageability,
which led us to conclude that we needed to focus our investments in those areas. In particular,
we learned that the core KV interface should be extended only if it helped improve performance
dramatically, such as the two initiatives described in the previous section.

9 RELATED WORK

This article is an extended version of a paper presented at the 19th Usenix Conference on File and
Storage Technologies [20]. New material in this article includes descriptions of RocksDB column

ACM Transactions on Storage, Vol. 17, No. 4, Article 26. Publication date: October 2021.



RocksDB: Evolution of Development Priorities 26:25

families; RocksDB callback functions such as compaction filters and merge operators; optimizing
deletions in RocksDB; memory management in RocksDB; column support in RocksDB; and de-
scriptions of lessons from failed initiatives.

Overall, our work on RocksDB has benefited from a broad range of research in a number of
areas, including the following:

Storage engine libraries. Many storage engines have been built as a library to be embedded
in applications. RocksDB’s KV interface is more primitive than, for example, BerkeleyDB[71],
SQLite[75], and Hekaton[17]. Further, RocksDB differs from these systems by focusing on the
performance of modern server workloads, which require high throughput and low latency and
typically run on high-end SSDs and multicore CPUs. This differs from systems with more general
targets, or built for faster storage media [17, 50].

Key-value stores for SSDs. Over the years, much effort has gone into optimizing key-value stores,
especially for SSDs. As early as 2011, SILT [54] proposed a key-value store that balanced be-
tween memory efficiency, CPU, and performance. ForestDB [45] uses HB+ trees to index on top of
logs. TokuDB [52] and other databases use FractalTree/Be trees. LOCS [96], NoFTL-KV [95], and
FlashKV [100] target Open-Channel SSDs for improved performance. While RocksDB benefited
from these efforts, our position and strategy for improving performance is different, and we con-
tinue to depend on LSM-trees. Several studies have compared the performance of RocksDB with
other databases, such as InnoDB [66], TokuDB [19, 61], and WiredTiger [8].

LSM-tree improvements. Several systems also use LSM-trees and improved their performance.
Write amplifications is often the primary optimization goal; e.g., WiscKey [56], PebblesDB [81],
[AM-tree [42], and TRIAD [5]. These systems go further in optimizing for write amplification
than RocksDB, which focuses more on tradeoffs among different metrics. SimDB [82] optimized
LSM-trees for space efficiency; RocksDB also focuses on deleting dead data. Monkey [16] attempts
to balance between DRAM and IOPs. bLSM [85], VT-tree [88], and cLSM [41] optimize for the
general performance of LSM-trees.

Large-scale storage systems. There are numerous distributed storage systems [11, 15, 34, 35, 62,
91]. They usually have complex architectures spanning multiple processes, hosts, and data centers.
They are not directly comparable to RocksDB, a storage engine library on a single node. Other
systems (e.g., MongoDB [65], MySQL [67], Microsoft SQL Server [62]) can use modular storage
engines; they have addressed similar challenges to what RocksDB faces, including failure handling
and using timestamps.

Failure handling. Checksums are frequently used to detect data corruption [7, 40, 67]. Our ar-
gument that we need both end-to-end and handoff checksums still mirrors the classic end-to-end
argument [83] and is similar to the strategy used by others: Sivathanu et al. [89], ZFS [101, 102],
and Linux [77]. Our argument for earlier corruption detection is similar to Reference [53], which
argues that domain-specific checking is inadequate.

Timestamp support. Several storage systems provide timestamp support: HBase [35], Wired-
Tiger [64], and BigTable [11]; Cassandra [34] supports a timestamp as an ordinary column. In these
systems, timestamps are a count of the number of milliseconds since the UNIX epoch. Hekaton [17]
uses a monotonically increasing counter to assign timestamps, which is similar to the RocksDB se-
quence numbers. RocksDB’s ongoing work on application-specified timestamps is complementary
to the aforementioned efforts. We hope key-value APIs with a application-specified timestamp ex-
tension can make it easier for higher-level clients to support features related to data versioning
with low overhead in both performance and efficiency.
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Column-aware data model. Column support is standard for relational databases [62, 67, 73].
Many storage engines expose a key-value interface [17, 66, 70, 71]. The WiredTiger storage engine,
however, supports named columns [64]. The benefit of tuning per-column storage and caching
looks promising for RocksDB as well.

10  FUTURE WORK AND OPEN QUESTIONS

Besides completing the improvements mentioned in the previous sections, including optimiza-
tions for disaggregated storage, key-value separation, multi-level checksums application-specified
timestamps, column support, and memory management, we plan to unify leveled and tiered com-
paction and improve adaptivity. However, a number of open questions could benefit from further
research.

(1) How can we use SSD/HDD hybrid storage to improve efficiency?

(2) How can we mitigate the performance impact on readers when there are many consecutive
tombstone deletion markers?

(3) How should we improve our write throttling algorithms?

(4) How can we most efficiently compare two replicas to ensure they contain the same data?

(5) How can we best exploit NVM? Should we still use the LSM-tree? How should we organize
a storage hierarchy that includes NVM?

(6) Can there be a generic integrity API to handle data handoff between RocksDB and the file
system layer?

11 CONCLUSIONS

RocksDB has grown from a key-value store serving niche applications to its current position of
widespread adoption across numerous industrial large-scale distributed applications. The LSM-tree
as the main data structure has served RocksDB well, as it can be tailored for high write throughput,
high read throughput, space efficiency, or something in between. Our view on performance has,
however, evolved over time. While write and space amplification remain the primary concern,
additional focus has shifted to CPU and DRAM efficiency, as well as remote storage.

Lessons learned from serving large-scale distributed systems (Section 4) include (i) resource
allocation must be managed across multiple RocksDB instances, since a single server may host
multiple instances; (ii) the data format used must be backward- and forward-compatible, since
RocksDB software updates are deployed/rolled-back incrementally; and (iii) proper support for
database replication and backups is important.

Lessons learned from dealing with failures (Section 5) include (i) data corruption needs to be
detected early to minimize data unavailability and loss; (ii) integrity protection must cover the
entire system to prevent silent corruptions from propagating to replicas and clients; and (iii) errors
need to be treated in a differentiated manner.

Lessons related to configuration management (Section 6) indicate that having RocksDB be
highly configurable has enabled many different types of applications and that suitable configu-
rations can have a large positive performance impact, but also that configuration management is
perhaps too challenging and needs to be simplified and automated.

Lessons on the RocksDB API (Section 7) indicate that the core interface is simple and powerful
given its flexibility, but limits the performance for some important use cases; we presented our
thoughts on improving the interface by supporting application-defined timestamps and columns.

Finally, we presented a number of development initiatives that in retrospect turned out to be
misguided (Section 8).

ACM Transactions on Storage, Vol. 17, No. 4, Article 26. Publication date: October 2021.



RocksDB: Evolution of Development Priorities

APPENDICES

A ROCKSDB FEATURE TIMELINE

2012

2017 2016 2015 2014 2103

2019 2018

2020

B RECAP OF LESSONS LEARNED

Some of the lessons we learned include:

Performance
Multi-threaded compactions

Tiered compaction

Prefix Bloom filter

Bloom Filter for MemTables
Separate thread pool for
MemTable flush

FIFO compaction
Compaction rate limiter
Cache-friendly Bloom filters

Dynamic leveled compaction
File deletion rate limiting
Parallel Level 0 and 1
compaction

Different compression for
last level
Parallel MemTable inserts

Separate thread pool for
bottom-most compactions
Two-level file indices

Level O to level O
compactions

Dictionary compression
Hash index into data blocks

Batched MultiGet() with
parallel I/O

Multithreaded single file
compression

Configurability

e Pluggable MemTable
e Pluggable file format

String-based config
options

e Dynamic config changes

Separate config file
Config compatibility
checker

MemTable total size caps
across instances
Compaction migration
tools

Single memory limit for
both block cache and
MemTable

Configure plug-in function
using object registry

26:27

Features

Compaction filters
Locking SSTables from
deletion

Merge Operator

Backup engine

Support for multiple key
spaces ("column family")
Physical checkpoints

Bulk loading for SSTable
file integration
Optimistic and
pessimistic transactions

DeleteRange()

Automatic recovery from
out-of-space errors
Query trace and replay
tools

® Secondary instance

Entire file checksum
Automatically recover
from retriable errors
Partial support for user-
defined timestamps

(1) It is important that a storage engine can be tuned to fit different performance objectives.
(Section 1)
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(2) Space efficiency is the bottleneck for most applications using SSDs. (Section 3.2)

(3) CPU overhead is becoming more important to allow systems to run more efficiently.
(Section 3.3)

(4) Global, per host, resource management is necessary when many RocksDB instances run on
the same host. (Section 4.1)

(5) Having WAL treatment be configurable (synchronous WAL writes, buffered WAL writes, or
disabled WAL) offers applications performance advantages. (Section 4.3)

(6) Data replication and backups need to be properly supported. (Section 4.2)

(7) RocksDB needs to provide both backward- and forward- compatibility with respect to stored
data and configuration data. (Section 4.4)

(8) It is beneficial to detect data corruptions earlier, rather than eventually. (Section 5,
Section 5.2)

(9) Integrity protection must cover the entire system to prevent corrupted data (e.g., caused by
bitflips in CPU/memory) from being exposed to clients or other replicas; detecting corruption
only when the data is at rest or being sent over the wire is insufficient. (Section 5)

(10) Error handling needs to be treated in a differentiated manner, depending on the causes and
consequences of the errors. (Section 5)

(11) Silent CPU and memory corruptions do occur, although very rarely, and data replication
does not always protect against them. (Section 5.1)

(12) Automatic configuration adaptivity is helpful in simplifying configuration manage-
ment. (Section 6.1)

(13) Performance can be improved by providing user-defined callback functions. Existing partial
solutions are helpful, but there is room for further improvement. (Section 6.2)

(14) Deleting consecutive keys introduces performance challenges when using LSM-trees.
(Section 6.3)

(15) The SSD TRIM operation is good for performance but file deletions need to be rate limited
to prevent occasional performance issues. (Section 6.3.3)

(16) Relying on a third-party memory allocator allowed us to focus on other, arguably more
important areas, but it causes manageability issues. (Section 6.4)

(17) The key/value interface is versatile, but limits performance for some use cases; adding a
timestamp separately from the key and value can offer a good balance between performance
and simplicity. (Section 7.1)

(18) Applications can implement columns on top of RocksDB’s key/value interface and obtain
reasonable performance, but additional performance improvements are possible if the stor-
age engine is aware of columns. (Section 7.2)

C RECAP OF DESIGN CHOICES REVISITED
Some notable design choices revisited include:
(1) Customizability is always good to users. (Section 4, Managing configurations)

(2) RocksDB can be blind to CPU bit flips. (Section 5)
(3) It is OK to panic when seeing any I/O error. (Section 5)
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