
120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

Volcano-An Extensible and Parallel Query
Evaluation System

Goetz Graefe

Abstract-To investigate the interactions of extensibility and
parallelism in database query processing, we have developed a
new dataflow query execution system called Volcano. The Vol-
cano effort provides a rich environment for research and edu-
cation in database systems design, heuristics for query opti-
mization, parallel query execution, and resource allocation.

Volcano uses a standard interface between algebra opera-
tors, allowing easy addition of new operators and operator im-
plementations. Operations on individual items, e.g., predi-
cates, are imported into the query processing operators using
support functions. The semantics of support functions is not
prescribed; any data type including complex objects and any
operation can be realized. Thus, Volcano is extensible with new
operators, algorithms, data types, and type-specific methods.

Volcano includes two novel meta-operators. The choose-plan
meta-operator supports dynamic query evaluation plans that al-
low delaying selected optimization decisions until run-time,
e.g., for embedded queries with free variables. The exchange
meta-operator supports intra-operator parallelism on parti-
tioned datasets and both vertical and horizontal inter-operator
parallelism, translating between demand-driven dataflow within
processes and data-driven dataflow between processes.

All operators, with the exception of the exchange operator,
have been designed and implemented in a single-process envi-
ronment, and parallelized using the exchange operator. Even
operators not yet designed can be parallelized using this new
operator if they use and provide the interator interface. Thus,
the issues of data manipulation and parallelism have become
orthogonal, making Volcano the first implemented query exe-
cution engine that effectively combines extensibility and paral-
lelism.

Index Terms-Dynamic query evaluation plans, extensible
database systems, iterators, operator model of parallelization,
query execution.

I. INTRODUCTION

I N ORDER to investigate the interactions of extensibil-
ity, efficiency, and parallelism in database query pro-

cessing and to provide a testbed for databse systems re-
search and education, we have designed and implemented
a new query evaluation system called Volcano. It is in-
tended to provide an experimental vehicle for research into
query execution techniques and query optimization op-
timization heuristics rather than a database system ready
to support applications. It is not a complete database sys-

Manuscript received July 26, 1990; revised September 5, 1991. This
work was supported in part by the National Science Foundation under
Grants IRI-8996270, IRI-8912618, and IRI-9006348, and by the Oregon
Advanced Computing Institute (OACIS).

The author is with the Computer Science Department, Portland State
University, Portland, OR 97207-075 1.

IEEE Log Number 92 11308.

tern as it lacks features such as a user-friendly query lan-
guage, a type system for instances (record definitions), a
query optimizer, and catalogs. Because of this focus, Vol-
cano is able to serve as an experimental vehicle for a mul-
titude of purposes, all .of them open-ended, which results
in a combination of requirements that have not been in-
tegrated in a single system before. First, it is modular and
extensible to enable future research, e.g., on algorithms,
data models, resource allocation, parallel execution, load
balancing, and query optimization heuristics. Thus, Vol-
cano provides an infrastructure for experimental research
rather than a final research prototype in itself. Second, it
is simple in its design to allow student use and research.
Modularity and simplicity are very important for this pur-
pose because they allow students to begin working on
projects without an understanding of the entire design and
all its details, and they permit several concurrent student
projects. Third, Volcano’s design does not presume any
particular data model; the only assumption is that query
processing is based on transforming sets of items using
parameterized operators. To achieve data model indepen-
dence, the design very consistently separates set process-
ing control (which is provided and inherent in the Vol-
cano operators) from interpretation and manipulation of
data items (which is imported into the operators, as de-
scribed later). Fourth, to free algorithm design, imple-
mentation, debugging, tuning, and initial experimentation
from the intricacies of parallelism but to allow experi-
mentation with parallel query processing. Volcano can be
used as a single-process or as a parallel system. Single-
process query evaluation plans can already be parallelized
easily on shared-memory machines and soon also on dis-
tributed-memory machines. Fifth, Volcano is realistic in
its query execution paradigm to ensure that students learn
how query processing is really done in commercial data-
base products. For example, using temporary files to
transfer data from one operation to the next as suggested
in most textbooks has a substantial performance penalty,
and is therefore used in neither real database systems nor
in Volcano. Finally, Volcano’s means for parallel query
processing could not be based on existing models since
all models explored to date have been designed with a
particular data model and operator set in mind. Instead,
our design goal was to make parallelism and data manip-
ulation orthogonal, which means that the mechanisms for
parallel query processing are independent of the operator
set and semantics, and that all operators, including new

1041-4347/94$04.00 @ 1994 IEEE

GRAEFE: VOLCANO-QUERY EVALUATION SYSTEM 121

ones, could be designed and implemented independently
of future parallel execution.

Following a design principle well established in oper-
ating systems research but not exploited in most database
system designs, Volcano provides mechanisms to support
policies. Policies can be set by a human experimenter or
by a query optimizer. The separation of mechanisms and
policies has contributed to the extensibility and modular-
ity of modern operating systems, and may make the same
contribution to extensible database systems. We will re-
turn to this separation repeatedly in this paper.

Since its very purpose is to allow future extensions and
research, Volcano is continuously being modified and ex-
tended. Among the most important recent extensions were
the design and implementation of two meta-operators.
Both of them are not only new operators but also embody
and encapsulate new concepts for query processing. They
are meta-operators since they do not contribute to data
manipulation, selection, derivation, etc., but instead pro-
vide additional control over query processing that cannot
be provided by conventional operators like file scan, sort,
and merge join. The choose-plan operator implements dy-
namic query evaluation plans, a concept developed for
queries that must be optimized with incomplete informa-
tion [171. For example, it is not possible to reliably op-
timize an embedded query if one of the constants in the
query predicate is actually a program variable and there-
fore unknown during compilation and optimization. Dy-
namic plans allow preparation for multiple equivalent
plans, each one optimal for a certain range of actual pa-
rameter values. The choose-plan operator selects among
these plans at runtime while all other operators in Vol-
cano’s operator set (present or future) are entirely obliv-
ious to the presence and function of the choose-plan op-
erator.

The second meta-operator, the exchange operator, im-
plements and controls parallel query evaluation in Vol-
cano. While operators can exchange data without the ex-
change operator, in fact within processes as easily as a
single procedure call, this new operator exchanges data
across process and processor boundaries. All other oper-
ators are implemented and execute without regard to par-
allelism; all parallelism issues like partitioning and flow
control are encapsulated in and provided by the exchange
operator. Thus, data manipulation and parallelism are in-
deed orthogonal in Volcano [20]. Beyond the cleanliness
from a software engineering point of view, it is also very
encouraging to see that this method of parallelizing a
query processing engine does indeed allow linear or near-
linear speedup [181.

This paper is a general overview describing the overaii
goals and design principles. Other articles on Volcano
were written on special aspects of the system, e.g., [16]-
[21], [25], [26]. These articles also include experimental
performance evaluations of Volcano’s techniques and al-
gorithms, in particular [181, [2 11.

The present paper is organized as follows. In the fol-
lowing section, we briefly review previous work that in-

fluenced Volcano’s design. A detailed description of Vol-
cano follows in Section III. Section IV contains a
discussion of extensibility in the system. Dynamic query
evaluation plans and their implementation are described
in Section V. Parallel processing encapsulated in the ex-
change module is described in Section VI. Section VII
contains a summary and our conclusions from this effort.

II. RELATED WORK

Since so many different systems have been developed
to process large datesets efficiently, we only survey the
systems that have significantly influenced the design of
Volcano. Our work has been influenced most strongly by
WiSS, GAMMA, and EXODUS. The Wisconsin Storage
System (WiSS) [lo] is a record-oriented file system pro-
viding heap files, B-tree and hash indexes, buffering, and
scans with predicates. GAMMA [1 l] is a software data-
base machine running on a number of general-purpose
CPU’s as a backend to a UNIX host machine. It was de-
veloped on 17 VAX 11/750’s connected with each other
and the VAX 11/750 host via a 80 Mb /s token ring. Eight
GAMMA processors had a local disk device, accessed us-
ing WiSS. The disks were accessible only locally, and
update and selection operators used only these eight pro-
cessors. The other, diskless processors were used for join
processing. Recently, the GAMMA software has been
ported to an Intel iPSC/2 hypercube with 32 nodes, each
with a local disk drive. GAMMA uses hash-based algo-
rithms extensively, implemented in such a way that each
operator is executed on several (usually all) processors
and the input stream for each operator is partitioned into
disjoint sets according to a hash function.

The limited data model and extensibility of GAMMA
led to the search for a more flexible but equally powerful
query processing model. The operator design used in the
GAMMA database machine software gives each operator
control within its own process, leaving it to the network-
ing and operating system software to synchronize multi-
ple operators in producer-consumer relationships using
flow-control mechanisms. This design, while working ex-
tremely well in GAMMA, does not lend itself to single-
process query evaluation since multiple loci of control,
i.e., multiple operators, cannot be realized inside a single
process without special pseudo-multiprocess mechanisms
such as threads. Therefore, GAMMA’s operator and data
transfer concepts are not suitable for an efficient query
processing engine intended for both sequential and par-
allel query execution.

EXODUS [7] is an extensible database system with
some components followiong the “tool-kit” approach,
e.g., the optimizer generator [131, [141 and the E database
implementation language [27], [28], and other compo-
nents built as powerful but fixed components, e.g., the
storage manager [5]. Originally, EXODUS. was con-
ceived to be data-model-independent, i.e., it was sup-
posed to support a wide variety of data models, but later
a novel, powerful, structurally object-oriented data model
called Extra was developed [6]. The concept of data model

122 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

independence as first explored in EXODUS has been re-
tained in the Volcano project and the design and imple-
mentation of its software. During the design of the EX-
ODUS storage manager, many storage and access issues
explored in WiSS and GAMMA were revisited. Lessons
learned and trade-offs explored in these discussions cer-
tainly helped in forming the ideas behind Volcano. The
design and development of E influenced the strong em-
phasis on iterators for query processing.

A number of further conventional (relational) and ex-
tensible systems have influenced our design. Ingres [32]
and System R [9] have probably influenced most database
systems, in particular their extensible follow-on projects
Starburst [23] and Postgres [35]. It is interesting to note
that independently of our work the Starburst group has
also identified the demand-driven interator paradigm as a
suitable basis for an extensible single-process query eval-
uation architecture after using it successfully in the Sys-
tem R relational system, but as yet has not been able to
combine extensibility with parallelism. GENESIS [l]
early on stressed the importance of uniform operator in-
terfaces for extensibility and software reusability.

XPRS has been the first project aiming to combine ex-
tensibility with parallelism [34]. Its basic premise is to
implement Postgres on top of RAID disk arrays and the
Sprite operating system. XPRS and GAMMA basically
differ in four ways. First, GAMMA supports. a purely re-
lational data model while XPRS supports an extensible
relational model, Postgres. Second, GAMMA’s main
form of parallelism is intra-operator parallelism based on
partitioned data sets. XPRS, on the other hand, will rely
on bushy parallelism, i.e. , concurrent execution of differ-
ent subtrees in a complex query evaluation plan. Third,
GAMMA relies heavily on hashing for joins and aggre-
gations whereas XPRS will have a mainly sort-based
query processing engine [33]. Fourth, GAMMA is built
on the premise that distributed memory is required to
achieve scalable linear speed-up while XPRS is being im-
plemented on a shared-memory machine.

Both XPRS and Volcano combine parallelism and ex-
tensibility, but XPRS is a far more comprehensive project
than Volcano. In particular, XPRS includes a data model
and a query optimizer. On the other hand, Volcano is more
extensible precisely because it does not presume a data
model. Therefore, Volcano could be used as the query
processing engine in a parallel extensible-relational sys-
tem such as XPRS. Moreover, it will eventually include
a data-model-independent optimizer generator to form a
complete query processing research environment.

III. VOLCANO SYSTEM DESIGN

In this section, we provide an overview of the design
of Volcano. At the current time, Volcano is a library of
about two dozen modules with a total of about 15 000
lines of C code. These modules include a file system,
buffer management, sorting, Bf-trees, and two algo-
rithms each (sort- and hash-based) for natural join, semi-

join, all three outer joins, anti-joint, aggregation, dupli-
cate elimination, union, intersection, difference, anti-dif-
ference, and relational division. Moreover, two modules
implement dynamic query evaluation plans and allow par-
allel processing of all algorithms listed above.

All operations on individual records are deliberately left
open for later definition. Instead of inventing a language
in which to specify selection predicates, hash functions,
etc., functions are passed to the query processing opera-
tors to be called when necessary with the appropriate ar-
guments. These support jkzctions are described later in
more detail. One common and repeating theme in the de-
sign of Volcano is that it provides mechanisms for query
evaluation to allow selection of and experimentation with
policies. The separation of mechanisms and policies is a
very well-known and well-established principle in the de-
sign and implementation of operating systems, but it has
not been used as extensively and consistently in the de-
sign and implementation of database systems. It has con-
tributed significantly to the extensibility and modularity
of modem operating systems, and may make the same
contribution to extensible database systems.

Currently, Volcano consists of two layers, the file sys-
tem layer and the query processing layer. The former pro-
vides record, file, and index operations including scans
with optional predicates, and buffering; the latter is a set
of query processing modules that can be nested to build
complex query evaluation trees. Fig. 1 identifies Vol-
cano’s main modules. This separation can be found in
most query evaluation systems, e.g., RSS and RDS in
System R [9] and Core and Corona in Starburst [23]. Sys-
tem catalogs or a data dictionary are not included in Vol-
cano since the system was designed to be extensible and
independent from any particular data model. We start our
description at the bottom, the file system, and then dis-
cuss the query processing modules.

A. The File System
Within our discussion of the Volcano file system, we

also proceed bottom-up, from buffer management to data
files and indices. The existing facilities are meant to pro-
vide a backbone of a query processing system, and are
designed such that modifications and additions can easily
be accomplished as the need arises.

The buffer manager is the most interesting part of the
file system. Because buffer management is performance-
critical in any database system, the Volcano buffer man-
ager was designed to include mechanisms that can be used
most effectively and efficiently in a large variety of con-
texts and with a wide array of policies. In consequence,
its features include multiple buffer pools, variable-length
units of buffering that are called clusters in Volcano, and
replacement hints from the next higher software level.

The buffer manager’s hint facility is an excellent ex-
ample of Volcano’s design principle to implement mech-
anisms to support multiple policies. The buffer manager
only provides the mechanisms, i.e., pinning, page re-

GRAEFE: VOLCANO-QUERY EVALUATION SYSTEM

Execute (driver) Exchange Choose-Plan
Hash One-to-One Match Sort One-to-One Mate h sort
Hash One-to-Many Match Sort One-to-Many Match Index Maintenance
scans Functional Join Filter
Files & Records Devices Indices (B+-trees)
Physical I/O Buffer Manager Memory Manager

Fig. 1. Volcano’s main modules.

placement, and reading and writing disk pages, while the
higher level software determines the policies depending
on data semantics, importance, and access patterns. It is
surprising that database buffer managers derive replace-
ment decisions from observed reference behavior in spite
of the fact that this behavior is generated by higher level
database software and thus known and foreseeable in ad-
vance within the same system, albeit different subcom-
ponents.

Files are composed of records, clusters, and extents.
Since file operations are invoked very frequently in any
database system, all design decisions in the file module
have been made to provide basic functionality with the
highest attainable performance. A cluster, consisting of
one or more pages, is the unit of I/O and of buffering, as
discussed above. The cluster size is set for each file in-
dividually. Thus, different files on the same device can
have different cluster sizes. Disk space for files is allo-
cated in physically contiguous extents, because extents
allow very fast scanning without seeks and large-chunk
read-ahead and write-behind.

Records are identified by a record identifier (RID), and
can be accessed directly using the RID. For fast access to
a large set of records, Volcano supports not only individ-
ual file and record operations but also scans that support
read-next and append operations. There are two interfaces
to file scans; one is part of the file system and is described
momentarily; the other is part of the query processing
level and is described later. The first one has the standard
procedures for file scans, namely open, next, close, and
rewind. The next procedure returns the main memory ad-
dress of the next record. This address is guaranteed
(pinned) until the next operation is invoked on the scan.
Thus, getting the next record within the same cluster does
not require calling the buffer manager and can be per-
formed very efficiently.

For fast creation of files, scans support an append op-
eration. It allocates a new record slot, and returns the new
slot’s main memory address. It is the caller’s responsibil-
ity to fill the provided record space with useful informa-
tion, i.e., the append routine is entirely oblivious to the
data and their representation.

Scans also support optional predicates. The predicate
function is called by the next procedure with the argument
and a record address. Selective scans are the first example
of support functions mentioned briefly in the introduction.
Instead of determining a qualification itself, the scan
mechanism relies on a predicate function imported from
a higher level.

Support functions are passed to an operation as a func-
tion entry point and a typeless pointer that serves as a

123

predicate argument. Arguments to support functions can
be used in two ways, namely in compiled and interpreted
query execution. In compiled scans, i.e., when the pred-
icate evaluation function is available in macvhine code,
the argument can be used to pass a constant or a pointer
to several constants to the predicate function. For exam-
ple, if the predicate consists of comparing a record field
with a string, the comparison function is passed as pred-
icate function while the search string is passed as predi-
cate argument. In interpreted scans, i.e., when a general
interpreter is used to evaluate all predicates in query, they
can be used to pass appropriate code to the interpreter.
The interpreter’s entry point is given as predicate func-
tion. Thus, both interpreted and compiled scans are sup-
ported with a single simple and efficient mechanism. Vol-
cano’s use of support functions and their arguments is
another example for a mechanism that leaves a policy de-
cision, in this case whether to use compiled or interpreted
scans, open to be decided by higher level software.

Zndices are implemented currently only in the form of
B + -trees with an interface similar to files. A leaf entry
consists of a key and information. The information part
typically is a RID, but it could include more or different
information. The key and the information can be of any
type; a comparison function must be provided to compare
keys. The comparison function uses an argument equiv-
alent to the one described for scan predicates. Permitting
any information in the leaves gives more choices in phys-
ical database design. It is another example of Volcano
providing a mechanism to allow a multitude of designs
and usage policies. B + -trees support scans similar to files,
including predicates and append operations for fast load-
ing. In addition, B f -tree scans allow seeking to a partic-
ular key, and setting lower and upper bounds.

For intermediate results in query processing (later called
streams), Volcano uses special devices called virtual de-
vices. The difference between virtual and disk devices is
that data pages of virtual devices only exist in the buffer.
As soon as such data pages are unpinned, they disappear
and their contents are lost. Thus, Volcano uses the same
mechanisms and function calls for permanent and inter-
mediate data sets, easing implementation of new opera-
tors significantly.

In summary, much of Volcano’s file system is conven-
tional in its goals but implemented in a flexible, efficient,
and compact way. The file system supports basic abstrac-
tions and operations, namely devices, files, records,
B+-trees, and scans. It provides mechanisms to access
these objects, leaving many policy decisions to higher
level software. High performance was a very important
goal in the design and implementation of these mecha-
nisms since performance studies and parallelization only
make sense if the underlying mechanisms are efficient.
Furthermore, research into implementation and perfor-
mance trade-offs for extensible database systems and new
data models is only relevant if an efficient evaluation plat-
form is used.

124 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

B. Query Processing

The file system routines described above are utilized by .
the query processing routines to evaluate complex quer- w open-filter ()

ies. Queries are expressed as query plans or algebra
w next-filter ()
* close-filter ()

expressions; the operators of this algebra are query pro-
cessing algorithms and we call the algebra an executable
algebra as opposed to logical algebras, ‘e .g . , relational
algebra. We will describe the operations using relational
terminology hoping that this will assist the reader. We
must point out, however, that the operations can be

.
Arguments ! Input i State \ .

\
viewed and are implemented as operations on sets of ob-
jects, and that Volcano does not depend on assumptions
about the internal structure of such objects. In fact, we
intend to use Volcano for query processing in an object-
oriented database system [151. The key to this use of Vol-
cano is that set processing and interpretation of data items
are separated.

1
print 0 &I- open-file-scan ()

In Volcano, all algebra operators are implemented as
iterators, i.e., they support a simple open-next-close pro-
tocol. Basically, iterators provide the iteration component
of a loop, i.e., initialization, increment, loop termination
condition, and final housekeeping. These functions allow
“iteration’ ’ over the results of any operation similar to

f
predicate ()

Fig. 2. Two operators in a query evaluation plan.

the iteration over the result of a conventional file scan.
Associated with each iterator is a state record type. A
state record contains arguments, e.g., the size of a hash
table to be allocated in the open procedure, and state, e.g.,
the location of a hash table. All state information of an
iterator is kept in its state record and there are no ‘ ‘static’ ’
variables; thus, an algorithm may be used multiple times
in a query by including more than one state record in the
query.

All manipulation and interpretation of data objects,

open--Zter, can use the input pointer contained in the state
record to invoke the input operator’s functions. Thus, the
filter functions can invoke the file scan functions as
needed, and can pace the file scan according to the needs
of the filter. In other words, Fig. 2 shows a complete query
evaluation plan that prints selected records from a file.

Using Volcano’s standard form of iterators, an operator
does not need to know what kind of operator produces its
input, or whether its input comes from a complex query

e*g*, comparisons and hashing, is passed to the iterators tree or from a simple file scan. We call this concept anon-
by means of pointers to the entry points of appropriate ymous inputs or streams. Streams are a simple but pow-
support functions. Each of these support functions uses erful abstraction that allows combining any number and
an argument allowing interpreted or compiled query eval- any kind of operators to evaluate a complex query, a sec-
uation, as described earlier for file scan predicates. With- ond cornerstone to Volcano’s extensibility. Together with
out the support functions, Volcano’s iterators are empty the iterator control paradigm, streams represent the most
algorithm shells that cannot perform any useful work. In efficient execution model in terms of time (overhead for
effect, the split into algorithm shells and support functions synchronizing operators) and space (number of records
separates control and iteration over sets from interpreta- that must reside in memory concurrently) for single-pro-
tion of records or objects. This separation is one of the cess query evaluation.
cornerstones’ of Volcano’s data model independent and Calling open for the top-most operator results in instan-
extensibility, which will be discussed in Section IV. tiations for the associated state record’s state, e.g., allo-

Iterators can be nested and then operate similarly to cation of a hash table, and in open calls for all inputs. In
coroutines. State records are linked together by means of this way, all iterators in a query are initiated recursively.
input pointers. The input pointers are also kept in the state In order to process the query, next for the top-most op-
records. Fig. 2 shows two operators in a query evaluation erator is called repeatedly until it fails with an end-of-
plan. Purpose and capabilities of the Jilter operator will stream indicator. The top-most operator calls the next
be discussed shortly; one of its possible functions is to procedure of its input if it needs more input data to pro-
print items of a stream using a function passed to the filter duce an output record. Finally, the close call recursively
operator as one of its arguments. The structure at the top “shuts down” all iterators in the query. This model of
gives access to the functions as well as to the state record. query execution matches very closely the ones being in-
Using a pointer to this structure, the filter functions can eluded in the E database implementation language in EX-
be called and their local state can be passed to them as a
procedure argument. The functions themselves, e. g . ,

ODUS and the query
database system.

executor of the Starburst relational

GRAEFE: VOLCANO-QUERY EVALUATION SYSTEM 125

A number of query and environment parameters may
influence policy decisions during opening a query evalu-
ation plan, e.g., query predicate constants and system load
information. Such parameters are passed between all open
procedures in Volcano with a parameter called bindings.
This is a typeless pointer that can be used to pass infor-
mation for policy decisions. Such policy decisions are im-
plemented using support functions again. For example,
the module implementing hash join allows dynamic de-
termination of the size of a hash table-another example
of the separation of mechanism and policy. This bindings
parameter is particularly useful in dynamic query evalu-
ation plans, which will be discussed later in Section V.

The tree-structured query evaluation plan is used to ex-
ecute queries by demand-driven dataflow. The return
value of a next operation is, besides a status indicator, a
structure called Next-Record, which consists of an RID
and a record address in the buffer pool. This record is
pinned in the buffer. The protocol about fixing and unfix-
ing records is as follows. Each record pinned in the buffer
is owned by exactly one operator at any point in time.
After receiving a record, the operator can hold on to it for
a while, e.g., in a hash table, unfix it, e.g., when a pred-
icate fails, or pass it on to the next operator. Complex
operations that create new records, e.g., join, have to fix
their output records in the buffer before passing them on,
and have to unfix their input records. Since this could re-
sult in a large number of buffer calls (one per record in
each operator in the query), the interface to the buffer
manager was recently redesigned such that it will require
a total of two buffer calls per cluster on the procedure side
(g e. ., a file scan) independently of how many records a
cluster contains, and only one buffer call per cluster on
the consumer side.

A Next-Record structure can point to one record only.
All currently implemented query processing algorithms
pass complete records between operators, e.g., join cre-
ates new, complete records by copying fields from two
input records. It can be argued that creating complete new
records and passing them between operators is prohibi-
tively expensive. An alternative is to leave original rec-
ords in the buffer as they were retrieved from the stored
data, and compose Next-Record pairs, triples, etc., as in-
termediate results. Although this alternative results in less
memory-to-memory copying, it is not implemented ex-
plicitly because Volcano already provides the necessary
mechanisms, namely the Biter iterator (see next subsec-
tion) that can replace each record in a stream by an RID-
pointer pair or vice versa.

In summary, demand-driven dataflow is implemented
by encoding operators as iterators, i.e., with open, next,
and close procedures, since this scheme promises gener-
ality , extensibility, efficiency, and low overhead. The next
few sections describe some of Volcano’s existing iterators
in more detail. In very few modules, the described oper-
ators provide much of the functionality of other query
evaluation systems through generality and separation of

mechanisms and policies. Furthermore, the separation of
set processing control (iteration) from item interpretation
and manipulation provides this functionality indepen-
dently from any data model.

1) Scans, Functional Join, and Filter: The first scan
interface was discussed with the file system. The second
interface to scans, both file scans and B+-tree scans, pro-
vides an iterator interface suitable for query processing.
The open procedures open the file or B+-tree and initiate
a scan using the scan procedures of the file system level.
The file name or closed file descriptor are given in the
state record as are an optional predicate and bounds for
B+-tree scans. Thus, the two scan interfaces are function-
ally equivalent. Their difference is that the file system scan
interface is used by various internal modules, e.g., by the
device module for the device table of contents, while the
iterator interface is used to provide leaf operators for query
evaluation plans.

Typically, Bf-tree indices hold keys and RID’s in their
leaves. In order to use B+-tree indices, the records in the
data file must be retrieved. In Volcano, this look-up op-
eration is split from the B+-tree scan iterator and is per-
formed by the functional join operator. This operator re-
quires a stream of records containing RID’s as input and
either outputs the records retrieved using the RID’s or it
composes new records from the input records and the re-
trieved records, thus “joining” the B+-tree entries and
their corresponding data records.

B’-tree scan and functional join are separated for a
number of reasons. First, it is not clear that storing data
in B+-tree leaves never is a good idea. At times, it may
be desirable to experiment with having other types of in-
formation associated with look-up keys. Second, this sep-
aration allows experimentation with manipulation of RID-
lists for complex queries. Third, while functional join is
currently implemented rather naively, this operation can
be made more intelligent to assemble complex objects re-
cursively. In summary, separating index search and re-
cord retrieval is another example for providing mecha-
nisms in Volcano to allow for experiments with policies,
a design principle employed to ensure that the Volcano
software would be flexible and extensible.

The filter operator used in the example above performs
three functions, depending on presence or absence of cor-
responding support functions in the state record. The
predicate function applies a selection predicate, e.g., to
implement bit vector filtering. The transform function
creates a new record, typically of a new type, from each
old record. An example would be a relational projection
(without duplicate elimination). More complex examples
include compression and decompression, other changes in
codes and representations, and reducing a stream of rec-
ords to RID-pointer pairs. Finally, the apply function is
invoked once on each record for the benefit of its side
effects. Typical examples are updates and printing. No-
tice that updates are done within streams and query eval-
uation plans. Thus, Volcano plans are not only retrieval

126 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

but also update plans. The filter operator is also called the
‘ ‘side-effect operator. ’ ’ Another example is creating a fil-
ter for bit vector filtering. In other words, the filter op-
erator is a very versatile single-input single-output oper-
ator that can be used for a variety of purposes. Bit vector
filtering is an example for a special version of separation
of policy and mechanism, namely the rule not to provide
an operation that can be composed easily and efficiently
using existing operations.

2) One-to-One Match: Together with the filter opera-
tor, the one-to-one match operator will probably be among
the most frequently used query processing operators in
Volcano as it implements a variety of set-matching func-
tions. In a single operator, it realizes join, semi-join, outer
joint, anti-joint, intersection, union, difference, anti-dif-
ference, aggregation, and duplicate elimination. The one-
to-one match operator is a physical operator like sort, i.e.,
part of the executable algebra, not a logical operator like
the operators of relational algebra. It is the operator that
implements all operations in which an item is included in
the output depending on the result of a comparison be-
tween a pair of items.

Fig. 3 shows the basic principle underlying the one-to-
one match operator for binary operations, namely sepa-
ration of the matching and non-matching components of
two sets, called R and S in the Fig. 3, and producing ap-
propriate subsets, possibly after some transformation and
combination as in the case of a join. Since all these op-
erations require basically the same steps, it was logical to
implement them in one general and efficient module. The
main difference between the unary and binary operations,
e. g . , aggregate functions and equi-join, is that the former
require comparing items of the same input while the latter
require comparing items of two different inputs.

Since the implementation of Volcano’s one-to-one
match is data-model-independent and all operations on
data items are imported via support functions, the module
is not restricted to the relational model but can perform
set matching functions for arbitrary data types. Further-
more, the hash-based version provides recursive hash ta-
ble overflow avoidance [121 and resolution similar to hy-
brid hash join [31] and can therefore handle very large
input sizes. The sort-based version of one-to-one match
is based on an external sort operator and can also operate
on arbitrarily large inputs.

While there seems to be an abundance of join algo-
rithms, our design goals of extensibility and limited sys-
tem size led to the choice of only two algorithms (at the
current time) to be implemented in Volcano, namely
merge join and hybrid hash join. This choice will also
allow experimental research into the duality and trade-offs
between sort- and hash-based query processing algo-
rithms.

The classic hash join algorithm (which is the in-mem-
ory component of hybrid hash join) proceeds in two
phases. In the first phase, a hash table is built from one
input; it is therefore called the build phase. In the second
phase, the hash table is probed using tuples from the other

output
A
B
C
A B
A, c
B, c
&B,C

R S

0 A B C

Full Match Attribute match
Difference Anti-semi-join
Intersection Join, semi-join
Difference Anti-semi-join

Left outer join
Anti-difference Anti-join

Union
Right outer join
Symmetric outer join

Fig. 3. Binary one-to-one matching.

input to determine matches and to compose output tuples;
it is called the probe phase. After the probe phase, the
hash table and its entries are discarded. Instead, our one-
to-one match operator uses a third phase called the flush
phase, which is needed for aggregate functions and some
other operations.

Since the one-to-one match operator is an interator like
all Volcano operators, the three phases are assigned to the
open, next, and close functions. Open includes the build
phase, while the other two phases are included in the next
function. Successive invocations of the next function au-
tomatically switch from the probe phase to the flush phase
when the second input is exhausted.

The build phase can be used to eliminate duplicates or
to perform an aggregate function in the build input. The
one-to-one match module does not require a probe input;
if only an aggregation is required without subsequent join,
the absence of the probe input in the state record signals
to the module that the probe phase should be skipped. For
aggregation, instead of inserting a new tuple into the hash
table as in the classic hash join, an input tuple is first
matched with the tuples in its prospective hash bucket. If
a match is found, the new tuple is discarded or its values
are aggregated into the existing tuple.

While hash tables in main memory are usually quite
fast, a severe problem occurs if the build input does not
fit in main memory. This situation is called hash table
oveflow. There are two ways to deal with hash table over-
flow. First, if a query optimizer is used and can anticipate
overflow, it can be avoided by partitioning the input(s).
This overjlow avoidance technique is the basis for the hash
join algorithm used in the Grace database machine [121.
Second, overflow files can be created using oveflow res-
olution after the problem occurs.

For Volcano’s one-to-one match, we have adopted hy-
brid hash join. Compared to the hybrid hash algorithm
used in GAMMA, our overflow resolution scheme has
several improvements. Items can be inserted into the hash

GRAEFE: VOLCANO-QUERY EVALUATION SYSTEM 127

table without copying, i.e., the hash table points directly
to records in the buffer as produced by one-to-one match’s
build input. If input items are not densely packed, how-
ever, the available buffer memory can fill up very quickly.
Therefore, the one-to-one match operator has an argu-
ment called the packing threshold. When the number of
items in the hash table reaches this threshold, items are
packed densely into overflow files. However, the clusters
(pages) of these overflow files are not yet unfixed in the
buffer, i.e., no Z/O is performed as yet. Only when the
number of items in the hash table reaches a second thresh-
old called spilling threshold is the first of the partition
files unfixed. The clusters of this file are written to disk
and the count of items in the hash table, accordingly re-
duced. When this number reaches the spilling threshold
again, the next partition is unfixed, etc. If necessary, par-
titioning is performed recursively, with automatically ad-
justed packing and spilling thresholds. The unused por-
tions of the hash table, i.e., the portions corresponding to
spilled buckets, are used for bit vector filtering to save
Z/O to overflow files.

The fan-out of the first partitioning step is determined
by the total available memory minus the memory required
to reach the packing threshold. By choosing the packing
and spilling thresholds, a query optimizer can avoid re-
cord copying entirely for small build inputs, specify
overflow avoidance (and the maximum fan-out) for very
large build inputs, or determine packing and spilling
thresholds based on the expected build input size. In fact,
because the input sizes cannot be estimated precisely if
the inputs are produced by moderately complex expres-
sions, the optimizer can adjust packing and spilling
thresholds based on the esimated probability distributions
of input sizes. For example, if overflow is very unlikely,
it might be best to set the packing threshold quite high
such that, with high probability, the operation can pro-
teed without copying. On the other hand , if overflow is
more likely, the packin g th reshold should be set lower to
obtain a larger partitioning fan-out.

The initial packing and spilling thresholds can be set to
zero; in that case, Volcano’s one-to-one match performs
overflow avoidance very similar to the join algorithm used
in the Grace database machine. Beyond this parameter-
ization of overflow avoidance and resolution, Volcano’s
one-to-one match algorithm also permits optimizations of
cluster size and recursion depth similar to the ones used
for sorting [4], [21] and for nonuniform hash value dis-
tributions, and it can operate on inputs with variable-
length records.

The extension of the module described so far to set op-
erations started with the observation that the intersection
of two union-compatible relations is the same as the nat-
ural join of these relations, and can be best implemented
as semi-join. The union is the (double-sided) outer join
of union-compatible relations. Difference and anti-differ-
ence of two sets can be computed using special settings
of the algorithm’s bells and whistles. Finally, a Cartesian

product can be implemented by matching successfully all
possible pairs of items from the two inputs.

A second version of one-to-one match is based on sort-
ing. Its two modules are a disk-based merge-sort and the
actual merge-join. Merge-join has been generalized sim-
ilarly to hash-join to support semi-join, outer join, anti-
join, and set operations. The sort operator has been im-
plemented in such a way that it uses and provides the it-
erator interface. Opening the sort iterator prepares sorted
runs for merging. If the number of runs is larger than the
maximal fan-in, runs are merged into larger runs until the
remaining runs can be merged in a single step. The final
merge is performed on demand by the next function. If
the entire input fits into the sort buffer, it is kept there
until demanded by the next function. The
also supports aggregation and duplicate elimi

sort operator
nation. It can

perform these operations early, i.e., while writing tem-
porary files [2]. The sort algorithm is described and eval-
uated in detail in [2 11.

In summary, Volcano’s one-to-one match operators are
very powerful parts of Volcano’s query execution alge-
bra. By separating the control required to operate on sets
of items and the interpretation and manipulation of indi-
vidual items it can perform a variety of set matching tasks
frequently used in database query processing, and can
perform these tasks for arbitrary data types and data
models. The separation of mechanisms and policies for
overflow management supports overflow avoidance as
well as hybrid hash overflow resolution, both recursively
if required. Implementing sort- and hash-based algo-
rithms in a comparable fashion will allow meaningful ex-
perimental research into the duality and trade-offs be-
tween sort- and hash-based query processing algorithms.
The iterator interface guarantees that the one-to-one match
operator can easily be combined with other operations,
including new iterators yet to be designed.

3) One-to-Many Match: While the one-to-one match
operator includes an item in its output depending on a
comparison of two items with one another, the one-to-
many m atch o perator compa res each
of other items to determine wh .ether

item with a
a new item

produced. A typical example is relational division, the re-
lational algebra operator corresponding to universa 1 quan-
tification in relational calculus. There are two versions of
relational division in Volcano. The first version, called
native division, is based on sorting. The second version,
called hash-division, utilizes two hash tables, one on the
divisor and one on the quotient. An exact description of
the two algorithms and alternative algorithms based on
aweg ate functions can be found in [161 along with ana-
lytical and experimenta 1 performance comparisons and
detailed discussions of two partitioning strategies for hash
table overflow and multiprocessor implementations. We
are currently studying how to generalize these algo-
rithms in a way comparable with the generalizations of
aggregation and join, e.g., for a majority function
PI .

number
is to be

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

IV. EXTENSIBILITY

A number of database research efforts strive for exten-
sibility, e.g., EXODUS, GENESIS, Postgres, Starburst,
DASDBS [30], Cactis [24], and others. Volcano is a very
open query evaluation architecture that provides easy ex-
tensibility. Let us consider a number of frequently pro-
posed database extensions and how they can be accom-
modated in Volcano.

First, when extending the object type system, e.g., with
a new abstract data type (ADT) like date or box, the Vol-
cano software is not affected at all because it does not
provide a type system for objects. All manipulation of and
calculation based on individual objects is performed by
support functions. To a certain extent, Volcano is incom-
plete (it is not a database system), but by separating set
processing and instance interpretation and providing a
well-defined interface between them, Volcano is inher-
ently extensible on the level of instance types and seman-
tics.

As a rule, data items that are transferred between op-
erators using some next iterator procedure are records. For
an extensible or object-oriented database system, this
would be an unacceptable problem and limitation. The
solution to be used in Volcano is to pass only the root
component (record) between operators after loading and
fixing necessary component records in the buffer and suit-
ably swizzling inter-record pointers. Very simple objects
can be assembled in Volcano with the functional join op-
erator. Generalizations of this operator are necessary for ,
object-oriented or non-first-normal-form database sys-
tems, but can be included in Volcano without difficulty.
In fact, a prototype for such an assembly operator has been
built [26] for use in the REVELATION object-oriented da-
tabase systems project [151.

Second, in order to add new functions on individual
objects or aggregate functions, e.g., geometric mean, to
the database and query processing system, the appropriate
support function is required and passed to a query pro-
cessing routine. In other words, the query processing rou-
tines are not affected by the semantics of the support func-
tions as long as interface and return values are correct.
The reason Volcano software is not affected by extensions
of the functionality on individual objects is that Volcano’s
software only provides abstractions and implementations
for dealing with and sequencing sets of objects using
streams, whereas the capabilities for interpreting and ma-
nipulating individual objects are imported in the form of
support functions.

Third, in order to incorporate a new access method,
e.g., multidimensional indices in form of R-trees [22],
appropriate iterators have to be defined. Notice that it
makes sense to perform not only retrieval but also main-
tenance of storage structures in the form of iterators. For
example, if a set of items defined via a predicate (selec-
tion) needs to be updated, the iterator or query tree im-
plementing the selection can “feed” its data into a main-
tenance iterator. The items fed into the maintenance
operator should include a reference to the part of the stor-

age structure to be updated, e.g., a RID or a key, and
appropriate new values if they have been computed in the
selection, e.g., new salaries from old salaries. Updating
multiple structures (multiple indices) can be organized and
executed very efficiently using nested iterators, i.e., a
query evaluation plan. Furthermore, if ordering makes
maintenance more efficient as for B-trees, an ordering or
sort iterator can easily be included in the plan. In other
words, it makes sense to think of plans not only as query
plans used in retrieval but also as “update plans” or com-
binations of retrieval and update plans. The stream con-
cept is very open; in particular, anonymous inputs shield
existing query processing modules and the new iterators
from one another.

Fourth, to include a new query processing algorithm in
Volcano, e.g., an algorithm for transitive closure or nest
and unnest operations for nested relations, the algorithm
needs to be coded in the iterator paradigm. In other words,
the algorithm implementation must provide open, next,
and close procedures, and must use these procedures for
its input stream or streams. After an algorithm has been
brought into this form, its integration with Volcano is
trivial. In fact, as the Volcano query processing software
became more complex and complete, this was done a
number of times. For example, the one-to-many match or
division operators [161 were added without regard to the
other operators, and when the early in-memory-only ver-
sion of hash-based one-to-one match was replaced by the
version with overflow management described above, none
of the other operators or meta-operators had to be
changed. Finally, a complex object assembly operator was
added recently to Volcano [26].

Extensibility can also be considered in a different con-
text. In the long run, it clearly is desirable to provide an
interactive front-end to make using Volcano easier. We
are currently working on a two front-end, a nonoptimized
command interpreter based on Volcano’s executable al-
gebra and an optimized one based on a logical algebra or
calculus language including query optimization imple-
mented with a new optimizer generator. The translation
between plans as produced by an optimizer and Volcano
will be. accomplished using a module that “walks” query
evaluation plans produced by the optimizer and Volcano
plans, i.e., state records, support functions, etc. We will
also use the optimizing front-end as a vehicle for experi-
mentation with dynamic query evaluation plans that are
outlined in the next section.

In summary, since Volcano is very modular in its de-
sign, extensibility is provided naturally. It could be ar-
gued that this is the case only because Volcano does not
address the hard problems in extensibility. However, this
argument does not hold. Rather, Volcano is only one
component of a database system, namely the query exe-
cution engine. Therefore, it addresses only a subset of the
extensibility problems and ignores a different subset. As
a query processing engine, it provides extensibility of its
set of query processing algorithms, and it does so in a way
that matches well with the extensibility as provided by

GRAEFE: VOLCANO-QUERY EVALUATION SYSTEM 129

query optimizer generators. It does not provide other da-
tabase services and abstractions like a type system and
type checking for the support functions since it is not an
extensible database system. The Volcano routines assume
that query evaluation plans and their support functions are
correct. Their correctness has to be ensured before Vol-
cano is invoked, which is entirely consistent with the gen-
eral database systems concept to ensure correctness at the
highest possible level, i.e. , as soon as possible after a user
query is parsed. The significance of Volcano as an exten-
sible query evaluation system is that it provides a simple
but very useful and powerful set of mechanisms for effi-
cient query processing and that it can and has been used
as a flexible research tool. Its power comes not only from
the fact that it has been implemented following a few con-
sistent design principles but also from its two meta-op-
erators described in the next two sections.

V. DYNAMIC QUERY EVALUATION PLANS

In most database systems, a query embedded in a program
written in a conventional programming language is opti-
mized when the program is compiled. The query opti-
mizer must make assumptions about the values of the pro-
gram variables that appear as constants in the query and
the data in the database. These assumptions include that
the query can be optimized realistically using guessed
“typical’ ’ values for the program variables and that the
database will not change significantly between query op-
timization and query evaluation. The optimizer must also
anticipate the resources that can be committed to query
evaluation, e.g., the size of the buffer or the number of
processors. The optimality of the resulting query evalua-
tion plan depends on the validity of these assumptions. If
a query evaluation plan is used repeatedly over an ex-
tended period of time, it is important to determine when
reoptimization is necessary. We are working on a scheme
in which reoptimization can be avoided by using a new
technique called dynamic query evaluation plans [17]. ’

Volcano includes a choose-plan operator that allows re-
alization of both multiplan access modules and dynamic
plans. In some sense, it is not an operator as it does not
perform any data manipulations. Since it provides control
for query execution it is a meta-operator. This operator
provides the same open-next-close protocol as the other
operators and can therefore be inserted into a query plan
at any location. The open operation decides which of sev-
eral equivalent query plans to use and invokes the open
operation for this input. Open calls upon a support func-
tion for this policy decision, passing it the bindings pa-
rameter described above. The next and close operations
simply call the appropriate operation for the input chosen
during open.

Fig. 4 shows a very simple dynamic plan. Imagine a
selection predicate controlled by a program variable. The

Print

Choose-Plan

/ \
Functional Join File Scan

Index Scan
Fig. 4. A dynamic query evaluation plan.

index scan and functional join can be much faster than the
file scan, but not when the index is nonclustering and a
large number of items must be retrieved. Using the plan
of Fig. 4, however, the optimizer can prepare effectively
for both cases, and the application program using this dy-
namic plan will perform well for any predicate value.

The choose-plan operator allows considerable flexibil-
ity. If only one choose-plan operator is used as the top of
a query evaluation plan, it implements a multiplan access
module. If multiple choose-plan operators are included in
a plan, they implement a dynamic query evaluation plan.
Thus, all forms of dynamic plans identified in [171 can be
realized with one simple and effective mechanism. Note
that the choose-plan operator does not make the policy
decision concerning which of several plans to execute; it
only provides the mechanism. The policy is imported us-
ing a support function. Thus, the decision can be made
depending on bindings for query variables (e.g., program
variables used as constants in a query predicate), on the
resource and contention situation (e. g . , the availability of
processors and memory), other considerations such as user
priority, or all of the above.

The choose-plan operator provides significant new
freedom in query optimization and evaluation with an ex-
tremely small amount of code. Since it is compatible with
the query processing paradigm, its presence does not af-
fect the other operators at all, and it can be used in a very
flexible way. The operator is another example for Vol-
cano’s design principle to provide mechanisms to imple-
ment a multitude of policies. We used the same philoso-
phy when designing and implementing a scheme for
parallel query evaluation.

VI. MULTIPROCESSOR QUERY EVALUATION

A large number of research and development projects
have shown over the last decade that query processing in
relational database systems can benefit significantly from
parallel algorithms. The main reasons parallelism is rel-
atively easy to exploit in relational query processing sys-
tems are 1) query processing is performed using a tree of
operators that can be executed in separate processes and
processors connected with pipelines (inter-operator par-
allelism) and 2) each operator consumes and produces sets
that can be partitioned or fragmented into disjoint subsets
to be processed in parallel (intra-operator parallelism). ‘This section is a brief summary of [171.

130 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

Fortunately, the reasons parallelism is easy to exploit in
relational systems does not require the relational data
model per se, only that queries be processed as sets of
data items in a tree of operators. These are exactly the
assumptions made in the design of Volcano, and it was
therefore logical to parallelize extensible query process-
ing in Volcano.

Print

I
Exchange

Join
When Volcano was ported to a multiprocessor ma-

chine, it was desirable to use all single-process query pro-
cessing code existing at that point without any change.
The result is very clean, self-scheduling parallel process-
ing. We call this novel approach the operator model of
parallelizing a query evaluation engine [20] .2 In this
model, all parallelism issues are localized in one operator
that uses and provides the standard iterator interface to the
operators above and below in a query tree.

/ \
Join

/ \

Exchange

Exchange Exchange Scan

The module responsible for parallel execution and syn-
chronization is called the exchange iterator in Volcano.
Notice that it is an iterator with open, next, and close pro-
cedures; therefore, it can be inserted at any one place or
at multiple places in a complex query tree. Fig. 5 shows
a complex query execution plan that includes data pro-
cessing operators, i.e. , file scans and joins, and exchange
operators. The next two figures will show the processes
created when this plan is executed.

Fig. 5. Operator model of parallelization.

waits for data to
record at a time.
that it can close,
turns.

arrive via the port and returns them a
Close - exchange informs the producer
waits for an acknowledgment, and re-

This section describes how the exchange iterator im-
plements vertical and horizontal parallelism followed by
discussions of alternative modes of operation of Vol-
cano’s exchange operator and modifications to the file
system required for multiprocess query evaluation. The
description goes into a fair amount of detail since the ex-
change operator adds significantly to the power of Vol-
cano. In fact, it represents a new concept in parallel query
execution that is likely to prove useful in parallelizing both
existing commercial database products and extensible sin-
gle-process systems. It is described here for shared-mem-
ory systems only; considerations for the distributed-mem-
ory version are outlined as future work in the last section
of this paper.

Fig. 6 shows the processes created for vertical paral-
lelism or pipelining by the exchange operators in the query
plan of the previous figure. The exchange operators have
created the processes, and are executing on both sides of
the process boundaries, hiding the existence of process
boundaries from the “work” operators. The fact that the
join operators are executing within the same process, i.e.,
the placement of the exchange operators in the query tree,
was arbitrary. The exchange operator provides only the
mechanisms for parallel query evaluation, and many other
choices (policies) would have been possible. In fact, the
mechanisms provided in the operator model tend to be
more flexible and amenable to more different policies than
in the alternative bracket model [20].

A. Vertical Parallelism

The first function of exchange is to provide vertical
parallelism or pipelining between processes. The open
procedure creates a new process after creating a data
structure in shared memory called a port for synchroni-
zation and data exchange. The child process is an exact
duplicate of the parent process. The exchange operator
then takes different paths in the parent and child pro-
cesses.

In the producer process, the exchange operator be-
comes the driver for the query tree below the exchange
operator using open, next, and close on its input. The out-
put of next is collected in packets, which are arrays of
Next-Record structures. The packet size is an argument in
the exchange iterator’s state record, and can be set be-
tween 1 and 32 000 records. When a packet is filled, it is
inserted into a linked list originating in the port and a
semaphore is used to inform the consumer about the new
packet. Records in packets are fixed in the shared buffer
and must be unfixed by a consuming operator.

The parent process serves as the consumer and the child
process as the producer in Volcano. The exchange oper-
ator in the consumer process acts as a normal iterator, the
only difference from other iterators is that it receives its
input via inter-process communication rather than iterator
(procedure) calls. After creating the child process,
open-exchange in the consumer is done. Next-exchange

When its input is exhausted, the exchange operator in
the producer process marks the last packet with an end-
of-stream tag, passes it to the consumer, and waits until
the consumer allows closing all open files. This delay is
necessary in Volcano because files on virtual devices must
not be closed before all their records are unpinned in the
buffer. In other words, it is a peculiarity due to other de-
sign decisions in Volcano rather than inherent in the ex-
change iterator on the operator model of parallelization.

The alert reader has noticed that the exchange module -
2Parts of this section have appeared in [20]. uses a different dataflow paradigm than all other opera-

GRAEFE: VOLCANO-QUERY EVALUATION SYSTEM 131

Print 3

Fig. 6. Vertical parallelism.

tors. While all other modules are based on demand-driven
dataflow (iterators, lazy evaluation), the producer-con-
sumer relationship of exchange uses data-driven dataflow
(eager evaluation). There are two reasons for this change
in paradigms. First, we intend to use the exchange oper-
ator also for horizontal parallelism, to be described be-
low, which is easier to implement w ith data-driven data-
flow. Second, this scheme removes the need for request
messages. Even though a scheme with request messages,
e.g., using a semaphore, would probably perform accept-
ably on a shared-memory machine, it would create un-
necessary control overhead and delays. Since very-high
degrees of parallelism and very-high-performance query
evaluation require a closely tied network, e.g., a hyper-
cube, of shared-memory machines, we decided to use a
paradigm for data exchange that has been proven to per-
form well in a “shared-nothing” database machine [111.

A run-time switch of exchange enables Jlow control or
back pressure using an additional semaphore. If the pro-
ducer is significantly faster than the consumer, the pro-
ducer may pin a significant portion of the buffer, thus
impeding overall system performance. If flow control is
enabled, after a producer has inserted a new packet into
the port, it must request the flow control semaphore. After
a consumer has removed a packet from the port, it re-
leases the flow control semaphore. The initial value of the
flow control semaphore determines how many packets the
producers may get ahead of the consumers.

Notice that flow control and demand-driven dataflow
are not the same. One significant difference is that flow
control allows some “ slack’ ’ in the synchronization of
producer and consumer and therefore truly overlapped ex-
ecution, while demand-driven dataflow is a rather rigid
structure of request and delivery in which the consumer
waits while the producer works on its next output. The
second significant difference is that data-driven dataflow

is easier to combine efficiently with horizontal parallelism
and partitioning.

B. Horizontal Parallelism

There are two forms of horizontal parallelism, which
we call bushy parallelism and intra-operator parallelism.
In bushy parallelism, different CPU’s execute different
subtrees of a complex query tree. Bushy parallelism and
vertical parallelism are forms of inter-operator parallel-
ism. Intra-operator parallelism means that several CPU’s
perform the same operator on different subsets of a stored
dataset or an intermediate result.

Bushy parallelism can easily be implemented by insert-
ing one or two exchange operators into a query tree. For
example, in order to sort two inputs into a merge-join in
parallel, the first or both inputs are separated from the
merge-join by an exchange operation. The parent process
turns to the second sort immediately after forking the child
process that will produce the first input in sorted order.
Thus, the two sort operations are working in parallel.

Intra-operator parallelism requires data partitioning.
Partitioning of stored datasets is achieved by using mul-
tiple files, preferably on different devices. Partitioning of
intermediate results is implemented by including multiple
queues in a port. If there are multiple consumer pro-
cesses, each uses its own input queue. The producers use
a support function to decide into which of the queues (or
actually, into which of the packets being filled by the pro-
ducer) an output record must go. Using a support function
allows implementing round-robin-, key-range-, or hash-
partitioning.

Fig. 7 shows the processes created for horizontal par-
allelism or partitioning by the exchange operators in the
query plan shown earlier. The join operators are executed
by three processes while the file scan operators are exe-
cuted by one or two processes each, typically scanning
file partitions on different devices. To obtain this group-
ing of processes, the only difference to the query plan used
for the previous figure is that the “degree of parallelism’ ’
arguments in the exchange state records have to be set to
2 or 3, respectively, and that partitioning support func-
tions must be provided for the exchange operators that
transfer file scan output to the joint processes. All file scan
processes can transfer data to all join processes; however,
data transfer between the join operators occurs only within
each of the join processes. Unfortunately, this restriction
renders this parallelization infeasible if the two joins are
on different attributes and partitioning-based parallel join
methods are used. For this case, a variant of exchange is
supported in Volcano exchange operator called inter-
change, which is described in the next section.

If an operator or an operator subtree is executed in par-
allel by a group of processes, one of them is designated
the master. When a query tree is opened, only one process
is running, which is naturally the master. When a master
forks a child process in a producer-consumer relation-
ship, the child process becomes the master within its
group. The first action of the master producer is to deter-

132 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, FEBRUARY 1994

Print ($

Fig. 7. Horizontal parallelism.

mine how many slaves are needed by calling an appro-
priate support function. If the producer operation is to run
in parallel, the master producer forks the other producer
processes.

After all producer processes are forked, they run with-
out further synchronization among themselves, with two
exceptions. First, when accessing a shared data structure,
e.g., the port to the consumers or a buffer table, short-
term locks must be acquired for the duration of one linked-
list insertion. Second, when a producer group is also a
consumer group, i.e., there are at least two exchange op-
erators and three process groups involved in a vertical
pipeline, the processes that are both consumers and pro-
ducers synchronize twice. During the (very short) interval
between synchronizations, the master of this group cre-
ates a port that serves all processes in its group.

When a close request is propagated down the tree and
reaches the first exchange operator, the master consum-
er’s close-exchange procedure informs all producer pro-
cesses that they are allowed to close down using the
semaphore mentioned above in the discussion on vertical
parallelism. If the producer processes are also consumers,
the master of the process group informs its producers, etc.
In this way, all operators are shut down in an orderly fash-
ion, and the entire query evaluation is self-scheduling.

C. Variants of the Exchange Operator

There are a number of situations for which the ex-
change operator described so far required some modifi-
cations or extensions. In this section, we outline addi-
tional capabilities implemented in Volcano’s exchange
operator. All of these variants have been implemented in
the exchange operator and are controlled by arguments in
the state record.

For some operations, it is desirable to replicate or
broadcast a stream to all consumers. For example, one of

the two partitioning methods for hash-division [161 re-
quires that the divisor be replicated and used with each
partition of the dividend. Another example are fragment-
and-replicate parallel join algorithms in which one of the
two input relations is not moved at all while the other
relation is sent to all processors. To support these algo-
rithms, the exchange operator can be directed to send all
records to all consumers, after pinning them appropriately
multiple times in the buffer pool. Notice that it is not nec-
essary to copy the records since they reside in a shared
buffer pool; it is sufficient to pin them such that each con-
sumer can unpin them as if it were the only process using
them.

During implementation and benchmarking of parallel
sorting [181, [21], we added two more features to ex-
change. First, we wanted to implement a merge network
in which some processors produce sorted streams merge
concurrently by other processors. Volcano’s sort iterator
can be used to generate a sorted stream. A merge iterator
was easily derived from the sort module. It uses a single
level merge, instead of the cascaded merge of runs used
in sort. The input of a merge iterator is an exchange. Dif-
ferently from other operators, the merge iterator requires
to distinguish the input records by their producer. As an
example, for a join operation it does not matter where the
input records were created, and all inputs can be accu-
mulated in a single input stream. For a merge operation,
it is crucial to distinguish the input records by their pro-
ducer inorder to merge multiple sorted streams correctly.

We modified the exchange module such that it can keep
the input records separated according to their producers.
A third argument to next exchange is used to communi- -
cate the required producer from the merge to the exchange
iterator. Further modifications included increasing the
number of input buffers used by exchange, the number of
semaphores (including for flow control) used between
producer and consumer part of exchange, and the logic
for end-of-stream. All these modifications were imple-
mented in such a way that they support multilevel merge
trees, e.g., a parallel binary merge tree as used in [3].
The merging paths are selected automatically such that
the load is distributed as evenly as possible in each level.

Second, we implemented a sort algorithm that sorts data
randomly partitioned (or “striped” [29]) over multiple
disks into a range-partitioned file with sorted partitions,
i.e., a sorted file distributed over multiple disks. When
using the same number of processors and disks, two pro-
cesses per CPU were required, one to perform the file
scan and partition the records and another one to sort
them. Creating and running more processes than proces-
sors can inflict a significant cost since these processes
compete for the CPU’s and therefore require operating
system scheduling.

In order to make better use of the available processing
power, we decided to redue the number of processes by
half, effectively moving to one process per CPU. This
required modifications to the exchange operator. Until
then, the exchange operator could “live” only at the top

GRAEFE: VOLCANO-QUERY EVALUATION SYSTEM

or the bottom of the operator tree in a process. Since the
modification, the exchange operator can also be in the
middle of a process’ operator tree. When the exchange
operator is opened, it does not fork any processes but es-
tablishes a communication port for data exchange. The
next operation requests records from its input tree, pos-
sibly sending them off to other processes in the group,
until a record for its own partition is found. This mode of
operation was termed interchange, and was referred to
earlier in the discussion of Fig. 7.

This mode of operation also makes flow control obso-
lete. A process runs a producer (and produces input for
the other processes) only if it does not have input for the
consumer. Therefore, if the producers are in danger of
overrunning the consumers, none of the producer opera-
tors gets scheduled, and the consumers consume the
available records.

D. File System ModiJications

The file system required some modifications to serve
several processes concurrently. In order to restrict the ex-
tent of such modifications, Volcano currently does not in-
clude protection of files and records other than each disk’s
volume table of contents. Furthermore, typically nonre-
petitive actions like mounting a device must be invoked
by the query root process before or after a query is eval-
uated by multiple processes.

The most intricate changes were required for the bu$er
module. In fact, making sure the buffer manager would
not be a bottleneck in a shared-memory machine was an
interesting subproject independent of database query pro-
cessing [181. Concurrency control in the buffer manager
was designed to provide a testbed for future research with
effective and efficient mechanisms, and not to destroy the
separation of policies and mechanisms.

Using one exclusive lock is the simplest way to protect
a buffer pool and its internal data structures. However,
decreased concurrency would have removed most or all
advantages of parallel query processing. Therefore, the
buffer uses a two-level scheme. There is a lock for each
buffer pool and one for each descriptor (page or cluster
resident in the buffer). The buffer pool lock must be held
while searching or updating the hash tables and bucket
chains. It is never held while doing Z/O; thus, it is never
held for a long period of time. A descriptor or cluster lock
must be held while doing Z/O or while updating a descrip-
tor in the buffer, e.g., to decrease its fix count.

If a process finds a requested cluster in the buffer, it
uses an atomic test-and-lock operation to lock the descrip-
tor. If this operation fails, the pool lock is released, the
operation delayed and restarted. It is necessary to restart
the buffer operation including the hash table lookup be-
cause the process that holds the lock might be replacing
the requested cluster. Therefore, the requesting process
must wait to determine the outcome of the prior operation.
Using this restart-scheme for descriptor locks has the ad-
ditional benefit of avoiding deadlocks. The four condi-
tions for deadlock are mutual exclusion, hold-and-wait,

133

no preemption, and circular wait; Volcano’s restart
scheme does not satisfy the second condition. On the other
hand, starvation is theoretically possible but has become
extremely unlikely after buffer modifications that basi-
cally eliminated buffer contention.

In summary, the exchange module encapsulates paral-
lel query processing in Volcano. It provides a large set of
mechanisms useful in parallel query evaluation. Only very
few changes had to be made in the buffer manager and the
other file system modules to accommodate parallel exe-
cution. The most important properties of the exchange
module are that it implements three forms of parallel pro-
cessing within a single module, that it makes parallel
query processng entirely self-scheduling, supports a va-
riety of policies, e.g., partitioning schemes or packet
sizes, and that it did not require any changes in the exist-
ing query processing modules, thus leveraging signifi-
cantly the time and effort spent on them and allowing easy
parallel implementation of new algorithms. It entirely
separates data selection, manipulation, derivation, etc.
from all parallelism issues, and may therefore prove use-
ful in parallelizing other systems, both relational com-
mercial and extensible research systems.

VII. SUMMARY AND CONCLUSIONS

We have described Volcano, a new query evaluation
system that combines compactness, efficiency, extensi-
bility, and parallelism in a dataflow query evaluation sys-
tem. Compactness is achieved by focusing on few general
algorithms. For example, the one-to-one match operator
implements join, semi-join, our join, anti-join, duplica-
tion elimination, aggregation, intersection, union, differ-
ence, and anti-difference. Extensibility is achieved by im-
plementing only one essential abstraction, streams, and
by relying on imported support functions for object inter-
pretation and manipulation. The details of streams, e.g.,
type and structure of their elements, are not part of the
stream definition and its implementation, and can be de-
termined at will, making Volcano a data-model-inde-
pendent set processor. The separation of set processing
control in iterators and object interpretation and manip-
ulation through support functions contributes significantly
to Volcano’s extensibility.

The Volcano design and implementation was guided by
a few simple but generally useful principles. First, Vol-
cano implements mechanisms to support policies that can
be determined by a human experimenter or a query opti-
mizer. Second, operators are implemented as iterators to
allow efficient transfer of data and control within a single
process. Third, a uniform operator interface allows for
integration of new query processing operators and algo-
rithms. Fourth, the interpretation and manipulation of
stream elements is consistently left open to allow sup-
porting any data model and processing items of any type,
shape, and representation. Finally, the encapsulated im-
plementation of parallelism allows developing query pro-
cessing algorithms in a single-process environment but
executing them in parallel. These principles have led to a

134 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. I, FEBRUARY 1994

very flexible, extensible, and powerful query processing
engine.

Volcano introduces two novel meta-operators. Dy-
namic query evaluation plans are a new concept intro-
duced in [171 that allow efficient evaluation of queries with
free variables. The choose-plan meta-operator at the top
of a plan or a subplan makes an efficient -decision which
alternative plan to use when the plan is invoked. Dynamic
plans have the potential of increasing the performance of
embedded and repetitive queries significantly.

Dataflow techniques are used within processes as well
as between processes. Within a process, demand-driven
dataflow is implemented by means of streams and itera-
tors. Streams and iterators represent the most efficient ex-
ecution model in terms of time and space for single-pro-
cess query evaluation. Between processes, data-driven
dataflow is used to pass data between producers and con-
sumers efficiently. If necessary, Volcano’s data-driven
dataflow can be augmented with flow control or back
pressure. Horizontal partitioning can be used both on
stored and intermediate datasets to allow intra-operator
parallelism. The design of the exchange meta-operator
encapsulates the parallel execution mechanism for verti-
cal, bushy, and intra-operator parallelism, and it performs
the translations from demand-driven to data-driven data-
flow and back [20].

Encapsulating all issues of parallelism control in one
operator and thus orthogonalizing data manipulation and
parallelism offers important extensibility and portability
advantages. All data manipulation operators are shielded
from parallelism issues, and have been designed, de-
bugged, tuned, and preliminarily evaluated in a single-
process environment. To parallelize a new operator, it
only has to be combined with the exchange operator in a
query evaluation plan. To port all Volcano operators to a
new parallel machine, only the exchange operator re-
quires appropriate modifications. At the current time, the
exchange operator supports parallelism only on shared-
memory machines. We are currently working on extend-
ing this operator to support query processing on distrib-
uted-memory machines while maintaining its encapsula-
tion properties. However, we do not want to give up the
advantages of shared memory, namely fast communica-
tion and synchronization. A recent investigation demon-
strated that shared-memory architectures can deliver near-
linear speed-up for limited degrees of parallelism; we ob-
served a speed-up of 14.9 with 16 CPU’s for parallel sort-
ing in Volcano [181. To combine the bets of both worlds,
we are building our software such that it runs on a closely-
tied group, e.g., a hypercube or mesh architecture, of
shared-memory parallel machines. Once this version of
Volcano’s exchange operator and therefore all of Volcano
runs on such machines, we can investigate query process-
ing on hierarchical architectures and heuristics of how
CPU and Z/O power as well as memory can best be placed
and exploited in such machines.

Most of today’s parallel machines are built as one of
the two extreme cases of this hierarchical design: a dis-
tributed-memory machine uses single-CPU nodes, while

a shared-memory machine consists of a single node. Soft-
ware designed for this hierarchical architecture will run
on either conventional design as well as a genuinely hi-
erarchical machine, and will allow exploring trade-offs in
the range of alternatives in between. Thus, the operator
model of parallelization also offers the advantage of ar-
chitecture- and topology-independent parallel query eval-
uation [191.

A number of features make Volcano an interesting ob-
ject for further performance studies. First, the LRU/MRU
buffer replacement strategy switched by a keep-or-toss
hint needs to be evaluated. Second, using clusters of dif-
ferent sizes on a single device and avoiding buffer shuf-
fling by allocating buffer space dynamically instead of
statically require careful evaluation. Third, the duality and
trade-offs between sort- and hash-based query processing
algorithms and their implementations will be explored
further. Fourth, Volcano allows measuring the perfor-
mance of parallel algorithms and identifying bottlenecks
on a shared-memory architecture, as demonstrated for in-
stance in [181. We intend to perform similar studies on
distributed-memory and, as they become available, hier-
archical architectures. Fifth, the advantages and disad-
vantages of a separate scheduler process in distributed-
memory query processing (as used in GAMMA) will be
evaluated. Finally, after data-driven dataflow has been
shown to work well on a shared-nothing database machine
[111, the combination of demand- and data-driven data-
flow should be explored on a network on shared-memory
computers.

While Volcano is a working system in its current form,
we are considering several extensions and improvements.
First, Volcano currently does very extensive error detec-
tion, but it does not encapsulate errors in fail-fast mod-
ules. It would be desirable to modify all modules such that
they have all-or-nothing semantics for all requests. This
might prove particularly tricky for the exchange module,
even more so in a distributed-memory environment. Sec-
ond, for a more complete performance evaluation, Vol-
cano should be enhanced to a multiuser system that allows
inter-query parallelism. Third, to make it a complete data
manager and query processor, transactions semantics in-
cluding recovery should be added.

Volcano is the first operational query evaluation system
that combines extensibility and parallelism. We believe
that Volcano is a powerful tool for database systems re-
search and education. We are making it available for stu-
dent use, e.g., for implementation and performance stud-
ies, and have given copies to selected outside
organizations. We intend to use it in a number of further
research projects, including research on the optimization
and evaluation of dynamic query evaluation plans [171 and
the REVELATION project on query optimization and exe-
cution in object-oriented database systems with encapsu-
lated behavior [151.

ACKNOWLEDGMENT

The one-to-one match operators were implemented by
Tom Keller starting with existing hash join, hash aggre-

GRAEFE: VOLCANO--QUERY EVALUATION SYSTEM

gate, merge join, and sort code. Hash table overflow man-
agement was added by Mark Swain- Dynamic query eval-
uation plans and the choose-plarz operator were designed
and implemented by Karen Ward. We are also very much
indebted to all members of the GAMMA and EXODUS
projects. Leonard Shapiro contributed to the quality and
clarity of the exposition with many insightful comments.
David Dewitt, Jim Gray, ‘David Maier, Bill McKenna,
Marguerite Murphy, and Mike Stonebraker gave very
helpful comments on earlier drafts of this paper. The
anonymous referees gave some further helpful sugges-
tions.

REFERENCES

[l] D. S. Batory. J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda,
B. C. Twichell, and T. E. Wise, “GENESIS: An extensible database
management system, ” IEEE Trum. Softwure Erq., vol. 14, p. 171 1,
Nov. 1988.

[2] D. Bitton and D. J. Dewitt, “Duplicate record elimination in large
data files, ’ ’ ACM Trans. Dutuhusu Syst., vol. 8, p. 255, June 1983.
D. Bitton, H. Boral, D. J. Dewitt, and W. K. Wilkinson, “Parallel
algorithms for the execution of relational database operations,” ACM
Truns. Dutubuse Syst. , vol. 8, p. 324, Sept. 1983.
K. Bratbergsengen, “Hashing methods and relational algebra opera-
tions,” in Proc Confl Very Large Data Buses, Singapore, Aug. 1984,
p. 323.
M. J. Carey, D. J. Dewitt, J. E. Richardson, and E. J. Shekita, “Ob-
ject and file management in the EXODUS Extensible database sys-
tem,” in Proc. ConJ Very Large Data Buses, Kyoto, Japan, Aug.
1986, p. 91.
M. J. Carey, D. J. Dewitt, and S. L. Vandenberg, “A data model
and query language for EXODUS,” in Proc. ACM SZGMOD Conf.,
Chicago, IL, June 1988, p. 413.
M. J. Carey, D. J. Dewitt, G. Graefe, D. M. Haight, J. E. Richard-
son, D. T. Schuh, E. J. Shekita, and S. Vandenberg, “The EXODUS
extensible DBMS Project: An overview ,” in Readings on Object-Ori-
ented Database Systems, D. M. S. Zdonik, Ed. San Mateo, CA:
Morgan Kaufman, 1990.
J. V. Carlis, “HAS: A relational algebra operator, or divide is not
enough to conquer, ” in Proc. IEEE Conf. Data Eng., Los Angeles,
CA, Feb. 1986, p. 254.
D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray,
W. F. King, B. G. Lindsay, R. Lorie, J. W. Mehl, T. G. Price, F.
Putzolo, P. G. Selinger, M. Schkolnik, D. R. Slutz, I. L. Traiger,
B. W. Wade, and R. A. Yost, “A history and evaluation of system
R,” Commun. Assoc. Comput. Much., vol. 24, p. 632, Oct. 1981.

[lo] H. T. Chou, D. J. Dewitt, R. H. Katz, and A. C. Klug, “Design
and implementation of the Wisconsin storage system,” Software-
Practice Experience, vol. 15, no. 10, p. 943, Oct. 1985.

[111 D. J. Dewitt, S. Ghandeharadizeh, D. Schneider, A. Bricker, H. I.
Hsiao, and R. Rasmussen, ‘ ‘The Gamma database machine project, ’ ’
IEEE Trans. Knowledge Dutu Eng., vol. 2, p. 44, Mar. 1990.

[12] S. Fushimi, M. Kitsuregawa and H. Tanaka, “An overview of the
system software of a parallel relational database machine GRACE,”
in Proc. Con& Very Large Data Bases, Kyoto, Japan, Aug. 1986, p.
209.

[13] G. Graefe and D. J. Dewitt, “The EXODUS optimizer generator, ”
in Proc. ACM SZGMOD Conf., San Francisco, CA, May 1987, p.
160.

[14] G. Graefe, “Rule-based query optimization in extensible database
systems, ” Ph. D. dissertation Univ. Wisconsin-Madison, Aug. 1987.

[IS] G. Graefe and D. Maier, “Query optimization in object-oriented da-

U6

[17

118

1

tabase systems: A prospectus,” in Adrunces in Object-Oriented Du-
tubuse Systems, Lecture Notes in Computer Science, vol. 334, K. R.
Dittrich, Ed. New York: Springer-Verlag, Sept. 1988, p. 358.
G. Graefe, “Relational division: Four algorithms and their perfor-
mance, ’ ’ in Proc. IEEE Conf. Data Eng., Los Angeles, CA, Feb.
1989, p. 94.
G. Graefe and K. Ward, “Dynamic query evaluation plans,” in Proc.
ACM SIGMOD Conf., Portland, OR, May-June 1989, p. 358.
G. Graefe and S. S. Thakkar, “Tuning a parallel database algorithm

13s

on a shared-memory rrlultiprocessor-.” ,Tc,~i,l’ur-c~-Prli(~tic.c’ mcl hp-
rictlcnc, vol . 22, no. 7, July VW, p. 485.

1191 G. Graet‘e and D. I,. Davison. “Encapsulation of Parallelism and Ar-

1

chitecture-Independence in Extensible Database Query Processing. ”
to appear in l&?E Trum. OII &!#iw. E,‘rz~. . vol. 19, no. 8, August
1993.
G. Graefe, “Encapsulation of parallelism in the Volcano query pro-
cessing system, ’ ’ in Proc. ACM SIGMOD Corz$, Atlantic City, NJ,
May 1990, p. 102.

“Parallel external sorting
Sci.‘Tech. Rep. 459, Feb. 1990.

in Volcano,” CU Boulder Comput.

A. Guttman, “R-trees: A dynamic index structure for spatial search-
ing,” in Proc. ACM SIGMOD Conf., Boston, MA, June 1984, p. 47.

[23] L. Haas, W. Chang, G. Lohman, J. McPherson, P. F. Wilms, G.
Lapis, B. Lindsay, H. Pirahesh, and M. J. Carey, and E. Shekita,
“Starburst mid-flight: As the dust clears,” IEEE Truns. Knowledge
Data Eng., vol. 2, p. 143, Mar. 1990.

1241 S. E. Hudson and R. King, ‘ ‘Cactis: A self-adaptive, concurrent im-
plementation of an object-oriented database management system, ”
ACM Truns. Database Syst., vol. 14, p. 29 1, Sept. 1989.

[25] T. Keller and G. Graefe, “The one-to-one match operator of the Vol-
cano query processing system,” Oregon Grad. Center, Comput. Sci.
Tech. Rep., Beaverton, OR, June 1989.

[26] T. Keller, G. Graefe, and D. Maier, “Ethcient assembly of complex
objects,” Proc. ACM SIGMOD Conf., Denver, CO, May 1991, p.
148.

1271 J. E. Richardson and M. J. Carey, “Programming constructs for da-
tabase system implementation in EXODUS, ” in Proc. ACM SIG-
MOD Conf., San Francisco, CA, May 1987, p. 208.

[28] J. E. Richardson, “E: A persistent systems implementation lan-
guage, ’ ’ Comput. Sci. Tech. Rep. 868, Univ. Wisconson-Madison,
Aug. 1989.

1291 K. Salem and H. Garcia-Molina, “Disk Striping,” in Proc. IEEE
Con& Data Eng., Los Angeles, CA, Feb. 1986, p. 336.

[30] H. J. Schek, H. B. Paul, M. H. Scholl, and G. Weikum, “The
DASDBS project: Objectives, experiences, and future prospects,”
IEEE Truns. Knowledge Data Eng., vol. 2, p. 25, Mar. 199.

[31] L. D. Shapiro, “Join processing in database systems with large main
memories, ’ ’ ACM Trans. Database Syst., vol. 11, p. 239, Sept. 1986.

[32] M. Stonebraker, “Retrospection on a database system,” ACM Trans.
Dutabuse Syst., vol. 5, p. 225, June 1980.

[33] M. Stonebraker, P. Aoki, and M. Seltzer, “Parallelism in XPRS,”
UCB/Electronics Research Lab. Memo. M89/16, Berkeley, CA, Feb.
1989.

[34] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout, “The De-
sign of XPRS,” in Proc. Conf. Very Large Databases, Long Beach,
CA, Aug. 1988, p. 318.

[35] M. Stonebraker, L. A. Rowe, and M. Hirohama, “The Implemen-
tation of Postgres, ’ ’ IEEE Trans. Knowledge Data Eng., vol. 2, p.
125, Mar. 1990.

coetz Graefe was an undergraduate student in ----~ -~
business administration and c%mputer science in
Germany before getting his M.S. and Ph.D. de-
owe in rnmnlltpr cripnce in 1984 and 1987. re-

b”’ .a- ‘““‘y - . I - y---mm__ --_ _ _ - __--_ ,

spectively , from the University of Wisconsin-
Madison. His dissertation work was on the EX-
ODUS Optimizer Generator under David Dewitt
and Michael Carey.

In 1987, he joined the faculty of the Oregon
Graduate Institute, where he initiated both the
Volcano project and with David Maier, the REV-

ELATION OODBMS project. From 1989 to 1992, he was with the University
of Colorado at Boulder. Since 1992, he has been an Associate Professor
with Portland State University. He is currently working on extensions to
Volcano, including a new optimizer generator, on request processing in
OODBMS’s and scientific databases, and on physical database design.

