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Volcano-An Extensible and Parallel Query 
Evaluation System 

Goetz Graefe 

Abstract-To investigate the interactions of extensibility and 
parallelism in database query processing, we have developed a 
new dataflow query execution system called Volcano. The Vol- 
cano effort provides a rich environment for research and edu- 
cation in database systems design, heuristics for query opti- 
mization, parallel query execution, and resource allocation. 

Volcano uses a standard interface between algebra opera- 
tors, allowing easy addition of new operators and operator im- 
plementations. Operations on individual items, e.g., predi- 
cates, are imported into the query processing operators using 
support functions. The semantics of support functions is not 
prescribed; any data type including complex objects and any 
operation can be realized. Thus, Volcano is extensible with new 
operators, algorithms, data types, and type-specific methods. 

Volcano includes two novel meta-operators. The choose-plan 
meta-operator supports dynamic query evaluation plans that al- 
low delaying selected optimization decisions until run-time, 
e.g., for embedded queries with free variables. The exchange 
meta-operator supports intra-operator parallelism on parti- 
tioned datasets and both vertical and horizontal inter-operator 
parallelism, translating between demand-driven dataflow within 
processes and data-driven dataflow between processes. 

All operators, with the exception of the exchange operator, 
have been designed and implemented in a single-process envi- 
ronment, and parallelized using the exchange operator. Even 
operators not yet designed can be parallelized using this new 
operator if they use and provide the interator interface. Thus, 
the issues of data manipulation and parallelism have become 
orthogonal, making Volcano the first implemented query exe- 
cution engine that effectively combines extensibility and paral- 
lelism. 

Index Terms-Dynamic query evaluation plans, extensible 
database systems, iterators, operator model of parallelization, 
query execution. 

I. INTRODUCTION 

I N ORDER to investigate the interactions of extensibil- 
ity, efficiency, and parallelism in database query pro- 

cessing and to provide a testbed for databse systems re- 
search and education, we have designed and implemented 
a new query evaluation system called Volcano. It is in- 
tended to provide an experimental vehicle for research into 
query execution techniques and query optimization op- 
timization heuristics rather than a database system ready 
to support applications. It is not a complete database sys- 

Manuscript received July 26, 1990; revised September 5, 1991. This 
work was supported in part by the National Science Foundation under 
Grants IRI-8996270, IRI-8912618, and IRI-9006348, and by the Oregon 
Advanced Computing Institute (OACIS). 

The author is with the Computer Science Department, Portland State 
University, Portland, OR 97207-075 1. 

IEEE Log Number 92 11308. 

tern as it lacks features such as a user-friendly query lan- 
guage, a type system for instances (record definitions), a 
query optimizer, and catalogs. Because of this focus, Vol- 
cano is able to serve as an experimental vehicle for a mul- 
titude of purposes, all .of them open-ended, which results 
in a combination of requirements that have not been in- 
tegrated in a single system before. First, it is modular and 
extensible to enable future research, e.g., on algorithms, 
data models, resource allocation, parallel execution, load 
balancing, and query optimization heuristics. Thus, Vol- 
cano provides an infrastructure for experimental research 
rather than a final research prototype in itself. Second, it 
is simple in its design to allow student use and research. 
Modularity and simplicity are very important for this pur- 
pose because they allow students to begin working on 
projects without an understanding of the entire design and 
all its details, and they permit several concurrent student 
projects. Third, Volcano’s design does not presume any 
particular data model; the only assumption is that query 
processing is based on transforming sets of items using 
parameterized operators. To achieve data model indepen- 
dence, the design very consistently separates set process- 
ing control (which is provided and inherent in the Vol- 
cano operators) from interpretation and manipulation of 
data items (which is imported into the operators, as de- 
scribed later). Fourth, to free algorithm design, imple- 
mentation, debugging, tuning, and initial experimentation 
from the intricacies of parallelism but to allow experi- 
mentation with parallel query processing. Volcano can be 
used as a single-process or as a parallel system. Single- 
process query evaluation plans can already be parallelized 
easily on shared-memory machines and soon also on dis- 
tributed-memory machines. Fifth, Volcano is realistic in 
its query execution paradigm to ensure that students learn 
how query processing is really done in commercial data- 
base products. For example, using temporary files to 
transfer data from one operation to the next as suggested 
in most textbooks has a substantial performance penalty, 
and is therefore used in neither real database systems nor 
in Volcano. Finally, Volcano’s means for parallel query 
processing could not be based on existing models since 
all models explored to date have been designed with a 
particular data model and operator set in mind. Instead, 
our design goal was to make parallelism and data manip- 
ulation orthogonal, which means that the mechanisms for 
parallel query processing are independent of the operator 
set and semantics, and that all operators, including new 
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ones, could be designed and implemented independently 
of future parallel execution. 

Following a design principle well established in oper- 
ating systems research but not exploited in most database 
system designs, Volcano provides mechanisms to support 
policies. Policies can be set by a human experimenter or 
by a query optimizer. The separation of mechanisms and 
policies has contributed to the extensibility and modular- 
ity of modern operating systems, and may make the same 
contribution to extensible database systems. We will re- 
turn to this separation repeatedly in this paper. 

Since its very purpose is to allow future extensions and 
research, Volcano is continuously being modified and ex- 
tended. Among the most important recent extensions were 
the design and implementation of two meta-operators. 
Both of them are not only new operators but also embody 
and encapsulate new concepts for query processing. They 
are meta-operators since they do not contribute to data 
manipulation, selection, derivation, etc., but instead pro- 
vide additional control over query processing that cannot 
be provided by conventional operators like file scan, sort, 
and merge join. The choose-plan operator implements dy- 
namic query evaluation plans, a concept developed for 
queries that must be optimized with incomplete informa- 
tion [ 171. For example, it is not possible to reliably op- 
timize an embedded query if one of the constants in the 
query predicate is actually a program variable and there- 
fore unknown during compilation and optimization. Dy- 
namic plans allow preparation for multiple equivalent 
plans, each one optimal for a certain range of actual pa- 
rameter values. The choose-plan operator selects among 
these plans at runtime while all other operators in Vol- 
cano’s operator set (present or future) are entirely obliv- 
ious to the presence and function of the choose-plan op- 
erator. 

The second meta-operator, the exchange operator, im- 
plements and controls parallel query evaluation in Vol- 
cano. While operators can exchange data without the ex- 
change operator, in fact within processes as easily as a 
single procedure call, this new operator exchanges data 
across process and processor boundaries. All other oper- 
ators are implemented and execute without regard to par- 
allelism; all parallelism issues like partitioning and flow 
control are encapsulated in and provided by the exchange 
operator. Thus, data manipulation and parallelism are in- 
deed orthogonal in Volcano [20]. Beyond the cleanliness 
from a software engineering point of view, it is also very 
encouraging to see that this method of parallelizing a 
query processing engine does indeed allow linear or near- 
linear speedup [ 181. 

This paper is a general overview describing the overaii 
goals and design principles. Other articles on Volcano 
were written on special aspects of the system, e.g., [ 16]- 
[21], [25], [26]. These articles also include experimental 
performance evaluations of Volcano’s techniques and al- 
gorithms, in particular [ 181, [2 11. 

The present paper is organized as follows. In the fol- 
lowing section, we briefly review previous work that in- 

fluenced Volcano’s design. A detailed description of Vol- 
cano follows in Section III. Section IV contains a 
discussion of extensibility in the system. Dynamic query 
evaluation plans and their implementation are described 
in Section V. Parallel processing encapsulated in the ex- 
change module is described in Section VI. Section VII 
contains a summary and our conclusions from this effort. 

II. RELATED WORK 

Since so many different systems have been developed 
to process large datesets efficiently, we only survey the 
systems that have significantly influenced the design of 
Volcano. Our work has been influenced most strongly by 
WiSS, GAMMA, and EXODUS. The Wisconsin Storage 
System (WiSS) [lo] is a record-oriented file system pro- 
viding heap files, B-tree and hash indexes, buffering, and 
scans with predicates. GAMMA [ 1 l] is a software data- 
base machine running on a number of general-purpose 
CPU’s as a backend to a UNIX host machine. It was de- 
veloped on 17 VAX 11/750’s connected with each other 
and the VAX 11/750 host via a 80 Mb /s token ring. Eight 
GAMMA processors had a local disk device, accessed us- 
ing WiSS. The disks were accessible only locally, and 
update and selection operators used only these eight pro- 
cessors. The other, diskless processors were used for join 
processing. Recently, the GAMMA software has been 
ported to an Intel iPSC/2 hypercube with 32 nodes, each 
with a local disk drive. GAMMA uses hash-based algo- 
rithms extensively, implemented in such a way that each 
operator is executed on several (usually all) processors 
and the input stream for each operator is partitioned into 
disjoint sets according to a hash function. 

The limited data model and extensibility of GAMMA 
led to the search for a more flexible but equally powerful 
query processing model. The operator design used in the 
GAMMA database machine software gives each operator 
control within its own process, leaving it to the network- 
ing and operating system software to synchronize multi- 
ple operators in producer-consumer relationships using 
flow-control mechanisms. This design, while working ex- 
tremely well in GAMMA, does not lend itself to single- 
process query evaluation since multiple loci of control, 
i.e., multiple operators, cannot be realized inside a single 
process without special pseudo-multiprocess mechanisms 
such as threads. Therefore, GAMMA’s operator and data 
transfer concepts are not suitable for an efficient query 
processing engine intended for both sequential and par- 
allel query execution. 

EXODUS [7] is an extensible database system with 
some components followiong the “tool-kit” approach, 
e.g., the optimizer generator [ 131, [ 141 and the E database 
implementation language [27], [28], and other compo- 
nents built as powerful but fixed components, e.g., the 
storage manager [5]. Originally, EXODUS. was con- 
ceived to be data-model-independent, i.e., it was sup- 
posed to support a wide variety of data models, but later 
a novel, powerful, structurally object-oriented data model 
called Extra was developed [6]. The concept of data model 
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independence as first explored in EXODUS has been re- 
tained in the Volcano project and the design and imple- 
mentation of its software. During the design of the EX- 
ODUS storage manager, many storage and access issues 
explored in WiSS and GAMMA were revisited. Lessons 
learned and trade-offs explored in these discussions cer- 
tainly helped in forming the ideas behind Volcano. The 
design and development of E influenced the strong em- 
phasis on iterators for query processing. 

A number of further conventional (relational) and ex- 
tensible systems have influenced our design. Ingres [32] 
and System R [9] have probably influenced most database 
systems, in particular their extensible follow-on projects 
Starburst [23] and Postgres [35]. It is interesting to note 
that independently of our work the Starburst group has 
also identified the demand-driven interator paradigm as a 
suitable basis for an extensible single-process query eval- 
uation architecture after using it successfully in the Sys- 
tem R relational system, but as yet has not been able to 
combine extensibility with parallelism. GENESIS [ l] 
early on stressed the importance of uniform operator in- 
terfaces for extensibility and software reusability. 

XPRS has been the first project aiming to combine ex- 
tensibility with parallelism [34]. Its basic premise is to 
implement Postgres on top of RAID disk arrays and the 
Sprite operating system. XPRS and GAMMA basically 
differ in four ways. First, GAMMA supports. a purely re- 
lational data model while XPRS supports an extensible 
relational model, Postgres. Second, GAMMA’s main 
form of parallelism is intra-operator parallelism based on 
partitioned data sets. XPRS, on the other hand, will rely 
on bushy parallelism, i.e. , concurrent execution of differ- 
ent subtrees in a complex query evaluation plan. Third, 
GAMMA relies heavily on hashing for joins and aggre- 
gations whereas XPRS will have a mainly sort-based 
query processing engine [33]. Fourth, GAMMA is built 
on the premise that distributed memory is required to 
achieve scalable linear speed-up while XPRS is being im- 
plemented on a shared-memory machine. 

Both XPRS and Volcano combine parallelism and ex- 
tensibility, but XPRS is a far more comprehensive project 
than Volcano. In particular, XPRS includes a data model 
and a query optimizer. On the other hand, Volcano is more 
extensible precisely because it does not presume a data 
model. Therefore, Volcano could be used as the query 
processing engine in a parallel extensible-relational sys- 
tem such as XPRS. Moreover, it will eventually include 
a data-model-independent optimizer generator to form a 
complete query processing research environment. 

III. VOLCANO SYSTEM DESIGN 

In this section, we provide an overview of the design 
of Volcano. At the current time, Volcano is a library of 
about two dozen modules with a total of about 15 000 
lines of C code. These modules include a file system, 
buffer management, sorting, Bf-trees, and two algo- 
rithms each (sort- and hash-based) for natural join, semi- 

join, all three outer joins, anti-joint, aggregation, dupli- 
cate elimination, union, intersection, difference, anti-dif- 
ference, and relational division. Moreover, two modules 
implement dynamic query evaluation plans and allow par- 
allel processing of all algorithms listed above. 

All operations on individual records are deliberately left 
open for later definition. Instead of inventing a language 
in which to specify selection predicates, hash functions, 
etc., functions are passed to the query processing opera- 
tors to be called when necessary with the appropriate ar- 
guments. These support jkzctions are described later in 
more detail. One common and repeating theme in the de- 
sign of Volcano is that it provides mechanisms for query 
evaluation to allow selection of and experimentation with 
policies. The separation of mechanisms and policies is a 
very well-known and well-established principle in the de- 
sign and implementation of operating systems, but it has 
not been used as extensively and consistently in the de- 
sign and implementation of database systems. It has con- 
tributed significantly to the extensibility and modularity 
of modem operating systems, and may make the same 
contribution to extensible database systems. 

Currently, Volcano consists of two layers, the file sys- 
tem layer and the query processing layer. The former pro- 
vides record, file, and index operations including scans 
with optional predicates, and buffering; the latter is a set 
of query processing modules that can be nested to build 
complex query evaluation trees. Fig. 1 identifies Vol- 
cano’s main modules. This separation can be found in 
most query evaluation systems, e.g., RSS and RDS in 
System R [9] and Core and Corona in Starburst [23]. Sys- 
tem catalogs or a data dictionary are not included in Vol- 
cano since the system was designed to be extensible and 
independent from any particular data model. We start our 
description at the bottom, the file system, and then dis- 
cuss the query processing modules. 

A. The File System 
Within our discussion of the Volcano file system, we 

also proceed bottom-up, from buffer management to data 
files and indices. The existing facilities are meant to pro- 
vide a backbone of a query processing system, and are 
designed such that modifications and additions can easily 
be accomplished as the need arises. 

The buffer manager is the most interesting part of the 
file system. Because buffer management is performance- 
critical in any database system, the Volcano buffer man- 
ager was designed to include mechanisms that can be used 
most effectively and efficiently in a large variety of con- 
texts and with a wide array of policies. In consequence, 
its features include multiple buffer pools, variable-length 
units of buffering that are called clusters in Volcano, and 
replacement hints from the next higher software level. 

The buffer manager’s hint facility is an excellent ex- 
ample of Volcano’s design principle to implement mech- 
anisms to support multiple policies. The buffer manager 
only provides the mechanisms, i.e., pinning, page re- 
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Fig. 1. Volcano’s main modules. 

placement, and reading and writing disk pages, while the 
higher level software determines the policies depending 
on data semantics, importance, and access patterns. It is 
surprising that database buffer managers derive replace- 
ment decisions from observed reference behavior in spite 
of the fact that this behavior is generated by higher level 
database software and thus known and foreseeable in ad- 
vance within the same system, albeit different subcom- 
ponents. 

Files are composed of records, clusters, and extents. 
Since file operations are invoked very frequently in any 
database system, all design decisions in the file module 
have been made to provide basic functionality with the 
highest attainable performance. A cluster, consisting of 
one or more pages, is the unit of I/O and of buffering, as 
discussed above. The cluster size is set for each file in- 
dividually. Thus, different files on the same device can 
have different cluster sizes. Disk space for files is allo- 
cated in physically contiguous extents, because extents 
allow very fast scanning without seeks and large-chunk 
read-ahead and write-behind. 

Records are identified by a record identifier (RID), and 
can be accessed directly using the RID. For fast access to 
a large set of records, Volcano supports not only individ- 
ual file and record operations but also scans that support 
read-next and append operations. There are two interfaces 
to file scans; one is part of the file system and is described 
momentarily; the other is part of the query processing 
level and is described later. The first one has the standard 
procedures for file scans, namely open, next, close, and 
rewind. The next procedure returns the main memory ad- 
dress of the next record. This address is guaranteed 
(pinned) until the next operation is invoked on the scan. 
Thus, getting the next record within the same cluster does 
not require calling the buffer manager and can be per- 
formed very efficiently. 

For fast creation of files, scans support an append op- 
eration. It allocates a new record slot, and returns the new 
slot’s main memory address. It is the caller’s responsibil- 
ity to fill the provided record space with useful informa- 
tion, i.e., the append routine is entirely oblivious to the 
data and their representation. 

Scans also support optional predicates. The predicate 
function is called by the next procedure with the argument 
and a record address. Selective scans are the first example 
of support functions mentioned briefly in the introduction. 
Instead of determining a qualification itself, the scan 
mechanism relies on a predicate function imported from 
a higher level. 

Support functions are passed to an operation as a func- 
tion entry point and a typeless pointer that serves as a 
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predicate argument. Arguments to support functions can 
be used in two ways, namely in compiled and interpreted 
query execution. In compiled scans, i.e., when the pred- 
icate evaluation function is available in macvhine code, 
the argument can be used to pass a constant or a pointer 
to several constants to the predicate function. For exam- 
ple, if the predicate consists of comparing a record field 
with a string, the comparison function is passed as pred- 
icate function while the search string is passed as predi- 
cate argument. In interpreted scans, i.e., when a general 
interpreter is used to evaluate all predicates in query, they 
can be used to pass appropriate code to the interpreter. 
The interpreter’s entry point is given as predicate func- 
tion. Thus, both interpreted and compiled scans are sup- 
ported with a single simple and efficient mechanism. Vol- 
cano’s use of support functions and their arguments is 
another example for a mechanism that leaves a policy de- 
cision, in this case whether to use compiled or interpreted 
scans, open to be decided by higher level software. 

Zndices are implemented currently only in the form of 
B + -trees with an interface similar to files. A leaf entry 
consists of a key and information. The information part 
typically is a RID, but it could include more or different 
information. The key and the information can be of any 
type; a comparison function must be provided to compare 
keys. The comparison function uses an argument equiv- 
alent to the one described for scan predicates. Permitting 
any information in the leaves gives more choices in phys- 
ical database design. It is another example of Volcano 
providing a mechanism to allow a multitude of designs 
and usage policies. B + -trees support scans similar to files, 
including predicates and append operations for fast load- 
ing. In addition, B f -tree scans allow seeking to a partic- 
ular key, and setting lower and upper bounds. 

For intermediate results in query processing (later called 
streams), Volcano uses special devices called virtual de- 
vices. The difference between virtual and disk devices is 
that data pages of virtual devices only exist in the buffer. 
As soon as such data pages are unpinned, they disappear 
and their contents are lost. Thus, Volcano uses the same 
mechanisms and function calls for permanent and inter- 
mediate data sets, easing implementation of new opera- 
tors significantly. 

In summary, much of Volcano’s file system is conven- 
tional in its goals but implemented in a flexible, efficient, 
and compact way. The file system supports basic abstrac- 
tions and operations, namely devices, files, records, 
B+-trees, and scans. It provides mechanisms to access 
these objects, leaving many policy decisions to higher 
level software. High performance was a very important 
goal in the design and implementation of these mecha- 
nisms since performance studies and parallelization only 
make sense if the underlying mechanisms are efficient. 
Furthermore, research into implementation and perfor- 
mance trade-offs for extensible database systems and new 
data models is only relevant if an efficient evaluation plat- 
form is used. 
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B. Query Processing 

The file system routines described above are utilized by . 
the query processing routines to evaluate complex quer- w open-filter () 

ies. Queries are expressed as query plans or algebra 
w next-filter () 
* close-filter () 

expressions; the operators of this algebra are query pro- 
cessing algorithms and we call the algebra an executable 
algebra as opposed to logical algebras, ‘e .g . , relational 
algebra. We will describe the operations using relational 
terminology hoping that this will assist the reader. We 
must point out, however, that the operations can be 

. . . . . . 
Arguments !  Input i State . . . . . . . . . \ . 

\ 
viewed and are implemented as operations on sets of ob- 
jects, and that Volcano does not depend on assumptions 
about the internal structure of such objects. In fact, we 
intend to use Volcano for query processing in an object- 
oriented database system [ 151. The key to this use of Vol- 
cano is that set processing and interpretation of data items 
are separated. 

1 
print 0 &I- open-file-scan () 

In Volcano, all algebra operators are implemented as 
iterators, i.e., they support a simple open-next-close pro- 
tocol. Basically, iterators provide the iteration component 
of a loop, i.e., initialization, increment, loop termination 
condition, and final housekeeping. These functions allow 
“iteration’ ’ over the results of any operation similar to 

f 
predicate () 

Fig. 2. Two operators in a query evaluation plan. 

the iteration over the result of a conventional file scan. 
Associated with each iterator is a state record type. A 
state record contains arguments, e.g., the size of a hash 
table to be allocated in the open procedure, and state, e.g., 
the location of a hash table. All state information of an 
iterator is kept in its state record and there are no ‘ ‘static’ ’ 
variables; thus, an algorithm may be used multiple times 
in a query by including more than one state record in the 
query. 

All manipulation and interpretation of data objects, 

open--Zter, can use the input pointer contained in the state 
record to invoke the input operator’s functions. Thus, the 
filter functions can invoke the file scan functions as 
needed, and can pace the file scan according to the needs 
of the filter. In other words, Fig. 2 shows a complete query 
evaluation plan that prints selected records from a file. 

Using Volcano’s standard form of iterators, an operator 
does not need to know what kind of operator produces its 
input, or whether its input comes from a complex query 

e*g*, comparisons and hashing, is passed to the iterators tree or from a simple file scan. We call this concept anon- 
by means of pointers to the entry points of appropriate ymous inputs or streams. Streams are a simple but pow- 
support functions. Each of these support functions uses erful abstraction that allows combining any number and 
an argument allowing interpreted or compiled query eval- any kind of operators to evaluate a complex query, a sec- 
uation, as described earlier for file scan predicates. With- ond cornerstone to Volcano’s extensibility. Together with 
out the support functions, Volcano’s iterators are empty the iterator control paradigm, streams represent the most 
algorithm shells that cannot perform any useful work. In efficient execution model in terms of time (overhead for 
effect, the split into algorithm shells and support functions synchronizing operators) and space (number of records 
separates control and iteration over sets from interpreta- that must reside in memory concurrently) for single-pro- 
tion of records or objects. This separation is one of the cess query evaluation. 
cornerstones’ of Volcano’s data model independent and Calling open for the top-most operator results in instan- 
extensibility, which will be discussed in Section IV. tiations for the associated state record’s state, e.g., allo- 

Iterators can be nested and then operate similarly to cation of a hash table, and in open calls for all inputs. In 
coroutines. State records are linked together by means of this way, all iterators in a query are initiated recursively. 
input pointers. The input pointers are also kept in the state In order to process the query, next for the top-most op- 
records. Fig. 2 shows two operators in a query evaluation erator is called repeatedly until it fails with an end-of- 
plan. Purpose and capabilities of the Jilter operator will stream indicator. The top-most operator calls the next 
be discussed shortly; one of its possible functions is to procedure of its input if it needs more input data to pro- 
print items of a stream using a function passed to the filter duce an output record. Finally, the close call recursively 
operator as one of its arguments. The structure at the top “shuts down” all iterators in the query. This model of 
gives access to the functions as well as to the state record. query execution matches very closely the ones being in- 
Using a pointer to this structure, the filter functions can eluded in the E database implementation language in EX- 
be called and their local state can be passed to them as a 
procedure argument. The functions themselves, e. g . , 

ODUS and the query 
database system. 

executor of the Starburst relational 
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A number of query and environment parameters may 
influence policy decisions during opening a query evalu- 
ation plan, e.g., query predicate constants and system load 
information. Such parameters are passed between all open 
procedures in Volcano with a parameter called bindings. 
This is a typeless pointer that can be used to pass infor- 
mation for policy decisions. Such policy decisions are im- 
plemented using support functions again. For example, 
the module implementing hash join allows dynamic de- 
termination of the size of a hash table-another example 
of the separation of mechanism and policy. This bindings 
parameter is particularly useful in dynamic query evalu- 
ation plans, which will be discussed later in Section V. 

The tree-structured query evaluation plan is used to ex- 
ecute queries by demand-driven dataflow. The return 
value of a next operation is, besides a status indicator, a 
structure called Next-Record, which consists of an RID 
and a record address in the buffer pool. This record is 
pinned in the buffer. The protocol about fixing and unfix- 
ing records is as follows. Each record pinned in the buffer 
is owned by exactly one operator at any point in time. 
After receiving a record, the operator can hold on to it for 
a while, e.g., in a hash table, unfix it, e.g., when a pred- 
icate fails, or pass it on to the next operator. Complex 
operations that create new records, e.g., join, have to fix 
their output records in the buffer before passing them on, 
and have to unfix their input records. Since this could re- 
sult in a large number of buffer calls (one per record in 
each operator in the query), the interface to the buffer 
manager was recently redesigned such that it will require 
a total of two buffer calls per cluster on the procedure side 
( g e. ., a file scan) independently of how many records a 
cluster contains, and only one buffer call per cluster on 
the consumer side. 

A Next-Record structure can point to one record only. 
All currently implemented query processing algorithms 
pass complete records between operators, e.g., join cre- 
ates new, complete records by copying fields from two 
input records. It can be argued that creating complete new 
records and passing them between operators is prohibi- 
tively expensive. An alternative is to leave original rec- 
ords in the buffer as they were retrieved from the stored 
data, and compose Next-Record pairs, triples, etc., as in- 
termediate results. Although this alternative results in less 
memory-to-memory copying, it is not implemented ex- 
plicitly because Volcano already provides the necessary 
mechanisms, namely the Biter iterator (see next subsec- 
tion) that can replace each record in a stream by an RID- 
pointer pair or vice versa. 

In summary, demand-driven dataflow is implemented 
by encoding operators as iterators, i.e., with open, next, 
and close procedures, since this scheme promises gener- 
ality , extensibility, efficiency, and low overhead. The next 
few sections describe some of Volcano’s existing iterators 
in more detail. In very few modules, the described oper- 
ators provide much of the functionality of other query 
evaluation systems through generality and separation of 

mechanisms and policies. Furthermore, the separation of 
set processing control (iteration) from item interpretation 
and manipulation provides this functionality indepen- 
dently from any data model. 

1) Scans, Functional Join, and Filter: The first scan 
interface was discussed with the file system. The second 
interface to scans, both file scans and B+-tree scans, pro- 
vides an iterator interface suitable for query processing. 
The open procedures open the file or B+-tree and initiate 
a scan using the scan procedures of the file system level. 
The file name or closed file descriptor are given in the 
state record as are an optional predicate and bounds for 
B+-tree scans. Thus, the two scan interfaces are function- 
ally equivalent. Their difference is that the file system scan 
interface is used by various internal modules, e.g., by the 
device module for the device table of contents, while the 
iterator interface is used to provide leaf operators for query 
evaluation plans. 

Typically, Bf-tree indices hold keys and RID’s in their 
leaves. In order to use B+-tree indices, the records in the 
data file must be retrieved. In Volcano, this look-up op- 
eration is split from the B+-tree scan iterator and is per- 
formed by the functional join operator. This operator re- 
quires a stream of records containing RID’s as input and 
either outputs the records retrieved using the RID’s or it 
composes new records from the input records and the re- 
trieved records, thus “joining” the B+-tree entries and 
their corresponding data records. 

B’-tree scan and functional join are separated for a 
number of reasons. First, it is not clear that storing data 
in B+-tree leaves never is a good idea. At times, it may 
be desirable to experiment with having other types of in- 
formation associated with look-up keys. Second, this sep- 
aration allows experimentation with manipulation of RID- 
lists for complex queries. Third, while functional join is 
currently implemented rather naively, this operation can 
be made more intelligent to assemble complex objects re- 
cursively. In summary, separating index search and re- 
cord retrieval is another example for providing mecha- 
nisms in Volcano to allow for experiments with policies, 
a design principle employed to ensure that the Volcano 
software would be flexible and extensible. 

The filter operator used in the example above performs 
three functions, depending on presence or absence of cor- 
responding support functions in the state record. The 
predicate function applies a selection predicate, e.g., to 
implement bit vector filtering. The transform function 
creates a new record, typically of a new type, from each 
old record. An example would be a relational projection 
(without duplicate elimination). More complex examples 
include compression and decompression, other changes in 
codes and representations, and reducing a stream of rec- 
ords to RID-pointer pairs. Finally, the apply function is 
invoked once on each record for the benefit of its side 
effects. Typical examples are updates and printing. No- 
tice that updates are done within streams and query eval- 
uation plans. Thus, Volcano plans are not only retrieval 
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but also update plans. The filter operator is also called the 
‘ ‘side-effect operator. ’ ’ Another example is creating a fil- 
ter for bit vector filtering. In other words, the filter op- 
erator is a very versatile single-input single-output oper- 
ator that can be used for a variety of purposes. Bit vector 
filtering is an example for a special version of separation 
of policy and mechanism, namely the rule not to provide 
an operation that can be composed easily and efficiently 
using existing operations. 

2) One-to-One Match: Together with the filter opera- 
tor, the one-to-one match operator will probably be among 
the most frequently used query processing operators in 
Volcano as it implements a variety of set-matching func- 
tions. In a single operator, it realizes join, semi-join, outer 
joint, anti-joint, intersection, union, difference, anti-dif- 
ference, aggregation, and duplicate elimination. The one- 
to-one match operator is a physical operator like sort, i.e., 
part of the executable algebra, not a logical operator like 
the operators of relational algebra. It is the operator that 
implements all operations in which an item is included in 
the output depending on the result of a comparison be- 
tween a pair of items. 

Fig. 3 shows the basic principle underlying the one-to- 
one match operator for binary operations, namely sepa- 
ration of the matching and non-matching components of 
two sets, called R and S in the Fig. 3, and producing ap- 
propriate subsets, possibly after some transformation and 
combination as in the case of a join. Since all these op- 
erations require basically the same steps, it was logical to 
implement them in one general and efficient module. The 
main difference between the unary and binary operations, 
e. g . , aggregate functions and equi-join, is that the former 
require comparing items of the same input while the latter 
require comparing items of two different inputs. 

Since the implementation of Volcano’s one-to-one 
match is data-model-independent and all operations on 
data items are imported via support functions, the module 
is not restricted to the relational model but can perform 
set matching functions for arbitrary data types. Further- 
more, the hash-based version provides recursive hash ta- 
ble overflow avoidance [ 121 and resolution similar to hy- 
brid hash join [31] and can therefore handle very large 
input sizes. The sort-based version of one-to-one match 
is based on an external sort operator and can also operate 
on arbitrarily large inputs. 

While there seems to be an abundance of join algo- 
rithms, our design goals of extensibility and limited sys- 
tem size led to the choice of only two algorithms (at the 
current time) to be implemented in Volcano, namely 
merge join and hybrid hash join. This choice will also 
allow experimental research into the duality and trade-offs 
between sort- and hash-based query processing algo- 
rithms. 

The classic hash join algorithm (which is the in-mem- 
ory component of hybrid hash join) proceeds in two 
phases. In the first phase, a hash table is built from one 
input; it is therefore called the build phase. In the second 
phase, the hash table is probed using tuples from the other 

output 
A 
B 
C 
A B 
A, c 
B, c 
&B,C 

R S 

0 A B C 

Full Match Attribute match 
Difference Anti-semi-join 
Intersection Join, semi-join 
Difference Anti-semi-join 

Left outer join 
Anti-difference Anti-join 

Union 
Right outer join 
Symmetric outer join 

Fig. 3. Binary one-to-one matching. 

input to determine matches and to compose output tuples; 
it is called the probe phase. After the probe phase, the 
hash table and its entries are discarded. Instead, our one- 
to-one match operator uses a third phase called the flush 
phase, which is needed for aggregate functions and some 
other operations. 

Since the one-to-one match operator is an interator like 
all Volcano operators, the three phases are assigned to the 
open, next, and close functions. Open includes the build 
phase, while the other two phases are included in the next 
function. Successive invocations of the next function au- 
tomatically switch from the probe phase to the flush phase 
when the second input is exhausted. 

The build phase can be used to eliminate duplicates or 
to perform an aggregate function in the build input. The 
one-to-one match module does not require a probe input; 
if only an aggregation is required without subsequent join, 
the absence of the probe input in the state record signals 
to the module that the probe phase should be skipped. For 
aggregation, instead of inserting a new tuple into the hash 
table as in the classic hash join, an input tuple is first 
matched with the tuples in its prospective hash bucket. If 
a match is found, the new tuple is discarded or its values 
are aggregated into the existing tuple. 

While hash tables in main memory are usually quite 
fast, a severe problem occurs if the build input does not 
fit in main memory. This situation is called hash table 
oveflow. There are two ways to deal with hash table over- 
flow. First, if a query optimizer is used and can anticipate 
overflow, it can be avoided by partitioning the input(s). 
This overjlow avoidance technique is the basis for the hash 
join algorithm used in the Grace database machine [ 121. 
Second, overflow files can be created using oveflow res- 
olution after the problem occurs. 

For Volcano’s one-to-one match, we have adopted hy- 
brid hash join. Compared to the hybrid hash algorithm 
used in GAMMA, our overflow resolution scheme has 
several improvements. Items can be inserted into the hash 
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table without copying, i.e., the hash table points directly 
to records in the buffer as produced by one-to-one match’s 
build input. If input items are not densely packed, how- 
ever, the available buffer memory can fill up very quickly. 
Therefore, the one-to-one match operator has an argu- 
ment called the packing threshold. When the number of 
items in the hash table reaches this threshold, items are 
packed densely into overflow files. However, the clusters 
(pages) of these overflow files are not yet unfixed in the 
buffer, i.e., no Z/O is performed as yet. Only when the 
number of items in the hash table reaches a second thresh- 
old called spilling threshold is the first of the partition 
files unfixed. The clusters of this file are written to disk 
and the count of items in the hash table, accordingly re- 
duced. When this number reaches the spilling threshold 
again, the next partition is unfixed, etc. If necessary, par- 
titioning is performed recursively, with automatically ad- 
justed packing and spilling thresholds. The unused por- 
tions of the hash table, i.e., the portions corresponding to 
spilled buckets, are used for bit vector filtering to save 
Z/O to overflow files. 

The fan-out of the first partitioning step is determined 
by the total available memory minus the memory required 
to reach the packing threshold. By choosing the packing 
and spilling thresholds, a query optimizer can avoid re- 
cord copying entirely for small build inputs, specify 
overflow avoidance (and the maximum fan-out) for very 
large build inputs, or determine packing and spilling 
thresholds based on the expected build input size. In fact, 
because the input sizes cannot be estimated precisely if 
the inputs are produced by moderately complex expres- 
sions, the optimizer can adjust packing and spilling 
thresholds based on the esimated probability distributions 
of input sizes. For example, if overflow is very unlikely, 
it might be best to set the packing threshold quite high 
such that, with high probability, the operation can pro- 
teed without copying. On the other hand , if overflow is 
more likely, the packin g th reshold should be set lower to 
obtain a larger partitioning fan-out. 

The initial packing and spilling thresholds can be set to 
zero; in that case, Volcano’s one-to-one match performs 
overflow avoidance very similar to the join algorithm used 
in the Grace database machine. Beyond this parameter- 
ization of overflow avoidance and resolution, Volcano’s 
one-to-one match algorithm also permits optimizations of 
cluster size and recursion depth similar to the ones used 
for sorting [4], [21] and for nonuniform hash value dis- 
tributions, and it can operate on inputs with variable- 
length records. 

The extension of the module described so far to set op- 
erations started with the observation that the intersection 
of two union-compatible relations is the same as the nat- 
ural join of these relations, and can be best implemented 
as semi-join. The union is the (double-sided) outer join 
of union-compatible relations. Difference and anti-differ- 
ence of two sets can be computed using special settings 
of the algorithm’s bells and whistles. Finally, a Cartesian 

product can be implemented by matching successfully all 
possible pairs of items from the two inputs. 

A second version of one-to-one match is based on sort- 
ing. Its two modules are a disk-based merge-sort and the 
actual merge-join. Merge-join has been generalized sim- 
ilarly to hash-join to support semi-join, outer join, anti- 
join, and set operations. The sort operator has been im- 
plemented in such a way that it uses and provides the it- 
erator interface. Opening the sort iterator prepares sorted 
runs for merging. If the number of runs is larger than the 
maximal fan-in, runs are merged into larger runs until the 
remaining runs can be merged in a single step. The final 
merge is performed on demand by the next function. If 
the entire input fits into the sort buffer, it is kept there 
until demanded by the next function. The 
also supports aggregation and duplicate elimi 

sort operator 
nation. It can 

perform these operations early, i.e., while writing tem- 
porary files [2]. The sort algorithm is described and eval- 
uated in detail in [2 11. 

In summary, Volcano’s one-to-one match operators are 
very powerful parts of Volcano’s query execution alge- 
bra. By separating the control required to operate on sets 
of items and the interpretation and manipulation of indi- 
vidual items it can perform a variety of set matching tasks 
frequently used in database query processing, and can 
perform these tasks for arbitrary data types and data 
models. The separation of mechanisms and policies for 
overflow management supports overflow avoidance as 
well as hybrid hash overflow resolution, both recursively 
if required. Implementing sort- and hash-based algo- 
rithms in a comparable fashion will allow meaningful ex- 
perimental research into the duality and trade-offs be- 
tween sort- and hash-based query processing algorithms. 
The iterator interface guarantees that the one-to-one match 
operator can easily be combined with other operations, 
including new iterators yet to be designed. 

3) One-to-Many Match: While the one-to-one match 
operator includes an item in its output depending on a 
comparison of two items with one another, the one-to- 
many m atch o perator compa res each 
of other items to determine wh .ether 

item with a 
a new item 

produced. A typical example is relational division, the re- 
lational algebra operator corresponding to universa 1 quan- 
tification in relational calculus. There are two versions of 
relational division in Volcano. The first version, called 
native division, is based on sorting. The second version, 
called hash-division, utilizes two hash tables, one on the 
divisor and one on the quotient. An exact description of 
the two algorithms and alternative algorithms based on 
aweg ate functions can be found in [ 161 along with ana- 
lytical and experimenta 1 performance comparisons and 
detailed discussions of two partitioning strategies for hash 
table overflow and multiprocessor implementations. We 
are currently studying how to generalize these algo- 
rithms in a way comparable with the generalizations of 
aggregation and join, e.g., for a majority function 
PI . 

number 
is to be 
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IV. EXTENSIBILITY 

A number of database research efforts strive for exten- 
sibility, e.g., EXODUS, GENESIS, Postgres, Starburst, 
DASDBS [30], Cactis [24], and others. Volcano is a very 
open query evaluation architecture that provides easy ex- 
tensibility. Let us consider a number of frequently pro- 
posed database extensions and how they can be accom- 
modated in Volcano. 

First, when extending the object type system, e.g., with 
a new abstract data type (ADT) like date or box, the Vol- 
cano software is not affected at all because it does not 
provide a type system for objects. All manipulation of and 
calculation based on individual objects is performed by 
support functions. To a certain extent, Volcano is incom- 
plete (it is not a database system), but by separating set 
processing and instance interpretation and providing a 
well-defined interface between them, Volcano is inher- 
ently extensible on the level of instance types and seman- 
tics. 

As a rule, data items that are transferred between op- 
erators using some next iterator procedure are records. For 
an extensible or object-oriented database system, this 
would be an unacceptable problem and limitation. The 
solution to be used in Volcano is to pass only the root 
component (record) between operators after loading and 
fixing necessary component records in the buffer and suit- 
ably swizzling inter-record pointers. Very simple objects 
can be assembled in Volcano with the functional join op- 
erator. Generalizations of this operator are necessary for , 
object-oriented or non-first-normal-form database sys- 
tems, but can be included in Volcano without difficulty. 
In fact, a prototype for such an assembly operator has been 
built [26] for use in the REVELATION object-oriented da- 
tabase systems project [ 151. 

Second, in order to add new functions on individual 
objects or aggregate functions, e.g., geometric mean, to 
the database and query processing system, the appropriate 
support function is required and passed to a query pro- 
cessing routine. In other words, the query processing rou- 
tines are not affected by the semantics of the support func- 
tions as long as interface and return values are correct. 
The reason Volcano software is not affected by extensions 
of the functionality on individual objects is that Volcano’s 
software only provides abstractions and implementations 
for dealing with and sequencing sets of objects using 
streams, whereas the capabilities for interpreting and ma- 
nipulating individual objects are imported in the form of 
support functions. 

Third, in order to incorporate a new access method, 
e.g., multidimensional indices in form of R-trees [22], 
appropriate iterators have to be defined. Notice that it 
makes sense to perform not only retrieval but also main- 
tenance of storage structures in the form of iterators. For 
example, if a set of items defined via a predicate (selec- 
tion) needs to be updated, the iterator or query tree im- 
plementing the selection can “feed” its data into a main- 
tenance iterator. The items fed into the maintenance 
operator should include a reference to the part of the stor- 

age structure to be updated, e.g., a RID or a key, and 
appropriate new values if they have been computed in the 
selection, e.g., new salaries from old salaries. Updating 
multiple structures (multiple indices) can be organized and 
executed very efficiently using nested iterators, i.e., a 
query evaluation plan. Furthermore, if ordering makes 
maintenance more efficient as for B-trees, an ordering or 
sort iterator can easily be included in the plan. In other 
words, it makes sense to think of plans not only as query 
plans used in retrieval but also as “update plans” or com- 
binations of retrieval and update plans. The stream con- 
cept is very open; in particular, anonymous inputs shield 
existing query processing modules and the new iterators 
from one another. 

Fourth, to include a new query processing algorithm in 
Volcano, e.g., an algorithm for transitive closure or nest 
and unnest operations for nested relations, the algorithm 
needs to be coded in the iterator paradigm. In other words, 
the algorithm implementation must provide open, next, 
and close procedures, and must use these procedures for 
its input stream or streams. After an algorithm has been 
brought into this form, its integration with Volcano is 
trivial. In fact, as the Volcano query processing software 
became more complex and complete, this was done a 
number of times. For example, the one-to-many match or 
division operators [ 161 were added without regard to the 
other operators, and when the early in-memory-only ver- 
sion of hash-based one-to-one match was replaced by the 
version with overflow management described above, none 
of the other operators or meta-operators had to be 
changed. Finally, a complex object assembly operator was 
added recently to Volcano [26]. 

Extensibility can also be considered in a different con- 
text. In the long run, it clearly is desirable to provide an 
interactive front-end to make using Volcano easier. We 
are currently working on a two front-end, a nonoptimized 
command interpreter based on Volcano’s executable al- 
gebra and an optimized one based on a logical algebra or 
calculus language including query optimization imple- 
mented with a new optimizer generator. The translation 
between plans as produced by an optimizer and Volcano 
will be. accomplished using a module that “walks” query 
evaluation plans produced by the optimizer and Volcano 
plans, i.e., state records, support functions, etc. We will 
also use the optimizing front-end as a vehicle for experi- 
mentation with dynamic query evaluation plans that are 
outlined in the next section. 

In summary, since Volcano is very modular in its de- 
sign, extensibility is provided naturally. It could be ar- 
gued that this is the case only because Volcano does not 
address the hard problems in extensibility. However, this 
argument does not hold. Rather, Volcano is only one 
component of a database system, namely the query exe- 
cution engine. Therefore, it addresses only a subset of the 
extensibility problems and ignores a different subset. As 
a query processing engine, it provides extensibility of its 
set of query processing algorithms, and it does so in a way 
that matches well with the extensibility as provided by 
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query optimizer generators. It does not provide other da- 
tabase services and abstractions like a type system and 
type checking for the support functions since it is not an 
extensible database system. The Volcano routines assume 
that query evaluation plans and their support functions are 
correct. Their correctness has to be ensured before Vol- 
cano is invoked, which is entirely consistent with the gen- 
eral database systems concept to ensure correctness at the 
highest possible level, i.e. , as soon as possible after a user 
query is parsed. The significance of Volcano as an exten- 
sible query evaluation system is that it provides a simple 
but very useful and powerful set of mechanisms for effi- 
cient query processing and that it can and has been used 
as a flexible research tool. Its power comes not only from 
the fact that it has been implemented following a few con- 
sistent design principles but also from its two meta-op- 
erators described in the next two sections. 

V. DYNAMIC QUERY EVALUATION PLANS 

In most database systems, a query embedded in a program 
written in a conventional programming language is opti- 
mized when the program is compiled. The query opti- 
mizer must make assumptions about the values of the pro- 
gram variables that appear as constants in the query and 
the data in the database. These assumptions include that 
the query can be optimized realistically using guessed 
“typical’ ’ values for the program variables and that the 
database will not change significantly between query op- 
timization and query evaluation. The optimizer must also 
anticipate the resources that can be committed to query 
evaluation, e.g., the size of the buffer or the number of 
processors. The optimality of the resulting query evalua- 
tion plan depends on the validity of these assumptions. If 
a query evaluation plan is used repeatedly over an ex- 
tended period of time, it is important to determine when 
reoptimization is necessary. We are working on a scheme 
in which reoptimization can be avoided by using a new 
technique called dynamic query evaluation plans [17]. ’ 

Volcano includes a choose-plan operator that allows re- 
alization of both multiplan access modules and dynamic 
plans. In some sense, it is not an operator as it does not 
perform any data manipulations. Since it provides control 
for query execution it is a meta-operator. This operator 
provides the same open-next-close protocol as the other 
operators and can therefore be inserted into a query plan 
at any location. The open operation decides which of sev- 
eral equivalent query plans to use and invokes the open 
operation for this input. Open calls upon a support func- 
tion for this policy decision, passing it the bindings pa- 
rameter described above. The next and close operations 
simply call the appropriate operation for the input chosen 
during open. 

Fig. 4 shows a very simple dynamic plan. Imagine a 
selection predicate controlled by a program variable. The 
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Fig. 4. A dynamic query evaluation plan. 

index scan and functional join can be much faster than the 
file scan, but not when the index is nonclustering and a 
large number of items must be retrieved. Using the plan 
of Fig. 4, however, the optimizer can prepare effectively 
for both cases, and the application program using this dy- 
namic plan will perform well for any predicate value. 

The choose-plan operator allows considerable flexibil- 
ity. If only one choose-plan operator is used as the top of 
a query evaluation plan, it implements a multiplan access 
module. If multiple choose-plan operators are included in 
a plan, they implement a dynamic query evaluation plan. 
Thus, all forms of dynamic plans identified in [ 171 can be 
realized with one simple and effective mechanism. Note 
that the choose-plan operator does not make the policy 
decision concerning which of several plans to execute; it 
only provides the mechanism. The policy is imported us- 
ing a support function. Thus, the decision can be made 
depending on bindings for query variables (e.g., program 
variables used as constants in a query predicate), on the 
resource and contention situation (e. g . , the availability of 
processors and memory), other considerations such as user 
priority, or all of the above. 

The choose-plan operator provides significant new 
freedom in query optimization and evaluation with an ex- 
tremely small amount of code. Since it is compatible with 
the query processing paradigm, its presence does not af- 
fect the other operators at all, and it can be used in a very 
flexible way. The operator is another example for Vol- 
cano’s design principle to provide mechanisms to imple- 
ment a multitude of policies. We used the same philoso- 
phy when designing and implementing a scheme for 
parallel query evaluation. 

VI. MULTIPROCESSOR QUERY EVALUATION 

A large number of research and development projects 
have shown over the last decade that query processing in 
relational database systems can benefit significantly from 
parallel algorithms. The main reasons parallelism is rel- 
atively easy to exploit in relational query processing sys- 
tems are 1) query processing is performed using a tree of 
operators that can be executed in separate processes and 
processors connected with pipelines (inter-operator par- 
allelism) and 2) each operator consumes and produces sets 
that can be partitioned or fragmented into disjoint subsets 
to be processed in parallel (intra-operator parallelism). ‘This section is a brief summary of [ 171. 
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Fortunately, the reasons parallelism is easy to exploit in 
relational systems does not require the relational data 
model per se, only that queries be processed as sets of 
data items in a tree of operators. These are exactly the 
assumptions made in the design of Volcano, and it was 
therefore logical to parallelize extensible query process- 
ing in Volcano. 

Print 

I 
Exchange 

Join 
When Volcano was ported to a multiprocessor ma- 

chine, it was desirable to use all single-process query pro- 
cessing code existing at that point without any change. 
The result is very clean, self-scheduling parallel process- 
ing. We call this novel approach the operator model of 
parallelizing a query evaluation engine [20] .2 In this 
model, all parallelism issues are localized in one operator 
that uses and provides the standard iterator interface to the 
operators above and below in a query tree. 

/ \ 
Join 

/ \ 

Exchange 

Exchange Exchange Scan 

The module responsible for parallel execution and syn- 
chronization is called the exchange iterator in Volcano. 
Notice that it is an iterator with open, next, and close pro- 
cedures; therefore, it can be inserted at any one place or 
at multiple places in a complex query tree. Fig. 5 shows 
a complex query execution plan that includes data pro- 
cessing operators, i.e. , file scans and joins, and exchange 
operators. The next two figures will show the processes 
created when this plan is executed. 

Fig. 5. Operator model of parallelization. 
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This section describes how the exchange iterator im- 
plements vertical and horizontal parallelism followed by 
discussions of alternative modes of operation of Vol- 
cano’s exchange operator and modifications to the file 
system required for multiprocess query evaluation. The 
description goes into a fair amount of detail since the ex- 
change operator adds significantly to the power of Vol- 
cano. In fact, it represents a new concept in parallel query 
execution that is likely to prove useful in parallelizing both 
existing commercial database products and extensible sin- 
gle-process systems. It is described here for shared-mem- 
ory systems only; considerations for the distributed-mem- 
ory version are outlined as future work in the last section 
of this paper. 

Fig. 6 shows the processes created for vertical paral- 
lelism or pipelining by the exchange operators in the query 
plan of the previous figure. The exchange operators have 
created the processes, and are executing on both sides of 
the process boundaries, hiding the existence of process 
boundaries from the “work” operators. The fact that the 
join operators are executing within the same process, i.e., 
the placement of the exchange operators in the query tree, 
was arbitrary. The exchange operator provides only the 
mechanisms for parallel query evaluation, and many other 
choices (policies) would have been possible. In fact, the 
mechanisms provided in the operator model tend to be 
more flexible and amenable to more different policies than 
in the alternative bracket model [20]. 

A. Vertical Parallelism 

The first function of exchange is to provide vertical 
parallelism or pipelining between processes. The open 
procedure creates a new process after creating a data 
structure in shared memory called a port for synchroni- 
zation and data exchange. The child process is an exact 
duplicate of the parent process. The exchange operator 
then takes different paths in the parent and child pro- 
cesses. 

In the producer process, the exchange operator be- 
comes the driver for the query tree below the exchange 
operator using open, next, and close on its input. The out- 
put of next is collected in packets, which are arrays of 
Next-Record structures. The packet size is an argument in 
the exchange iterator’s state record, and can be set be- 
tween 1 and 32 000 records. When a packet is filled, it is 
inserted into a linked list originating in the port and a 
semaphore is used to inform the consumer about the new 
packet. Records in packets are fixed in the shared buffer 
and must be unfixed by a consuming operator. 

The parent process serves as the consumer and the child 
process as the producer in Volcano. The exchange oper- 
ator in the consumer process acts as a normal iterator, the 
only difference from other iterators is that it receives its 
input via inter-process communication rather than iterator 
(procedure) calls. After creating the child process, 
open-exchange in the consumer is done. Next-exchange 

When its input is exhausted, the exchange operator in 
the producer process marks the last packet with an end- 
of-stream tag, passes it to the consumer, and waits until 
the consumer allows closing all open files. This delay is 
necessary in Volcano because files on virtual devices must 
not be closed before all their records are unpinned in the 
buffer. In other words, it is a peculiarity due to other de- 
sign decisions in Volcano rather than inherent in the ex- 
change iterator on the operator model of parallelization. 

The alert reader has noticed that the exchange module - 
2Parts of this section have appeared in [20]. uses a different dataflow paradigm than all other opera- 
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tors. While all other modules are based on demand-driven 
dataflow (iterators, lazy evaluation), the producer-con- 
sumer relationship of exchange uses data-driven dataflow 
(eager evaluation). There are two reasons for this change 
in paradigms. First, we intend to use the exchange oper- 
ator also for horizontal parallelism, to be described be- 
low, which is easier to implement w  ith data-driven data- 
flow. Second, this scheme removes the need for request 
messages. Even though a scheme with request messages, 
e.g., using a semaphore, would probably perform accept- 
ably on a shared-memory machine, it would create un- 
necessary control overhead and delays. Since very-high 
degrees of parallelism and very-high-performance query 
evaluation require a closely tied network, e.g., a hyper- 
cube, of shared-memory machines, we decided to use a 
paradigm for data exchange that has been proven to per- 
form well in a “shared-nothing” database machine [ 111. 

A run-time switch of exchange enables Jlow control or 
back pressure using an additional semaphore. If the pro- 
ducer is significantly faster than the consumer, the pro- 
ducer may pin a significant portion of the buffer, thus 
impeding overall system performance. If flow control is 
enabled, after a producer has inserted a new packet into 
the port, it must request the flow control semaphore. After 
a consumer has removed a packet from the port, it re- 
leases the flow control semaphore. The initial value of the 
flow control semaphore determines how many packets the 
producers may get ahead of the consumers. 

Notice that flow control and demand-driven dataflow 
are not the same. One significant difference is that flow 
control allows some “ slack’ ’ in the synchronization of 
producer and consumer and therefore truly overlapped ex- 
ecution, while demand-driven dataflow is a rather rigid 
structure of request and delivery in which the consumer 
waits while the producer works on its next output. The 
second significant difference is that data-driven dataflow 

is easier to combine efficiently with horizontal parallelism 
and partitioning. 

B. Horizontal Parallelism 

There are two forms of horizontal parallelism, which 
we call bushy parallelism and intra-operator parallelism. 
In bushy parallelism, different CPU’s execute different 
subtrees of a complex query tree. Bushy parallelism and 
vertical parallelism are forms of inter-operator parallel- 
ism. Intra-operator parallelism means that several CPU’s 
perform the same operator on different subsets of a stored 
dataset or an intermediate result. 

Bushy parallelism can easily be implemented by insert- 
ing one or two exchange operators into a query tree. For 
example, in order to sort two inputs into a merge-join in 
parallel, the first or both inputs are separated from the 
merge-join by an exchange operation. The parent process 
turns to the second sort immediately after forking the child 
process that will produce the first input in sorted order. 
Thus, the two sort operations are working in parallel. 

Intra-operator parallelism requires data partitioning. 
Partitioning of stored datasets is achieved by using mul- 
tiple files, preferably on different devices. Partitioning of 
intermediate results is implemented by including multiple 
queues in a port. If there are multiple consumer pro- 
cesses, each uses its own input queue. The producers use 
a support function to decide into which of the queues (or 
actually, into which of the packets being filled by the pro- 
ducer) an output record must go. Using a support function 
allows implementing round-robin-, key-range-, or hash- 
partitioning. 

Fig. 7 shows the processes created for horizontal par- 
allelism or partitioning by the exchange operators in the 
query plan shown earlier. The join operators are executed 
by three processes while the file scan operators are exe- 
cuted by one or two processes each, typically scanning 
file partitions on different devices. To obtain this group- 
ing of processes, the only difference to the query plan used 
for the previous figure is that the “degree of parallelism’ ’ 
arguments in the exchange state records have to be set to 
2 or 3, respectively, and that partitioning support func- 
tions must be provided for the exchange operators that 
transfer file scan output to the joint processes. All file scan 
processes can transfer data to all join processes; however, 
data transfer between the join operators occurs only within 
each of the join processes. Unfortunately, this restriction 
renders this parallelization infeasible if the two joins are 
on different attributes and partitioning-based parallel join 
methods are used. For this case, a variant of exchange is 
supported in Volcano exchange operator called inter- 
change, which is described in the next section. 

If an operator or an operator subtree is executed in par- 
allel by a group of processes, one of them is designated 
the master. When a query tree is opened, only one process 
is running, which is naturally the master. When a master 
forks a child process in a producer-consumer relation- 
ship, the child process becomes the master within its 
group. The first action of the master producer is to deter- 
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mine how many slaves are needed by calling an appro- 
priate support function. If the producer operation is to run 
in parallel, the master producer forks the other producer 
processes. 

After all producer processes are forked, they run with- 
out further synchronization among themselves, with two 
exceptions. First, when accessing a shared data structure, 
e.g., the port to the consumers or a buffer table, short- 
term locks must be acquired for the duration of one linked- 
list insertion. Second, when a producer group is also a 
consumer group, i.e., there are at least two exchange op- 
erators and three process groups involved in a vertical 
pipeline, the processes that are both consumers and pro- 
ducers synchronize twice. During the (very short) interval 
between synchronizations, the master of this group cre- 
ates a port that serves all processes in its group. 

When a close request is propagated down the tree and 
reaches the first exchange operator, the master consum- 
er’s close-exchange procedure informs all producer pro- 
cesses that they are allowed to close down using the 
semaphore mentioned above in the discussion on vertical 
parallelism. If the producer processes are also consumers, 
the master of the process group informs its producers, etc. 
In this way, all operators are shut down in an orderly fash- 
ion, and the entire query evaluation is self-scheduling. 

C. Variants of the Exchange Operator 

There are a number of situations for which the ex- 
change operator described so far required some modifi- 
cations or extensions. In this section, we outline addi- 
tional capabilities implemented in Volcano’s exchange 
operator. All of these variants have been implemented in 
the exchange operator and are controlled by arguments in 
the state record. 

For some operations, it is desirable to replicate or 
broadcast a stream to all consumers. For example, one of 

the two partitioning methods for hash-division [ 161 re- 
quires that the divisor be replicated and used with each 
partition of the dividend. Another example are fragment- 
and-replicate parallel join algorithms in which one of the 
two input relations is not moved at all while the other 
relation is sent to all processors. To support these algo- 
rithms, the exchange operator can be directed to send all 
records to all consumers, after pinning them appropriately 
multiple times in the buffer pool. Notice that it is not nec- 
essary to copy the records since they reside in a shared 
buffer pool; it is sufficient to pin them such that each con- 
sumer can unpin them as if it were the only process using 
them. 

During implementation and benchmarking of parallel 
sorting [ 181, [21], we added two more features to ex- 
change. First, we wanted to implement a merge network 
in which some processors produce sorted streams merge 
concurrently by other processors. Volcano’s sort iterator 
can be used to generate a sorted stream. A merge iterator 
was easily derived from the sort module. It uses a single 
level merge, instead of the cascaded merge of runs used 
in sort. The input of a merge iterator is an exchange. Dif- 
ferently from other operators, the merge iterator requires 
to distinguish the input records by their producer. As an 
example, for a join operation it does not matter where the 
input records were created, and all inputs can be accu- 
mulated in a single input stream. For a merge operation, 
it is crucial to distinguish the input records by their pro- 
ducer inorder to merge multiple sorted streams correctly. 

We modified the exchange module such that it can keep 
the input records separated according to their producers. 
A third argument to next exchange is used to communi- - 
cate the required producer from the merge to the exchange 
iterator. Further modifications included increasing the 
number of input buffers used by exchange, the number of 
semaphores (including for flow control) used between 
producer and consumer part of exchange, and the logic 
for end-of-stream. All these modifications were imple- 
mented in such a way that they support multilevel merge 
trees, e.g., a parallel binary merge tree as used in [3]. 
The merging paths are selected automatically such that 
the load is distributed as evenly as possible in each level. 

Second, we implemented a sort algorithm that sorts data 
randomly partitioned (or “striped” [29]) over multiple 
disks into a range-partitioned file with sorted partitions, 
i.e., a sorted file distributed over multiple disks. When 
using the same number of processors and disks, two pro- 
cesses per CPU were required, one to perform the file 
scan and partition the records and another one to sort 
them. Creating and running more processes than proces- 
sors can inflict a significant cost since these processes 
compete for the CPU’s and therefore require operating 
system scheduling. 

In order to make better use of the available processing 
power, we decided to redue the number of processes by 
half, effectively moving to one process per CPU. This 
required modifications to the exchange operator. Until 
then, the exchange operator could “live” only at the top 
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or the bottom of the operator tree in a process. Since the 
modification, the exchange operator can also be in the 
middle of a process’ operator tree. When the exchange 
operator is opened, it does not fork any processes but es- 
tablishes a communication port for data exchange. The 
next operation requests records from its input tree, pos- 
sibly sending them off to other processes in the group, 
until a record for its own partition is found. This mode of 
operation was termed interchange, and was referred to 
earlier in the discussion of Fig. 7. 

This mode of operation also makes flow control obso- 
lete. A process runs a producer (and produces input for 
the other processes) only if it does not have input for the 
consumer. Therefore, if the producers are in danger of 
overrunning the consumers, none of the producer opera- 
tors gets scheduled, and the consumers consume the 
available records. 

D. File System ModiJications 

The file system required some modifications to serve 
several processes concurrently. In order to restrict the ex- 
tent of such modifications, Volcano currently does not in- 
clude protection of files and records other than each disk’s 
volume table of contents. Furthermore, typically nonre- 
petitive actions like mounting a device must be invoked 
by the query root process before or after a query is eval- 
uated by multiple processes. 

The most intricate changes were required for the bu$er 
module. In fact, making sure the buffer manager would 
not be a bottleneck in a shared-memory machine was an 
interesting subproject independent of database query pro- 
cessing [ 181. Concurrency control in the buffer manager 
was designed to provide a testbed for future research with 
effective and efficient mechanisms, and not to destroy the 
separation of policies and mechanisms. 

Using one exclusive lock is the simplest way to protect 
a buffer pool and its internal data structures. However, 
decreased concurrency would have removed most or all 
advantages of parallel query processing. Therefore, the 
buffer uses a two-level scheme. There is a lock for each 
buffer pool and one for each descriptor (page or cluster 
resident in the buffer). The buffer pool lock must be held 
while searching or updating the hash tables and bucket 
chains. It is never held while doing Z/O; thus, it is never 
held for a long period of time. A descriptor or cluster lock 
must be held while doing Z/O or while updating a descrip- 
tor in the buffer, e.g., to decrease its fix count. 

If a process finds a requested cluster in the buffer, it 
uses an atomic test-and-lock operation to lock the descrip- 
tor. If this operation fails, the pool lock is released, the 
operation delayed and restarted. It is necessary to restart 
the buffer operation including the hash table lookup be- 
cause the process that holds the lock might be replacing 
the requested cluster. Therefore, the requesting process 
must wait to determine the outcome of the prior operation. 
Using this restart-scheme for descriptor locks has the ad- 
ditional benefit of avoiding deadlocks. The four condi- 
tions for deadlock are mutual exclusion, hold-and-wait, 
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no preemption, and circular wait; Volcano’s restart 
scheme does not satisfy the second condition. On the other 
hand, starvation is theoretically possible but has become 
extremely unlikely after buffer modifications that basi- 
cally eliminated buffer contention. 

In summary, the exchange module encapsulates paral- 
lel query processing in Volcano. It provides a large set of 
mechanisms useful in parallel query evaluation. Only very 
few changes had to be made in the buffer manager and the 
other file system modules to accommodate parallel exe- 
cution. The most important properties of the exchange 
module are that it implements three forms of parallel pro- 
cessing within a single module, that it makes parallel 
query processng entirely self-scheduling, supports a va- 
riety of policies, e.g., partitioning schemes or packet 
sizes, and that it did not require any changes in the exist- 
ing query processing modules, thus leveraging signifi- 
cantly the time and effort spent on them and allowing easy 
parallel implementation of new algorithms. It entirely 
separates data selection, manipulation, derivation, etc. 
from all parallelism issues, and may therefore prove use- 
ful in parallelizing other systems, both relational com- 
mercial and extensible research systems. 

VII. SUMMARY AND CONCLUSIONS 

We have described Volcano, a new query evaluation 
system that combines compactness, efficiency, extensi- 
bility, and parallelism in a dataflow query evaluation sys- 
tem. Compactness is achieved by focusing on few general 
algorithms. For example, the one-to-one match operator 
implements join, semi-join, our join, anti-join, duplica- 
tion elimination, aggregation, intersection, union, differ- 
ence, and anti-difference. Extensibility is achieved by im- 
plementing only one essential abstraction, streams, and 
by relying on imported support functions for object inter- 
pretation and manipulation. The details of streams, e.g., 
type and structure of their elements, are not part of the 
stream definition and its implementation, and can be de- 
termined at will, making Volcano a data-model-inde- 
pendent set processor. The separation of set processing 
control in iterators and object interpretation and manip- 
ulation through support functions contributes significantly 
to Volcano’s extensibility. 

The Volcano design and implementation was guided by 
a few simple but generally useful principles. First, Vol- 
cano implements mechanisms to support policies that can 
be determined by a human experimenter or a query opti- 
mizer. Second, operators are implemented as iterators to 
allow efficient transfer of data and control within a single 
process. Third, a uniform operator interface allows for 
integration of new query processing operators and algo- 
rithms. Fourth, the interpretation and manipulation of 
stream elements is consistently left open to allow sup- 
porting any data model and processing items of any type, 
shape, and representation. Finally, the encapsulated im- 
plementation of parallelism allows developing query pro- 
cessing algorithms in a single-process environment but 
executing them in parallel. These principles have led to a 
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very flexible, extensible, and powerful query processing 
engine. 

Volcano introduces two novel meta-operators. Dy- 
namic query evaluation plans are a new concept intro- 
duced in [ 171 that allow efficient evaluation of queries with 
free variables. The choose-plan meta-operator at the top 
of a plan or a subplan makes an efficient -decision which 
alternative plan to use when the plan is invoked. Dynamic 
plans have the potential of increasing the performance of 
embedded and repetitive queries significantly. 

Dataflow techniques are used within processes as well 
as between processes. Within a process, demand-driven 
dataflow is implemented by means of streams and itera- 
tors. Streams and iterators represent the most efficient ex- 
ecution model in terms of time and space for single-pro- 
cess query evaluation. Between processes, data-driven 
dataflow is used to pass data between producers and con- 
sumers efficiently. If necessary, Volcano’s data-driven 
dataflow can be augmented with flow control or back 
pressure. Horizontal partitioning can be used both on 
stored and intermediate datasets to allow intra-operator 
parallelism. The design of the exchange meta-operator 
encapsulates the parallel execution mechanism for verti- 
cal, bushy, and intra-operator parallelism, and it performs 
the translations from demand-driven to data-driven data- 
flow and back [20]. 

Encapsulating all issues of parallelism control in one 
operator and thus orthogonalizing data manipulation and 
parallelism offers important extensibility and portability 
advantages. All data manipulation operators are shielded 
from parallelism issues, and have been designed, de- 
bugged, tuned, and preliminarily evaluated in a single- 
process environment. To parallelize a new operator, it 
only has to be combined with the exchange operator in a 
query evaluation plan. To port all Volcano operators to a 
new parallel machine, only the exchange operator re- 
quires appropriate modifications. At the current time, the 
exchange operator supports parallelism only on shared- 
memory machines. We are currently working on extend- 
ing this operator to support query processing on distrib- 
uted-memory machines while maintaining its encapsula- 
tion properties. However, we do not want to give up the 
advantages of shared memory, namely fast communica- 
tion and synchronization. A recent investigation demon- 
strated that shared-memory architectures can deliver near- 
linear speed-up for limited degrees of parallelism; we ob- 
served a speed-up of 14.9 with 16 CPU’s for parallel sort- 
ing in Volcano [ 181. To combine the bets of both worlds, 
we are building our software such that it runs on a closely- 
tied group, e.g., a hypercube or mesh architecture, of 
shared-memory parallel machines. Once this version of 
Volcano’s exchange operator and therefore all of Volcano 
runs on such machines, we can investigate query process- 
ing on hierarchical architectures and heuristics of how 
CPU and Z/O power as well as memory can best be placed 
and exploited in such machines. 

Most of today’s parallel machines are built as one of 
the two extreme cases of this hierarchical design: a dis- 
tributed-memory machine uses single-CPU nodes, while 

a shared-memory machine consists of a single node. Soft- 
ware designed for this hierarchical architecture will run 
on either conventional design as well as a genuinely hi- 
erarchical machine, and will allow exploring trade-offs in 
the range of alternatives in between. Thus, the operator 
model of parallelization also offers the advantage of ar- 
chitecture- and topology-independent parallel query eval- 
uation [ 191. 

A number of features make Volcano an interesting ob- 
ject for further performance studies. First, the LRU/MRU 
buffer replacement strategy switched by a keep-or-toss 
hint needs to be evaluated. Second, using clusters of dif- 
ferent sizes on a single device and avoiding buffer shuf- 
fling by allocating buffer space dynamically instead of 
statically require careful evaluation. Third, the duality and 
trade-offs between sort- and hash-based query processing 
algorithms and their implementations will be explored 
further. Fourth, Volcano allows measuring the perfor- 
mance of parallel algorithms and identifying bottlenecks 
on a shared-memory architecture, as demonstrated for in- 
stance in [ 181. We intend to perform similar studies on 
distributed-memory and, as they become available, hier- 
archical architectures. Fifth, the advantages and disad- 
vantages of a separate scheduler process in distributed- 
memory query processing (as used in GAMMA) will be 
evaluated. Finally, after data-driven dataflow has been 
shown to work well on a shared-nothing database machine 
[ 111, the combination of demand- and data-driven data- 
flow should be explored on a network on shared-memory 
computers. 

While Volcano is a working system in its current form, 
we are considering several extensions and improvements. 
First, Volcano currently does very extensive error detec- 
tion, but it does not encapsulate errors in fail-fast mod- 
ules. It would be desirable to modify all modules such that 
they have all-or-nothing semantics for all requests. This 
might prove particularly tricky for the exchange module, 
even more so in a distributed-memory environment. Sec- 
ond, for a more complete performance evaluation, Vol- 
cano should be enhanced to a multiuser system that allows 
inter-query parallelism. Third, to make it a complete data 
manager and query processor, transactions semantics in- 
cluding recovery should be added. 

Volcano is the first operational query evaluation system 
that combines extensibility and parallelism. We believe 
that Volcano is a powerful tool for database systems re- 
search and education. We are making it available for stu- 
dent use, e.g., for implementation and performance stud- 
ies, and have given copies to selected outside 
organizations. We intend to use it in a number of further 
research projects, including research on the optimization 
and evaluation of dynamic query evaluation plans [ 171 and 
the REVELATION project on query optimization and exe- 
cution in object-oriented database systems with encapsu- 
lated behavior [ 151. 
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