
ZooKeeper’s atomic broadcast protocol:
Theory and practice

André Medeiros

March 20, 2012

Abstract

Apache ZooKeeper is a distributed coordination service for cloud computing,
providing essential synchronization and group services for other distributed ap-
plications. At its core lies an atomic broadcast protocol, which elects a leader,
synchronizes the nodes, and performs broadcasts of updates from the leader.
We study the design of this protocol, highlight promised properties, and analyze
its official implementation by Apache. In particular, the default leader election
protocol is studied in detail.

1 Introduction

ZooKeeper [8, 10, 11, 12, 19] is a fault-tolerant distributed coordination service for
cloud computing applications currently maintained by Yahoo! and the Apache Software
Foundation. It provides fundamental services for other cloud computing applications by
encapsulating distributed coordination algorithms and maintaining a simple database.

The service is intended to be highly-available and highly-reliable, so several client
processes rely on it for bootstrapping, storing configuration data, status of running
processes, group membership, implementing synchronization primitives, and manag-
ing failure recovery. It achieves availability and reliability through replication, and is
designed to have good performance in read-dominant workloads [12].

Total replication of the ZooKeeper database is performed on an ensemble, i.e., a
number of host servers, three or five being usual configurations, of which one is the
leader of a quorum (i.e., majority). The service is considered up as long as a quorum
of the ensemble is available. A critical component of ZooKeeper is Zab, the ZooKeeper
Atomic Broadcast algorithm, which is the protocol that manages atomic updates to
the replicas. It is responsible for agreeing on a leader in the ensemble, synchronizing
the replicas, managing update transactions to be broadcast, as well as recovering from
a crashed state to a valid state. We study Zab in detail in this report.

1

The outline of this report is as follows. The background knowledge for atomic
broadcast protocols is given in the next section. In Section 3 we present Zab’s design,
while in Section 4 we comment on its implementation, ending with the conclusion in
Section 5. The main references for this report are [12, 19].

2 Background

A broadcast algorithm transmits a message from one process – the primary process –
to all other processes in a network or in a broadcast domain, including the primary.
Atomic broadcast protocols are distributed algorithms guaranteed either to correctly
broadcast or to abort without side effects. It is a primitive widely used in distributed
computing for group communication. Atomic broadcast can also be defined as a reliable
broadcast that satisfies total order [3], i.e., that satisfies the following properties [4]:

• Validity: If a correct process broadcasts a message, then all correct processes
will eventually deliver it.

• Uniform Agreement: If a process delivers a message, then all correct processes
eventually deliver that message.

• Uniform Integrity: For any message m, every process delivers m at most once,
and only if m was previously broadcast by the sender of m.

• Uniform Total Order: If processes p and q both deliver messages m and m′,
then p delivers m before m′ if and only if q delivers m before m′.

Paxos [14, 15] is a traditional protocol for solving distributed consensus. It was not
originally intended for atomic broadcasting, but it has been shown in Défago et al. [4]
how consensus protocols can be used for atomic broadcasting. There are many other
atomic broadcast protocols, and Paxos was considered for being used in ZooKeeper,
however it does not satisfy some critical properties that the service requires. The
properties are described in Section 2.3. Zab aims at satisfying ZooKeeper requirements,
while maintaining some similarity to Paxos. Refer to [15] for more details on Paxos.

2.1 Paxos and design decisions for Zab

Two important requirements [12] for Zab are handling multiple outstanding client op-
erations and efficient recovery from crashes. An outstanding transaction is one that
has been proposed but not yet delivered. For high-performance, it is important that
ZooKeeper can handle multiple outstanding state changes requested by the client and
that a prefix of operations submitted concurrently are committed according to FIFO
order. Moreover, it is useful that the system can recover efficiently after the leader has
crashed.

2

The original Paxos protocol does not enable multiple outstanding transactions.
Paxos does not require FIFO channels for communication, so it tolerates message loss
and reordering. If two outstanding transactions have an order dependency, then Paxos
cannot have multiple outstanding transactions because FIFO order is not guaranteed.
This problem could be solved by batching multiple transactions into a single proposal
and allowing at most one proposal at a time, but this has performance drawbacks.

The manipulation of the sequence of transactions to use during recovery from pri-
mary crashes is claimed to not be efficient enough in Paxos [12]. Zab improves this
aspect by employing a transaction identification scheme to totally order the transac-
tions. Under the scheme, in order to update the application state of a new primary
process, it is sufficient to inspect the highest transaction identifier from each process,
and to copy transactions only from the process that accepted the transaction with the
highest identifier. In Paxos, the same idea cannot be applied on sequence numbers,
so a new primary has to execute Phase 1 of Paxos for all previous sequence numbers
for which the primary has not “learned a value” (in Zab terminology, “committed a
transaction”).

Additional performance requirements [19] for ZooKeeper are: (i) low latency, (ii)
good throughput under bursty conditions, handling situations when write workloads
increase rapidly during, e.g., massive system reconfiguration, and (iii) smooth failure
handling, so that the service can stay up when some non-leader server crashes.

2.2 Crash-recovery system model

ZooKeeper assumes the crash-recovery model as system model [12]. The system is
a set of processes Π = {p1, p2, . . . , pN}, also referred to as peers in this report, that
communicate by message passing, are each equipped with a stable storage device, and
may crash and recover indefinitely many times. A quorum of Π is a subset Q ⊆ Π such
that |Q| > N/2. Any two quorums have a non-empty intersection. Processes have two
states: up and down. A process is down from a crash time point to the beginning of
its recovery, and up from the beginning of a recovery until the next crash happens.

There is a bidirectional channel for every pair of processes in Π, which is expected
to satisfy the following properties: (i) integrity, asserting that process pj receives a
message m from pi only if pi has sent m; and (ii) prefix, stating that if process pj
receives a message m and there is a message m′ that precedes m in the sequence of
messages pi sent to pj, then pj receives m′ before m. To achieve these properties,
ZooKeeper uses TCP – therefore FIFO – channels for communication.

2.3 Expected properties

To guarantee that processes are consistent, there are a couple of safety properties to be
satisfied by Zab. Additionally, for allowing multiple outstanding operations, we require

3

primary order properties. To state these properties we first need some definitions.
In ZooKeeper’s crash-recovery model, if the primary process crashes, a new primary

process needs to be elected. Since broadcast messages are totally ordered, we require
at most one primary active at a time. So over time we get an unbounded sequence
of primary processes ρ1ρ2 . . . ρe . . ., where ρe ∈ Π, and e is an integer called epoch,
representing a period of time when ρe was the single primary in the ensemble. Process
ρe precedes ρe′ , denoted ρe ≺ ρe′ , if e < e′.

Transactions are state changes that the primary propagates (“broadcasts”) to the
ensemble, and are represented by a pair 〈v, z〉, where v is the new state and z is an
identifier called zxid. Transactions are first proposed to a process by the primary, then
delivered (“committed”) at a process upon a specific call to a delivery method.

The following properties are necessary for consistency [12].

• Integrity: If some process delivers 〈v, z〉, then some process has broadcast 〈v, z〉.
• Total order: If some process delivers 〈v, z〉 before 〈v′, z′〉, then any process that

delivers 〈v′, z′〉 must also deliver 〈v, z〉 before 〈v′, z′〉.
• Agreement: If some process pi delivers 〈v, z〉 and some process pj delivers 〈v′, z′〉,

then either pi delivers 〈v′, z′〉 or pj delivers 〈v, z〉.

Primary order properties [12] are given below.

• Local primary order: If a primary broadcasts 〈v, z〉 before it broadcasts 〈v′, z′〉,
then a process that delivers 〈v′, z′〉 must have delivered 〈v, z〉 before 〈v′, z′〉.
• Global primary order: Suppose a primary ρi broadcasts 〈v, z〉, and a primary
ρj � ρi broadcasts 〈v′, z′〉. If a process delivers both 〈v, z〉 and 〈v′, z′〉, then it
must deliver 〈v, z〉 before 〈v′, z′〉.
• Primary integrity: If a primary ρe broadcasts 〈v, z〉 and some process delivers
〈v′, z′〉 which was broadcast by ρe′ ≺ ρe, then ρe must have delivered 〈v′, z′〉 before
broadcasting 〈v, z〉.

Local primary order corresponds to FIFO order. Primary integrity guarantees that
a primary has delivered transactions from previous epochs.

3 Atomic broadcast protocol

In Zab, there are three possible (non-persistent) states a peer can assume: following,
leading, or election. Whether a peer is a follower or a leader, it executes three Zab
phases: (1) discovery, (2) synchronization, and (3) broadcast, in this order. Previous
to Phase 1, a peer is in state election, when it executes a leader election algorithm to

4

look for a peer to vote for becoming the leader. At the beginning of Phase 1, the peer
inspects its vote and decides whether it should become a follower or a leader. For this
reason, leader election is sometimes called Phase 0.

The leader peer coordinates the phases together with the followers, and there should
be at most one leader peer in Phase 3 at a time, which is also the primary process to
broadcast messages. In other words, the primary is always the leader. Phases 1 and 2
are important for bringing the ensemble to a mutually consistent state, specially when
recovering from crashes. They constitute the recovery part of the protocol and are criti-
cal to guarantee order of transactions while allowing multiple outstanding transactions.
If crashes do not occur, peers stay indefinitely in Phase 3 participating in broadcasts,
similar to the two phase commit protocol [9]. During Phases 1, 2, and 3, peers can
decide to go back to leader election if any failure or timeout occurs.

ZooKeeper clients are applications that use ZooKeeper services by connecting to
at least one server in the ensemble. The client submits operations to the connected
server, and if this operation implies some state change, then the Zab layer will perform
a broadcast. If the operation was submitted to a follower, it is forwarded to the leader
peer. If a leader receives the operation request, then it executes and propagates the
state change to its followers. Read requests from the client are directly served by any
ZooKeeper server. The client can choose to guarantee that the replica is up-to-date by
issuing a sync request to the connected ZooKeeper server.

In Zab, transaction identifiers (zxid) are crucial for implementing total order prop-
erties. The zxid z of a transaction 〈v, z〉 is a pair 〈e, c〉, where e is the epoch number
of the primary ρe that generated the transaction 〈v, z〉, and c is an integer acting as a
counter. The notation z.epoch means e, and z.counter = c. The counter c is incre-
mented every time a new transaction is introduced by the primary. When a new epoch
starts – a new leader becomes active – c is set to zero and e is incremented from what
was known to be the previous epoch. Since both e and c are increasing, transactions
can be ordered by their zxid. For two zxids 〈e, c〉 and 〈e′, c′〉, we write 〈e, c〉 ≺z 〈e′, c′〉
if e < e′ or if e = e′ and c < c′.

There are four variables that constitute the persistent state of a peer, which are
used during the recovery part of the protocol:

− history: a log of transaction proposals accepted;
− acceptedEpoch: the epoch number of the last NEWEPOCH message accepted;
− currentEpoch: the epoch number of the last NEWLEADER message accepted;
− lastZxid: zxid of the last proposal in the history;

We assume some mechanism to determine whether a transaction proposal in the
history has been committed in the peer’s ZooKeeper database. The variable names
above follow the terminology of [18], while in [12] they are different: history of a peer
f is hf , acceptedEpoch is f.p, currentEpoch is f.a, and lastZxid is f.zxid.

5

3.1 Phases of the protocol

The four phases of the Zab protocol are described next.
Phase 0: Leader election Peers are initialized in this phase, having state election.

No specific leader election protocol needs to be employed, as long as the protocol
terminates, with high probability, choosing a peer that is up and that a quorum of
peers voted for. After termination of the leader election algorithm, a peer stores its
vote to local volatile memory. If peer p voted for peer p′, then p′ is called the prospective
leader for p. Only at the beginning of Phase 3 does a prospective leader become an
established leader, when it will also be the primary process. If the peer has voted for
itself, it shifts to state leading, otherwise it changes to state following.

Phase 1: Discovery In this phase, followers communicate with their prospective
leader, so that the leader gathers information about the most recent transactions that
its followers accepted. The purpose of this phase is to discover the most updated
sequence of accepted transactions among a quorum, and to establish a new epoch so
that previous leaders cannot commit new proposals. The complete description of this
phase is described in Algorithm 1.

Follower F :1

Send the message FOLLOWERINFO(F.acceptedEpoch) to L2

upon receiving NEWEPOCH(e′) from L do3

if e′ > F.acceptedEpoch then4

F.acceptedEpoch← e′ // stored to non-volatile memory5

Send ACKEPOCH(F.currentEpoch, F.history, F.lastZxid) to L6

goto Phase 27

else if e′ < F.acceptedEpoch then8

F.state← election and goto Phase 0 (leader election)9

end10

end11

Leader L:12

upon receiving FOLLOWERINFO(e) messages from a quorum Q of connected followers do13

Make epoch number e′ such that e′ > e for all e received through FOLLOWERINFO(e)14

Propose NEWEPOCH(e′) to all followers in Q15

end16

upon receiving ACKEPOCH from all followers in Q do17

Find the follower f in Q such that for all f ′ ∈ Q \ {f}:18

either f ′.currentEpoch < f.currentEpoch19

or (f ′.currentEpoch = f.currentEpoch) ∧ (f ′.lastZxid �z f.lastZxid)20

L.history← f.history // stored to non-volatile memory21

goto Phase 222

end23

Algorithm 1: Zab Phase 1: Discovery.

At the beginning of this phase, a follower peer will start a leader-follower connection

6

with the prospective leader. Since the vote variable of a follower corresponds to only
one peer, the follower can connect to only one leader at a time. If a peer p is not in state
leading and another process considers p to be a prospective leader, any leader-follower
connection will be denied by p. Either the denial of a leader-follower connection or
some other failure can bring a follower back to Phase 0.

Phase 2: Synchronization The Synchronization phase concludes the recovery
part of the protocol, synchronizing the replicas in the ensemble using the leader’s up-
dated history from the previous phase. The leader communicates with the followers,
proposing transactions from its history. Followers acknowledge the proposals if their
own history is behind the leader’s history. When the leader sees acknowledgements from
a quorum, it issues a commit message to them. At that point, the leader is said to be
established, and not anymore prospective. Algorithm 2 gives the complete description
of this phase.

Leader L:1

Send the message NEWLEADER(e′, L.history) to all followers in Q2

upon receiving ACKNEWLEADER messages from some quorum of followers do3

Send a COMMIT message to all followers4

goto Phase 35

end6

Follower F :7

upon receiving NEWLEADER(e′, H) from L do8

if F.acceptedEpoch = e′ then9

atomically10

F.currentEpoch← e′ // stored to non-volatile memory11

for each 〈v, z〉 ∈ H, in order of zxids, do12

Accept the proposal 〈e′, 〈v, z〉〉13

end14

F.history← H // stored to non-volatile memory15

end16

Send an ACKNEWLEADER(e′, H) to L17

else18

F.state← election and goto Phase 019

end20

end21

upon receiving COMMIT from L do22

for each outstanding transaction 〈v, z〉 ∈ F.history, in order of zxids, do23

Deliver 〈v, z〉24

end25

goto Phase 326

end27

Algorithm 2: Zab Phase 2: Synchronization.

7

Phase 3: Broadcast If no crashes occur, peers stay in this phase indefinitely, per-
forming broadcast of transactions as soon as a ZooKeeper client issues a write request.
At the beginning, a quorum of peers is expected to be consistent, and there can be no
two leaders in Phase 3. The leader allows also new followers to join the epoch, since
only a quorum of followers is enough for starting Phase 3. To catch up with other peers,
incoming followers receive transactions broadcast during that epoch, and are included
in the leader’s set of known followers.

Since Phase 3 is the only phase when new state changes are handled, the Zab layer
needs to notify the ZooKeeper application that it’s prepared for receiving new state
changes. For this purpose, the leader calls ready(e) at the beginning of Phase 3, which
enables the application to broadcast transactions. Algorithm 3 describes the phase.

Leader L:1

upon receiving a write request v do2

Propose 〈e′, 〈v, z〉〉 to all followers in Q, where z = 〈e′, c〉, such that z succeeds all zxid3

values previously broadcast in e′ (c is the previous zxid’s counter plus an increment of one)
end4

upon receiving ACK(〈e′, 〈v, z〉〉) from a quorum of followers do5

Send COMMIT(e′, 〈v, z〉) to all followers6

end7

// Reaction to an incoming new follower:8

upon receiving FOLLOWERINFO(e) from some follower f do9

Send NEWEPOCH(e′) to f10

Send NEWLEADER(e′, L.history) to f11

end12

upon receiving ACKNEWLEADER from follower f do13

Send a COMMIT message to f14

Q← Q ∪ {f}15

end16

Follower F :17

if F is leading then Invokes ready(e′)18

upon receiving proposal 〈e′, 〈v, z〉〉 from L do19

Append proposal 〈e′, 〈v, z〉〉 to F.history20

Send ACK(〈e′, 〈v, z〉〉) to L21

end22

upon receiving COMMIT(e′, 〈v, z〉) from L do23

while there is some outstanding transaction 〈v′, z′〉 ∈ F.history such that z′ ≺z z do24

Do nothing (wait)25

end26

Commit (deliver) transaction 〈v, z〉27

end28

Algorithm 3: Zab Phase 3: Broadcast.

Algorithms 1, 2, and 3 are apparently asynchronous and do not take into account
possible peer crashes. To detect failures, Zab employs periodic heartbeat messages

8

between followers and their leaders. If a leader does not receive heartbeats from a
quorum of followers within a given timeout, it abandons its leadership and shifts to
state election and Phase 0. A follower also goes to Leader Election Phase if it does not
receive heartbeats from its leader within a timeout.

3.2 Analytical results

We briefly mention some formal properties that Zab satisfies, and their correspond-
ing proofs were given in Junqueira et al. [11, 12]. The invariants are simple to show
by inspecting the three algorithms, while claims are carefully demonstrated using the
invariants.

Invariant 1 [12] In Broadcast Phase, a follower F accepts a proposal 〈e, 〈v, z〉〉 only
if F.currentEpoch = e.

Invariant 2 [12] During the Broadcast Phase of epoch e, if a follower F has
F.currentEpoch = e, then F accepts proposals and delivers transactions according to
zxid order.

Invariant 3 [12] During Phase 1, a follower F will not accept proposals from the leader
of any epoch e′ < F.acceptedEpoch.

Invariant 4 [12] In Phase 1, an ACKEPOCH(F.currentEpoch, F.history, F.lastZxid)
message does not alter, reorder, or lose transactions in F.history. In Phase 2, a
NEWLEADER(e′, L.history) message does not alter, reorder, or lose transactions in
L.history.

Invariant 5 [12] The sequence of transactions a follower F delivered while in Phase
3 of epoch F.currentEpoch is contained in the sequence of transactions broadcast by
primary ρF.e, where F.e denotes the last epoch e such that F learned that e has been
committed.

Claim 1 [11] For every epoch number e, there is at most one process that calls ready(e)
in Broadcast Phase.

Claim 2 [12] Zab satisfies the properties from Section 2.3: broadcast integrity, agree-
ment, total order, local primary order, global primary order, and primary integrity.

Claim 3 [12] Liveness property: Suppose that a quorum Q of followers is up, the
followers in Q have L as their prospective leader, L is up, and messages between a
follower in Q and L are received in a timely fashion. If L proposes a transaction
〈e, 〈v, z〉〉, then 〈e, 〈v, z〉〉 is eventually committed.

9

4 Implementation

Apache ZooKeeper is written in Java, and the version we have used for studying the
implementation was 3.3.3 [8]. Version 3.3.4 is the latest stable version (to this date),
but this has very little differences in the Zab layer. Recent unstable versions have
significant changes, though.

Most of the source code is dedicated to ZooKeeper’s storage functions and client
communication. Classes responsible for Zab are deep inside the implementation. As
mentioned in Section 2.2, TCP connections are used to implement the bidirectional
channels between peers in the ensemble. The FIFO order that TCP communication
satisfies is crucial for the correctness of the broadcast protocol.

The Java implementation of Zab roughly follows Algorithms 1, 2, and 3. Several
optimizations were added to the source code, which make the actual implementation
look significantly different from what we have seen in the previous section. In par-
ticular, the default leader election algorithm for Phase 0 is tightly coupled with the
implementation of Phase 1.

Fast Leader Election (FLE) is the name of the default leader election algorithm in
the implementation. This algorithm employs an optimization: It attempts to elect as
leader the peer that has the most up-to-date history from a quorum of processes. When
such a leader is elected, in Phase 1 it will not need to communicate with followers to
discover the latest history. Even though other leader election algorithms are supported
by the implementation, in reality Phase 1 was modified to require that Phase 0 elects
a leader with the most up-to-date history.

In practice, since FLE covers the discovery responsibility of Phase 1, this phase has
been neglected in version 3.3.3 (and also 3.3.4) of ZooKeeper. There is no clear distinc-
tion between Phases 1 and 2 in the implementation, so we refer to the combination of
both as Recovery Phase. This phase comes after Phase 0, and assumes that the leader
has the latest history in a quorum. Algorithm 4 is an approximate pseudocode of the
Recovery Phase, and Figure 1 compares the implemented phases to Zab’s phases.

@
@
�
� �

�
@
@@
@
�
� �

�
@
@@
@
�
� �

�
@
@

�
�
@
@

�
�
@
@@
@
�
� �

�
@
@@
@
�
� �

�
@
@

Phase 0
(Leader Election)

Phase 1
(Discovery)

Phase 2
(Synchronization)

Phase 3
(Broadcast)

Fast Leader Election Recovery Phase Broadcast Phase

Implemented protocol

Zab protocol

Figure 1: Comparison betweens the phases of Zab protocol and the implemented pro-
tocol.

10

Leader L:1

L.lastZxid← 〈L.lastZxid.epoch + 1, 0〉2

upon receiving FOLLOWERINFO(f.lastZxid) message from a follower f do3

Send NEWLEADER(L.lastZxid) to f4

if f.lastZxid � L.history.lastCommittedZxid then5

if f.lastZxid ≺ L.history.oldThreshold then6

Send a SNAP message with a snapshot of the whole database of L7

else8

Send a DIFF({committed transaction 〈v, z〉 ∈ L.history : f.lastZxid ≺ z})9

end10

else11

Send a TRUNC(L.history.lastCommittedZxid) message to f12

end13

end14

upon receiving ACKNEWLEADER messages from some quorum of followers do15

goto Phase 3 // Algorithm 316

end17

Follower F :18

Connect to its prospective leader L19

Send the message FOLLOWERINFO(F.lastZxid) to L20

upon L denies connection do21

F.state← election and goto Phase 022

end23

upon receiving NEWLEADER(newLeaderZxid) from L do24

if newLeaderZxid.epoch < F.lastZxid.epoch then25

F.state← election and goto Phase 026

end27

upon receiving a SNAP, DIFF, or TRUNC message do28

if got TRUNC(lastCommittedZxid) then29

Abort all proposals from lastCommittedZxid to F.lastZxid30

else if got DIFF(H) then31

Accept all proposals in H, in order of zxids, then commit all32

else if got SNAP then33

Copy the snapshot received to the database, and commit the changes34

end35

Send ACKNEWLEADER36

goto Phase 3 // Algorithm 337

end38

end39

Algorithm 4: Recovery Phase pseudocode from the Implementation.

The implemented Recovery Phase resembles more Phase 2 than Phase 1. Follow-
ers connect to the leader and send their last zxid, so the leader can decide how to
synchronize the followers’ histories. However, the synchronization is done differently
than in Phase 2: Followers can abort some outstanding transactions upon receiving the
TRUNC message or accept newer proposals from the leader upon receiving the DIFF

11

message. The implementation uses some special variables for performing a case-by-case
synchronization: history.lastCommittedZxid is the zxid of the most recently commit-
ted transaction in history, and history.oldThreshold is the zxid of some committed
transaction considered to be old enough in history.

The purpose of this synchronization is to keep the replicas in a mutually consistent
state [19]. In order to do so, committed transactions in any replica must be committed
in all other replicas, in the same order. Furthermore, proposed transactions that should
not be committed anymore must be abandoned so that no peer commits them. Messages
SNAP and DIFF take care of the former case, while TRUNC is responsible for the latter.

There are no analogous variables to acceptedEpoch and currentEpoch. Instead,
the Algorithm derives the current epoch e from the zxid 〈e, c〉 of the latest transaction
in its history. If a follower F attempts to connect to its prospective leader L which is
not actually leading, L will deny connection and F will execute line 22 in Algorithm 4.

The implementation expects stronger post-conditions from the leader election phase
than Zab’s description [12] does, see Section 4.1 below. FLE is undocumented, so we
now focus on studying it in detail, including the postconditions that the Recovery Phase
requires.

4.1 Fast Leader Election

The main postcondition that Fast Leader Election attempts to guarantee for the subse-
quent Recovery Phase is that the leader will have in its history all committed transac-
tions. This is supported by the assumption that the peer with the most recent proposed
transaction must have also the most recent committed transaction. For performing the
synchronization, Recovery Phase assumes this postcondition holds. If, however, the
postcondition does not hold, a follower might have a committed transaction that the
leader does not have. In that situation, the replicas would be inconsistent, and Recovery
Phase would not be able to bring the ensemble to a consistent state, since the synchro-
nization direction is strictly from leader to followers. To achieve the postcondition,
FLE aims at electing a leader with highest lastZxid among a quorum.

In FLE, peers in the election state vote for other peers for the purpose of electing
a leader with the latest history. Peers exchange notifications about their votes, and
they update their own vote when a peer with more recent history is discovered. A local
execution of FLE will terminate returning a vote for a single peer and then transition
to Recovery Phase. If the vote was for the peer itself, it shifts to state leading (and
following itself), otherwise it goes to state following. Any subsequent failures will cause
the peer to go back to state election and restart FLE. Different executions of FLE are
distinguished by a round number: Every time FLE restarts, the round number is
incremented.

Recall the set of peers Π = {p1, p2, . . . , pN}, where {1, 2, . . . , N} are the server
identification numbers of the peers. A vote for a peer pi is represented by a pair (zi, i),

12

where zi is the zxid of the latest transaction in pi. For FLE, votes are ordered by the
“better” relation � such that (zi, i) � (zj, j) if zi � zj or if zi = zj and i ≥ j.

Since each peer has a unique server id and knows the zxid of its latest transaction,
all peers are totally ordered by the relation �. That is, if pi and pj are two peers
with zxid and server id pairs (zi, i), (zj, j), respectively, then pi � pj if and only if
(zi, i) � (zj, j).

In the Recovery Phase, a follower pF is successfully connected to its prospective
leader pL once it passes line 24 in Algorithm 4. The objective of FLE is to eventually
elect a leader pL which was voted by a quorum Q of followers, such that every follower
pF ∈ Q eventually gets successfully connected to pL and had satisfied pF � pL when
FLE was terminated.

Nothing is written to disk during the execution of FLE, so it does not have a
disk-persistent state. This also means that the FLE round number is not persistent.
However, it uses some variables known to be persistent, such as lastZxid. The non-
persistent variables important to FLE are: vote, identification number id, state ∈
{election, leading, following}, current round ∈ Z+, and queue of received notifications.
A notification is a tuple (vote, id, state, round) to be sent to other peers with
information about the sender peer.

Algorithm 6 gives a thorough description of Fast Leader Election, which roughly
works as follows. Each peer knows the IP addresses of all other peers, and knows
the total number of peers, SizeEnsemble. A peer starts by voting for itself, sends
notifications of its vote to all other peers, and then waits for notifications to arrive.
Upon receiving a notification, it will be dealt by the current peer according to the
state of the peer that sent the notification. If the state was election, the current
peer updates its view of the other peers’ votes, and updates its own vote in case the
received vote is better. Notifications from previous rounds are ignored. If the state

of the sender peer was not election, the current peer updates its view of follower-leader
relationships of peers outside leader election phase. In either case, when the current
peer detects a quorum of peers with a common vote, it returns its final vote and decides
to be a leader or a follower.

Some subroutines necessary for Fast Leader Election are:

− DeduceLeader(id): sets the state of the current peer to LEADING in case id

is equal to its own server id, otherwise sets the peer’s state to FOLLOWING.
− Put(Table(id), vote, round): in the key-value mapping Table, sets the value of

the entry with key id to (vote, round, version), where version is a positive
integer i indicating that vote is the i-th vote of server id during its current
election round. Supposing (v, r, i) was the previous value of the entry id (initially
(v, r, i) = (⊥,⊥,⊥)), version := 1 if r 6= round, and version := i+1 otherwise.

− Notifications Receiver, a thread which is run in parallel to the protocol, and
described by the pseudocode of Algorithm 5. It receives notifications from a peer

13

Q, forwards them to FLE through a queue, and sends back to Q a notification
about the current peer’s vote.

Peer P :1

upon receiving notification (Q.vote, Q.id, Q.state, Q.round) do2

if P.state = election then3

Push (Q.vote, Q.id, Q.state, Q.round) to P.queue4

if Q.state = election and Q.round < P.round then5

Send notification (P.vote, P.id, P.state, P.round) to peer Q.id6

end7

else if Q.state = election then8

Send notification (P.vote, P.id, P.state, P.round) to peer Q.id9

end10

end11

Algorithm 5: Notifications Receiver thread.

4.2 Problems with the implemented protocol

Some problems have emerged from the implemented protocol due to differences from
the designed protocol. We will briefly consider two bugs in this section.

As mentioned, the implementation up to version 3.3.3 has not included epoch vari-
ables acceptedEpoch and currentEpoch. This omission has generated problems [5]
(issue ZOOKEEPER-335 in Apache’s issue tracking system) in a production version
and was noticed by many ZooKeeper clients. The origin of this problem is at the be-
ginning of Recovery Phase (Algorithm 4 line 2), when the leader increments its epoch
(contained in lastZxid) even before acquiring a quorum of successfully connected fol-
lowers (such leader is called false leader). Since a follower goes back to FLE if its
epoch is larger than the leader’s epoch (line 25), when a false leader drops leadership
and becomes a follower of a leader from a previous epoch, it finds a smaller epoch (line
25) and goes back to FLE. This behavior can loop, switching from Recovery Phase to
FLE.

Consequently, using lastZxid to store the epoch number, there is no distinction
between a tried epoch and a joined epoch in the implementation. Those are the re-
spective purposes for acceptedEpoch and currentEpoch, hence the omission of them
render such problems. These variables have been properly inserted in recent (unstable)
ZooKeeper versions to fix the problems mentioned above.

Another problem of the implementation is related to abandoning follower proposals
in the Recovery Phase, through TRUNC messages. Algorithm 4 assumes that the
condition z � L.history.lastCommittedZxid (on line 11) is necessary and sufficient
for determining follower proposals 〈v, z〉 to be abandoned. However, there might be
proposals that need to be abandoned but do not satisfy that condition. The bug

14

Peer P :1

timeout← T0 // use some reasonable timeout value2

ReceivedVotes← ∅; OutOfElection← ∅ // key-value mappings where keys are server ids3

P.state← election; P.vote← (P.lastZxid, P.id); P.round← P.round + 14

Send notification (P.vote, P.id, P.state, P.round) to all peers5

while P.state = election do6

n←(null if P.queue = ∅ for timeout milliseconds, otherwise pop from P.queue)7

if n = null then8

Send notification (P.vote, P.id, P.state, P.round) to all peers9

timeout← 2× timeout, unless a predefined upper bound has been reached10

else if n.state = election then11

if n.round > P.round then12

P.round← n.round13

ReceivedVotes← ∅14

if n.vote � (P.lastZxid, P.id) then P.vote← n.vote15

else P.vote← (P.lastZxid, P.id)16

Send notification (P.vote, P.id, P.state, P.round) to all peers17

else if n.round = P.round and n.vote � P.vote then18

P.vote← n.vote19

Send notification (P.vote, P.id, P.state, P.round) to all peers20

else if n.round < P.round then goto line 621

Put(ReceivedVotes(n.id), n.vote, n.round)22

if |ReceivedVotes| = SizeEnsemble then23

DeduceLeader(P.vote.id); return P.vote24

else if P.vote has a quorum in ReceivedVotes25

and there are no new notifications within T0 milliseconds then
DeduceLeader(P.vote.id); return P.vote26

end27

else // state of n is LEADING or FOLLOWING28

if n.round = P.round then29

Put(ReceivedVotes(n.id), n.vote, n.round)30

if n.state = LEADING then31

DeduceLeader(n.vote.id); return n.vote32

else if n.vote.id = P.id and n.vote has a quorum in ReceivedVotes then33

DeduceLeader(n.vote.id); return n.vote34

else if n.vote has a quorum in ReceivedVotes and the voted peer n.vote.id is in35

state LEADING and n.vote.id ∈ OutOfElection then
DeduceLeader(n.vote.id); return n.vote36

end37

end38

Put(OutOfElection(n.id), n.vote, n.round)39

if n.vote.id = P.id and n.vote has a quorum in OutOfElection then40

P.round← n.round41

DeduceLeader(n.vote.id); return n.vote42

else if n.vote has a quorum in OutOfElection and the voted peer n.vote.id is in state43

LEADING and n.vote.id ∈ OutOfElection then
P.round← n.round44

DeduceLeader(n.vote.id); return n.vote45

end46

end47

Algorithm 6: Fast Leader Election

15

was reported in the issue ZOOKEEPER-1154 [6], and we mention a scenario where it
happens.

Suppose Π = {p1, p2, p3}, all peers are in Broadcast Phase and synchronized to
the latest (committed) transaction with zxid 〈e = 1, c = 3〉, and p1 is the leader.
A new proposal with zxid 〈1, 4〉 is issued by the leader p1 (Algorithm 3 line 3), but
this gets accepted only by p1 since the whole ensemble Π crashes after p1 accepts
〈1, 4〉 and before {p2, p3} receive the proposal. Then, {p2, p3} restart and proceed
to FLE, while p1 remains down. From FLE, p2 becomes the leader supported by
the quorum {p2, p3}. At the beginning of Recovery Phase, p2 sets the epoch to 2
(p2.lastZxid = 〈2, 0〉), completes Recovery Phase, then in Broadcast Phase a new
proposal with zxid 〈2, 1〉 gets accepted by the quorum, then committed. At that
point, the leader p2 has p2.history.lastCommittedZxid = 〈2, 1〉 and (for example)
p2.history.oldThreshold = 〈1, 1〉. Soon after that, p1 is up again, it performs FLE
to discover that p2 is the leader with a quorum in Broadcast Phase, then in Recov-
ery Phase p1 sends to the leader its FOLLOWERINFO(p1.lastZxid = 〈1, 4〉). The
leader p2 sends a DIFF to follower p1 since 〈1, 4〉 ≺ p2.history.lastCommittedZxid
and p2.history.oldThreshold ≺ 〈1, 4〉.

In that scenario, the leader should have sent either TRUNC to abort the follower’s
uncommitted proposal 〈1, 4〉, or SNAP to make the follower’s database state exactly
reflect the leader’s database. The latter option is what ZooKeeper developers have
decided to adopt to fix the bug in the protocol.

5 Conclusion

The ZooKeeper service has been used in many cloud computing infrastructures of or-
ganizations such as Yahoo! [7], Facebook [1], 101tec [7], RackSpace [7], AdroitLogic [7],
deepdyve [7], and others. Since it assumes key responsibilities in cloud software stacks,
it is critical that ZooKeeper performs reliably. In particular, given the dependency
of ZooKeeper on Zab, the implementation of this protocol should always satisfy the
properties mentioned in Section 2.3.

Its increasing use has demonstrated how it has been able to fulfill its correctness
objectives. However, another important demand for ZooKeeper is performance, such
as low latency and high throughput. Reed and Junqueira [19] affirm that good perfor-
mance has been key for its wide adoption [12]. Indeed, performance requirements have
significantly changed the atomic broadcast protocol, for instance, through Fast Leader
Election and Recovery Phase.

The adoption of optimizations in the protocol has not been painless, as seen with
issues [5] and [6]. Some optimizations have been reverted in order to maintain correct-
ness, such as the absence of variables acceptedEpoch and currentEpoch. Even though
bugs are being actively fixed, experience shows us how distributed coordination prob-

16

lems must be dealt with caution. In fact, the sole purpose of ZooKeeper is to properly
handle those problems [8]:

ZooKeeper is a centralized service for maintaining configuration informa-
tion, naming, providing distributed synchronization, and providing group
services. All of these kinds of services are used in some form or another by
distributed applications. Each time they are implemented there is a lot of
work that goes into fixing the bugs and race conditions that are inevitable.
Because of the difficulty of implementing these kinds of services, applications
initially usually skimp on them, which make them brittle in the presence of
change and difficult to manage. Even when done correctly, different im-
plementations of these services lead to management complexity when the
applications are deployed.

ZooKeeper’s development, however, has also experienced these quoted problems.
Some of these problems came from the difference between the implemented protocol
and the published protocol from Junqueira et al. [12]. Apparently, this difference
has existed since the beginning of the development, which suggests early optimization
attempts. Knuth [13] has long ago mentioned the dangers of optimization:

We should forget about small efficiencies, say about 97% of the time: pre-
mature optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%. A good programmer will not be lulled into
complacency by such reasoning, he will be wise to look carefully at the critical
code; but only after that code has been identified.

It is not a trivial task to achieve correctness in solutions for distributed coordi-
nation problems, and high performance requirements should not allow the sacrifice of
correctness properties.

17

References

[1] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkarup-
pan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov,
Aravind Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand S. Aiyer. Apache
Hadoop goes realtime at Facebook. In Timos K. Sellis, Renée J. Miller, Anasta-
sios Kementsietsidis, and Yannis Velegrakis, editors, SIGMOD Conference, pages
1071–1080. ACM, 2011. ISBN 978-1-4503-0661-4.

[2] Michael Burrows. The Chubby lock service for loosely-coupled distributed systems.
In OSDI, pages 335–350. USENIX Association, 2006.

[3] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[4] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and mul-
ticast algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421,
2004.

[5] The Apache Software Foundation. Apache Jira issue ZOOKEEPER-335, March
2009. URL https://issues.apache.org/jira/browse/ZOOKEEPER-335.

[6] The Apache Software Foundation. Apache Jira issue ZOOKEEPER-1154, August
2011. URL https://issues.apache.org/jira/browse/ZOOKEEPER-1154.

[7] The Apache Software Foundation. Wiki page: Applications and organiza-
tions using ZooKeeper, January 2012. URL http://wiki.apache.org/hadoop/

ZooKeeper/PoweredBy.

[8] The Apache Software Foundation. Apache Zookeeper home page, January 2012.
URL http://zookeeper.apache.org/.

[9] Jim Gray. Notes on data base operating systems. In Operating Systems, volume 60
of Lecture Notes in Computer Science, pages 393–481. Springer Berlin / Heidelberg,
1978.

[10] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free coordination for internet-scale systems. In Proceedings of
the 2010 USENIX conference on USENIX annual technical conference, USENIX-
ATC’10, pages 11–11. USENIX Association, 2010.

[11] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Dissecting Zab.
Yahoo! Research, Sunnyvale, CA, USA, Tech. Rep. YL-2010-007, 12 2010.

18

https://issues.apache.org/jira/browse/ZOOKEEPER-335
https://issues.apache.org/jira/browse/ZOOKEEPER-1154
http://wiki.apache.org/hadoop/ZooKeeper/PoweredBy
http://wiki.apache.org/hadoop/ZooKeeper/PoweredBy
http://zookeeper.apache.org/

[12] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-
performance broadcast for primary-backup systems. In DSN, pages 245–256. IEEE,
2011. ISBN 978-1-4244-9233-6.

[13] Donald E. Knuth. Structured programming with go to statements. ACM Comput.
Surv., 6(4):261–301, 1974.

[14] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst., 16(2):
133–169, 1998.

[15] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[16] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone. Ring
Paxos: A high-throughput atomic broadcast protocol. In DSN, pages 527–536.
IEEE, 2010. ISBN 978-1-4244-7501-8.

[17] Cristian Mart́ın and Mikel Larrea. A simple and communication-efficient Omega
algorithm in the crash-recovery model. Inf. Process. Lett., 110(3):83–87, 2010.

[18] Benjamin Reed. Apache’s Wiki page of a Zab documentation, January 2012. URL
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab1.0.

[19] Benjamin Reed and Flavio P. Junqueira. A simple totally ordered broadcast pro-
tocol. Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and
Middleware LADIS 08, page 1, 2008.

19

https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab1.0

	Introduction
	Background
	Paxos and design decisions for Zab
	Crash-recovery system model
	Expected properties

	Atomic broadcast protocol
	Phases of the protocol
	Analytical results

	Implementation
	Fast Leader Election
	Problems with the implemented protocol

	Conclusion

